Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 25(1): 137, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553666

RESUMO

BACKGROUND: Metagenomic sequencing technologies offered unprecedented opportunities and also challenges to microbiology and microbial ecology particularly. The technology has revolutionized the studies of microbes and enabled the high-profile human microbiome and earth microbiome projects. The terminology-change from microbes to microbiomes signals that our capability to count and classify microbes (microbiomes) has achieved the same or similar level as we can for the biomes (macrobiomes) of plants and animals (macrobes). While the traditional investigations of macrobiomes have usually been conducted through naturalists' (Linnaeus & Darwin) naked eyes, and aerial and satellite images (remote-sensing), the large-scale investigations of microbiomes have been made possible by DNA-sequencing-based metagenomic technologies. Two major types of metagenomic sequencing technologies-amplicon sequencing and whole-genome (shotgun sequencing)-respectively generate two contrastingly different categories of metagenomic reads (data)-OTU (operational taxonomic unit) tables representing microorganisms and OMU (operational metagenomic unit), a new term coined in this article to represent various cluster units of metagenomic genes. RESULTS: The ecological science of microbiomes based on the OTU representing microbes has been unified with the classic ecology of macrobes (macrobiomes), but the unification based on OMU representing metagenomes has been rather limited. In a previous series of studies, we have demonstrated the applications of several classic ecological theories (diversity, composition, heterogeneity, and biogeography) to the studies of metagenomes. Here I push the envelope for the unification of OTU and OMU again by demonstrating the applications of metacommunity assembly and ecological networks to the metagenomes of human gut microbiomes. Specifically, the neutral theory of biodiversity (Sloan's near neutral model), Ning et al.stochasticity framework, core-periphery network, high-salience skeleton network, special trio-motif, and positive-to-negative ratio are applied to analyze the OMU tables from whole-genome sequencing technologies, and demonstrated with seven human gut metagenome datasets from the human microbiome project. CONCLUSIONS: All of the ecological theories demonstrated previously and in this article, including diversity, composition, heterogeneity, stochasticity, and complex network analyses, are equally applicable to OMU metagenomic analyses, just as to OTU analyses. Consequently, I strongly advocate the unification of OTU/OMU (microbiomes) with classic ecology of plants and animals (macrobiomes) in the context of medical ecology.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Humanos , Metagenoma , Microbiota/genética , Biodiversidade , Análise de Sequência de DNA , Metagenômica/métodos
2.
Appl Environ Microbiol ; 90(4): e0225323, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38440988

RESUMO

We evaluated a unique model in which four full-scale wastewater treatment plants (WWTPs) with the same treatment schematic and fed with similar influent wastewater were tracked over an 8-month period to determine whether the community assembly would differ in the activated sludge (AS) and sand filtration (SF) stages. For each WWTP, AS and SF achieved an average of 1-log10 (90%) and <0.02-log10 (5%) reduction of total cells, respectively. Despite the removal of cells, both AS and SF had a higher alpha and beta diversity compared to the influent microbial community. Using the Sloan neutral model, it was observed that AS and SF were individually dominated by different assembly processes. Specifically, microorganisms from influent to AS were predominantly determined by the selective niche process for all WWTPs, while the microbial community in the SF was relatively favored by a stochastic, random migration process, except two WWTPs. AS also contributed more to the final effluent microbial community compared with the SF. Given that each WWTP operates the AS independently and that there is a niche selection process driven mainly by the chemical oxygen demand concentration, operational taxonomic units unique to each of the WWTPs were also identified. The findings from this study indicate that each WWTP has its distinct microbial signature and could be used for source-tracking purposes.IMPORTANCEThis study provided a novel concept that microorganisms follow a niche assembly in the activated sludge (AS) tank and that the AS contributed more than the sand filtration process toward the final microbial signature that is unique to each treatment plant. This observation highlights the importance of understanding the microbial community selected by the AS stage, which could contribute toward source-tracking the effluent from different wastewater treatment plants.


Assuntos
Esgotos , Purificação da Água , Esgotos/química , Eliminação de Resíduos Líquidos , Areia , Rios , Águas Residuárias
3.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34799446

RESUMO

The microbiome is critical for host survival and fitness, but gaps remain in our understanding of how this symbiotic community is structured. Despite evidence that related hosts often harbor similar bacterial communities, it is unclear whether this pattern is due to genetic similarities between hosts or to common ecological selection pressures. Here, using herbivorous rodents in the genus Neotoma, we quantify how geography, diet, and host genetics, alongside neutral processes, influence microbiome structure and stability under natural and captive conditions. Using bacterial and plant metabarcoding, we first characterized dietary and microbiome compositions for animals from 25 populations, representing seven species from 19 sites across the southwestern United States. We then brought wild animals into captivity, reducing the influence of environmental variation. In nature, geography, diet, and phylogeny collectively explained ∼50% of observed microbiome variation. Diet and microbiome diversity were correlated, with different toxin-enriched diets selecting for distinct microbial symbionts. Although diet and geography influenced natural microbiome structure, the effects of host phylogeny were stronger for both wild and captive animals. In captivity, gut microbiomes were altered; however, responses were species specific, indicating again that host genetic background is the most significant predictor of microbiome composition and stability. In captivity, diet effects declined and the effects of host genetic similarity increased. By bridging a critical divide between studies in wild and captive animals, this work underscores the extent to which genetics shape microbiome structure and stability in closely related hosts.


Assuntos
Dieta , Microbiota , Filogenia , Sigmodontinae/microbiologia , Animais , Animais Selvagens/microbiologia , Bactérias/classificação , Bactérias/genética , Geografia , RNA Ribossômico 16S , Sudoeste dos Estados Unidos , Especificidade da Espécie , Simbiose
4.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33972434

RESUMO

Synonymous codon substitutions are not always selectively neutral as revealed by several types of analyses, including studies of codon usage patterns among genes. We analyzed codon usage in 13 bacterial genomes sampled from across a large order of bacteria, Enterobacterales, and identified presumptively neutral and selected classes of synonymous substitutions. To estimate substitution rates, given a neutral/selected classification of synonymous substitutions, we developed a flexible [Formula: see text] substitution model that allows multiple classes of synonymous substitutions. Under this multiclass synonymous substitution (MSS) model, the denominator of [Formula: see text] includes only the strictly neutral class of synonymous substitutions. On average, the value of [Formula: see text] under the MSS model was 80% of that under the standard codon model in which all synonymous substitutions are assumed to be neutral. The indication is that conventional [Formula: see text] analyses overestimate these values and thus overestimate the frequency of positive diversifying selection and underestimate the strength of purifying selection. To quantify the strength of selection necessary to explain this reduction, we developed a model of selected compensatory codon substitutions. The reduction in synonymous substitution rate, and thus the contribution that selection makes to codon bias variation among genes, can be adequately explained by very weak selection, with a mean product of population size and selection coefficient, [Formula: see text].


Assuntos
Códon/metabolismo , Enterobacteriaceae/genética , Genoma Bacteriano , Modelos Genéticos , Mutação Silenciosa , Carga Bacteriana , Evolução Biológica , Códon/química , Enterobacteriaceae/crescimento & desenvolvimento , Enterobacteriaceae/metabolismo , Variação Genética , Modelos Estatísticos , Seleção Genética
5.
J Mol Evol ; 91(1): 2-5, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36562800

RESUMO

Models for the evolution of various phenotypes are sometimes constructed with an assumption that mutational effects will be symmetrically distributed about a static mean. This model produces a memory effect that over long evolutionary times results in an expectation that randomized sequences underlying the genetic architecture of the trait will on average retain the ancestral phenotype. This expectation is unrealistic and also inconsistent with our current understanding of processes of molecular evolution.


Assuntos
Evolução Molecular , Modelos Genéticos , Mutação/genética , Fenótipo , Evolução Biológica
6.
Mol Ecol ; 32(16): 4695-4707, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37322601

RESUMO

Skin microbiota play an important role in protecting bat hosts from the fungal pathogen Pseudogymnoascus destructans, which has caused dramatic bat population declines and extinctions. Recent studies have provided insights into the bacterial communities of bat skin, but variation in skin bacterial community structure in the context of the seasonal dynamics of fungal invasion, as well as the processes that drive such variation, remain largely unexplored. In this study, we characterized bat skin microbiota over the course of the bat hibernation and active season stages and used a neutral model of community ecology to determine the relative roles of neutral and selective processes in driving microbial community variation. Our results showed significant seasonal shifts in skin community structure, as well as less diverse microbiota in hibernation than in the active season. Skin microbiota were influenced by the environmental bacterial reservoir. During both the hibernation and active season stages, more than 78% of ASVs in bat skin microbiota were consistent with neutral distribution, implying that neutral processes, that is, dispersal or ecological drift contributing the most to shifts in skin microbiota. In addition, the neutral model showed that some ASVs were actively selected by the bats from the environmental bacterial reservoir, accounting for approximately 20% and 31% of the total community during hibernation and active season stages, respectively. Overall, this research provides insights into the assemblage of bat-associated bacterial communities and will aid in the development of conservation strategies against fungal disease.


Assuntos
Quirópteros , Hibernação , Microbiota , Micoses , Animais , Quirópteros/microbiologia , Estações do Ano , Micoses/microbiologia , Pele/microbiologia , Bactérias/genética , Microbiota/genética
7.
Theor Popul Biol ; 149: 12-26, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36521555

RESUMO

Neutral models in ecology assume that all species are demographically equivalent, such that their abundances differ ultimately because of demographic stochasticity rather than selection. In spite of their simplicity, neutral models have been found to accurately reproduce static patterns of biodiversity for diverse communities. However, the same neutral models have been found to exhibit species abundance dynamics that are far too slow compared to reality, resulting in poor fits to temporally dynamic patterns of biodiversity. Here, we show that one of the root causes of these slow dynamics is the additional assumption that a community has reached an equilibrium with a fixed community size, with species that have a net growth rate close to zero. We removed this additional assumption by constructing and analyzing a neutral model with an expected community size that can change over time and is not necessarily at equilibrium, which thus allows the historical formation of a community to be represented explicitly. Our analysis demonstrated that for the general scenario where a small community rapidly grows in size to a carrying capacity, representing recovery from ecological disturbance or assembly of a new community, the model produced much larger changes in species abundances and much shorter species ages than a neutral model at an equilibrium with fixed community size. In addition, the species abundance distribution was biphasic with a subset of abundant species arising from a founder effect. We confirmed these new results in applications of the new model to the specific scenario of recovery of the Amazon tree community after the end-Cretaceous bolide impact, which involved periods of increasing and decreasing community size. We conclude that incorporating transient dynamics in neutral models improves realism by allowing explicit consideration of how a community is formed over realistic time-scales.


Assuntos
Modelos Biológicos , Modelos Teóricos , Dinâmica Populacional , Biodiversidade , Conservação dos Recursos Naturais
8.
Environ Sci Technol ; 57(43): 16361-16371, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37844127

RESUMO

Natural dissolved organic matter (DOM) represents a ubiquitous molecular mixture, progressively characterized by spatiotemporal resolution. However, an inadequate comprehension of DOM molecular dynamics, especially the stochastic processes involved, hinders carbon cycling predictions. This study employs ecological principles to introduce a neutral theory to elucidate the fundamental processes involving molecular generation, degradation, and migration. A neutral model is thus formulated to assess the probability distribution of DOM molecules, whose frequencies and abundances follow a ß-distribution relationship. The neutral model is subsequently validated with high-resolution mass spectrometry (HRMS) data from various waterbodies, including lakes, rivers, and seas. The model fitting highlights the prevalence of molecular neutral distribution and quantifies the stochasticity within DOM molecular dynamics. Furthermore, the model identifies deviations of HRMS observations from neutral expectations in photochemical and microbial experiments, revealing nonrandom molecular transformations. The ecological null model further validates the neutral modeling results, demonstrating that photodegradation reduces molecular stochastic dynamics at the surface of an acidic pit lake, while random distribution intensifies at the river surface compared with the porewater. Taken together, the DOM molecular neutral model emphasizes the significance of stochastic processes in shaping a natural DOM pool, offering a potential theoretical framework for DOM molecular dynamics in aquatic and other ecosystems.


Assuntos
Matéria Orgânica Dissolvida , Ecossistema , Compostos Orgânicos/análise , Espectrometria de Massas , Lagos/análise , Lagos/química , Rios/química , Processos Estocásticos , Espectrometria de Fluorescência
9.
J Theor Biol ; 539: 111053, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35151719

RESUMO

Temporal environmental stochasticity (TES), along with the variations of demographic rates associated with it, is ubiquitous in nature. Here we study the effect of TES on the species richness of diverse communities. In such communities the biodiversity at equilibrium reflects the balance between the rate at which new types are added (via migration, mutation or speciation) and the rate of extinction. We analyze a few generic models in which the speciation rate is fixed and TES affects the rate of extinction, and identify three different mechanisms. First, TES increases abundance variations and shortens extinction times, thus decreasing the species richness (destabilizing effect). Second, TES blurs the time-independent fitness differences between species, making the dynamics more symmetric and thereby increasing the diversity (neutralizing effect). Third, the storage effect allows TES to facilitate the invasion of inferior species, again contributing to the species richness. The stabilizing effect of storage declines significantly in diverse communities and it can overcome the destabilizing effect of TES only when environmental fluctuations are rapid enough.


Assuntos
Biodiversidade , Ecossistema
10.
New Phytol ; 231(3): 1183-1194, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33982802

RESUMO

Latitudinal gradients provide opportunities to better understand soil fungal community assembly and its relationship with vegetation, climate, soil and ecosystem function. Understanding the mechanisms underlying community assembly is essential for predicting compositional responses to changing environments. We quantified the relative importance of stochastic and deterministic processes in structuring soil fungal communities using patterns of community dissimilarity observed within and between 12 natural forests and related these to environmental variation within and among sites. The results revealed that whole fungal communities and communities of arbuscular and ectomycorrhizal fungi consistently exhibited divergent patterns but with less divergence for ectomycorrhizal fungi at most sites. Within those forests, no clear relationships were observed between the degree of divergence within fungal and plant communities. When comparing communities at larger spatial scales, among the 12 forests, we observed distinct separation in all three fungal groups among tropical, subtropical and temperate climatic zones. Soil fungal ß-diversity patterns between forests were also greater when comparing forests exhibiting high environmental heterogeneity. Taken together, although large-scale community turnover could be attributed to specific environmental drivers, the differences among fungal communities in soils within forests was high even at local scales.


Assuntos
Ecossistema , Micobioma , Biodiversidade , Florestas , Fungos , Solo , Microbiologia do Solo , Árvores
11.
Ecol Lett ; 23(1): 88-98, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31637835

RESUMO

Symbiotic microbial communities are important for host health, but the processes shaping these communities are poorly understood. Understanding how community assembly processes jointly affect microbial community composition is limited because inflexible community models rely on rejecting dispersal and drift before considering selection. We developed a flexible community assembly model based on neutral theory to ask: How do dispersal, drift and selection concurrently affect the microbiome across environmental gradients? We applied this approach to examine how a fungal pathogen affected the assembly processes structuring the amphibian skin microbiome. We found that the rejection of neutrality for the amphibian microbiome across a fungal gradient was not strictly due to selection processes, but was also a result of species-specific changes in dispersal and drift. Our modelling framework brings the qualitative recognition that niche and neutral processes jointly structure microbiomes into quantitative focus, allowing for improved predictions of microbial community turnover across environmental gradients.


Assuntos
Microbiota , Micoses , Anfíbios , Animais , Fungos , Pele
12.
J Theor Biol ; 485: 110051, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31626812

RESUMO

In community ecology, neutral models make the assumption that species are equivalent, such that species abundances differ only because of demographic stochasticity. Despite their ecological simplicity, neutral models have been found to give reasonable descriptions of expected patterns of biodiversity in communities with many species. Such patterns include the expected total number of species and species-abundance distributions describing the expected number of species in different abundance classes. However, the expected patterns represent only the central tendencies of the full distributions of possible outcomes. Thus, ecological inferences and conclusions based only on expected patterns are incomplete, and may be misleading. Here, we address this issue for the spatially implicit neutral model, by using classic results from birth-death processes to derive (1) the probability distribution of extinction time of a species with given abundance for the metacommunity; (2) the probability distributions of total species richness and number of species with given abundance for both the metacommunity and local community; and (3) the probability distributions of the average immigration and extinction rates in the local community, across different values of total species richness. We illustrate the utility of these probability distributions in providing greater ecological insight via statistical inference. Firstly, we show that under the neutral metacommunity model, there is only 2.65×10-9 probability that the age of a common tree species in the Amazon is  ≤ 3  × 108 yr, which is approximately the oldest estimated age of the first angiosperm. Thus, species ages from the model are unrealistically high. Secondly, for a tree community in a 50 ha plot at Barro Colorado Island in Panama, we show that the spatially implicit model can be fitted to observed species richness and an independent estimate of the immigration parameter, with the fitted model predicting a species-abundance distribution close to the observed distribution. Our results complement those using sampling formulae that specify the multivariate probability distribution of species abundances from neutral models.


Assuntos
Emigração e Imigração , Modelos Biológicos , Dinâmica Populacional , Biodiversidade , Ecossistema , Humanos , Ilhas , Panamá , Probabilidade
13.
Med Health Care Philos ; 23(1): 3-15, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31542873

RESUMO

As reproductive genetic technologies advance, families have more options to choose what sort of child they want to have. Using preimplantation genetic diagnosis (PGD), for example, allows parents to evaluate several existing embryos before selecting which to implant via in vitro fertilization (IVF). One of the traits PGD can identify is genetic deafness, and hearing embryos are now preferentially selected around the globe using this method. Importantly, some Deaf families desire a deaf child, and PGD-IVF is also an option for them. Selection for genetic deafness, however, encounters widespread disapproval in the hearing community, including mainstream philosophy and bioethics. In this paper I apply Elizabeth Barnes' value-neutral model of disability as mere-difference to the case of selecting for deafness. I draw on evidence from Deaf Studies and Disability Studies to build an understanding of deafness, the Deaf community, and the circumstances relevant to reproductive choices that may obtain for some Deaf families. Selection for deafness, with deafness understood as mere-difference and valued for its cultural identity, need not necessitate impermissible moral harms. I thus advocate that it is sometimes morally permissible to select for deafness in one's child.


Assuntos
Surdez/genética , Princípios Morais , Pais/psicologia , Diagnóstico Pré-Implantação/ética , Características Culturais , Humanos , Filosofia Médica
14.
Mol Ecol ; 27(18): 3686-3699, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30070062

RESUMO

The host-associated microbiota is increasingly recognized to facilitate host fitness, but the understanding of the underlying ecological processes that govern the host-bacterial colonization over development and, particularly, under disease remains scarce. Here, we tracked the gut microbiota of shrimp over developmental stages and in response to disease. The stage-specific gut microbiotas contributed parallel changes to the predicted functions, while shrimp disease decoupled this intimate association. After ruling out the age-discriminatory taxa, we identified key features indicative of shrimp health status. Structural equation modelling revealed that variations in rearing water led to significant changes in bacterioplankton communities, which subsequently affected the shrimp gut microbiota. However, shrimp gut microbiotas are not directly mirrored by the changes in rearing bacterioplankton communities. A neutral model analysis showed that the stochastic processes that govern gut microbiota tended to become more important as healthy shrimp aged, with 37.5% stochasticity in larvae linearly increasing to 60.4% in adults. However, this defined trend was skewed when disease occurred. This departure was attributed to the uncontrolled growth of two candidate pathogens (over-represented taxa). The co-occurrence patterns provided novel clues on how the gut commensals interact with candidate pathogens in sustaining shrimp health. Collectively, these findings offer updated insight into the ecological processes that govern the host-bacterial colonization in shrimp and provide a pathological understanding of polymicrobial infections.


Assuntos
Bactérias/classificação , Crustáceos/microbiologia , Microbioma Gastrointestinal , Animais , Infecções Bacterianas/imunologia , Técnicas de Tipagem Bacteriana , Crustáceos/crescimento & desenvolvimento , Crustáceos/imunologia , DNA Bacteriano/genética , Meio Ambiente , RNA Ribossômico 16S/genética
15.
Am Nat ; 190(2): E40-E54, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28731794

RESUMO

Variation in diet breadth among organisms is a pervasive feature of the natural world that has resisted general explanation. In particular, trade-offs in the ability to use one resource at the expense of another have been expected but rarely detected. We explore a spatial model for the evolution of specialization, motivated by studies of plant-feeding insects. The model is neutral with respect to the causes and consequences of diet breadth: the number of hosts utilized is not constrained by trade-offs, and specialization or generalization does not confer a direct advantage with respect to the persistence of populations or the probability of diversification. We find that diet breadth evolves in ways that resemble reports from natural communities. Simulated communities are dominated by specialized species, with a predictable but less species-rich component of generalized taxa. These results raise the possibility that specialization might be a consequence of stochastic diversification dynamics acting on spatially segregated consumer-resource associations rather than a trait either favored or constrained directly by natural selection. Finally, our model generates hypotheses for global patterns of herbivore diet breadth, including a positive effect of host richness and a negative effect of evenness in host plant abundance on the number of specialized taxa.


Assuntos
Dieta , Comportamento Alimentar , Herbivoria , Animais , Insetos , Modelos Teóricos , Plantas
16.
Proc Biol Sci ; 284(1863)2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28931739

RESUMO

Understanding the structure and dynamics of highly diverse tropical forests is challenging. Here we investigate the factors that drive the spatio-temporal variation of local tree numbers and species richness in a tropical forest (including 1250 plots of 20 × 20 m2). To this end, we use a series of dynamic models that are built around the local spatial variation of mortality and recruitment rates, and ask which combination of processes can explain the observed spatial and temporal variation in tree and species numbers. We find that processes not included in classical neutral theory are needed to explain these fundamental patterns of the observed local forest dynamics. We identified a large spatio-temporal variability in the local number of recruits as the main missing mechanism, whereas variability of mortality rates contributed to a lesser extent. We also found that local tree numbers stabilize at typical values which can be explained by a simple analytical model. Our study emphasized the importance of spatio-temporal variability in recruitment beyond demographic stochasticity for explaining the local heterogeneity of tropical forests.


Assuntos
Biodiversidade , Florestas , Árvores/classificação , Clima Tropical , Modelos Biológicos , Análise Espaço-Temporal
17.
J Theor Biol ; 415: 48-52, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-27939597

RESUMO

Predicting biodiversity relaxation following a disturbance is of great importance to conservation biology. Recently-developed models of stochastic community assembly allow us to predict the evolution of communities on the basis of mechanistic processes at the level of individuals. The neutral model of biodiversity, in particular, has provided closed-form solutions for the relaxation of biodiversity in isolated communities (no immigration or speciation). Here, we extend these results by deriving a relaxation curve for a neutral community in which new species are introduced through the mechanism of random fission speciation (RFS). The solution provides simple closed-form expressions for the equilibrium species richness, the relaxation time and the species-individual curve, which are good approximation to the more complicated formulas existing for the same model. The derivation of the relaxation curve is based on the assumption of a broken-stick species-abundance distribution (SAD) as an initial community configuration; yet for commonly observed SADs, the maximum deviation from the curve does not exceed 10%. Importantly, the solution confirms theoretical results and observations showing that the relaxation time increases with community size and thus habitat area. Such simple and analytically tractable models can help crystallize our ideas on the leading factors affecting biodiversity loss.


Assuntos
Biodiversidade , Extinção Biológica , Especiação Genética , Animais , Evolução Biológica , Humanos , Dinâmica Populacional
18.
BMC Evol Biol ; 16(1): 240, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27825303

RESUMO

BACKGROUND: RAD-seq is a powerful tool, increasingly used in population genomics. However, earlier studies have raised red flags regarding possible biases associated with this technique. In particular, polymorphism on restriction sites results in preferential sampling of closely related haplotypes, so that RAD data tends to underestimate genetic diversity. RESULTS: Here we (1) clarify the theoretical basis of this bias, highlighting the potential confounding effects of population structure and selection, (2) confront predictions to real data from in silico digestion of full genomes and (3) provide a proof of concept toward an ABC-based correction of the RAD-seq bias. Under a neutral and panmictic model, we confirm the previously established relationship between the true polymorphism and its RAD-based estimation, showing a more pronounced bias when polymorphism is high. Using more elaborate models, we show that selection, resulting in heterogeneous levels of polymorphism along the genome, exacerbates the bias and leads to a more pronounced underestimation. On the contrary, spatial genetic structure tends to reduce the bias. We confront the neutral and panmictic model to "ideal" empirical data (in silico RAD-sequencing) using full genomes from natural populations of the fruit fly Drosophila melanogaster and the fungus Shizophyllum commune, harbouring respectively moderate and high genetic diversity. In D. melanogaster, predictions fit the model, but the small difference between the true and RAD polymorphism makes this comparison insensitive to deviations from the model. In the highly polymorphic fungus, the model captures a large part of the bias but makes inaccurate predictions. Accordingly, ABC corrections based on this model improve the estimations, albeit with some imprecisions. CONCLUSION: The RAD-seq underestimation of genetic diversity associated with polymorphism in restriction sites becomes more pronounced when polymorphism is high. In practice, this means that in many systems where polymorphism does not exceed 2 %, the bias is of minor importance in the face of other sources of uncertainty, such as heterogeneous bases composition or technical artefacts. The neutral panmictic model provides a practical mean to correct the bias through ABC, albeit with some imprecisions. More elaborate ABC methods might integrate additional parameters, such as population structure and selection, but their opposite effects could hinder accurate corrections.


Assuntos
Drosophila melanogaster/genética , Schizophyllum/genética , Animais , Teorema de Bayes , Simulação por Computador , Enzimas de Restrição do DNA/metabolismo , Genoma , Metagenômica , Polimorfismo Genético , Análise de Sequência de DNA
19.
Ecology ; 97(9): 2436-2446, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27859071

RESUMO

Four metacommunity paradigms-usually called neutral, species sorting, mass effects, and patch dynamics, respectively-are widely used for empirical and theoretical studies of spatial community dynamics. The paradigm framework highlights key ecological mechanisms operating in metacommunities, such as dispersal limitation, competition-colonization tradeoffs, or species equivalencies. However, differences in coexistence mechanisms between the paradigms and in situations with combined influences of multiple paradigms are not well understood. Here, we create a common model for competitive metacommunities, with unique parameterizations for each metacommunity paradigm and for scenarios with multiple paradigms operating simultaneously. We derive analytical expressions for the strength of Chesson's spatial coexistence mechanisms and quantify these for each paradigm via simulation. For our model, fitness-density covariance, a concentration effect measuring the importance of intraspecific aggregation of individuals, is the dominant coexistence mechanism in all three niche-based metacommunity paradigms. Increased dispersal between patches erodes intraspecific aggregation, leading to lower coexistence strength in the mass effects paradigm compared to species sorting. Our analysis demonstrates the potential importance of aggregation of individuals (fitness-density covariance) over co-variation in abiotic environments and competition between species (the storage effect), as fitness-density covariance can be stronger than the storage effect and is the sole stabilizing mechanism in the patch dynamics paradigm. As expected, stable coexistence does not occur in the neutral paradigm, which requires species to be equal and emphasizes the role of stochasticity. We show that stochasticity also plays an important role in niche-structured metacommunities by altering coexistence strength. We conclude that Chesson's spatial coexistence mechanisms provide a flexible framework for comparing metacommunities of varying complexity.


Assuntos
Ecologia/métodos , Ecossistema , Modelos Biológicos , Modelos Teóricos , Dinâmica Populacional
20.
J Theor Biol ; 388: 50-60, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26471070

RESUMO

We describe an integrated modeling framework for understanding strain coexistence in polymorphic pathogen systems. Previous studies have debated the utility of neutral formulations and focused on cross-immunity between strains as a major stabilizing mechanism. Here we convey that direct competition for colonization mediates stable coexistence only when competitive abilities amongst pathogen clones satisfy certain pairwise asymmetries. We illustrate our ideas with nested SIS models of single and dual colonization, applied to polymorphic pneumococcal bacteria. By fitting the models to cross-sectional prevalence data from Portugal (before and after the introduction of a seven-valent pneumococcal conjugate vaccine), we are able to not only statistically compare neutral and non-neutral epidemiological formulations, but also estimate vaccine efficacy, transmission and competition parameters simultaneously. Our study highlights that the response of polymorphic pathogen populations to interventions holds crucial information about strain interactions, which can be extracted by suitable nested modeling.


Assuntos
Algoritmos , Modelos Biológicos , Infecções Pneumocócicas/imunologia , Vacinas Pneumocócicas/imunologia , Streptococcus pneumoniae/imunologia , Criança , Contagem de Colônia Microbiana , Vacina Pneumocócica Conjugada Heptavalente/imunologia , Vacina Pneumocócica Conjugada Heptavalente/uso terapêutico , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/uso terapêutico , Sorotipagem , Especificidade da Espécie , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/fisiologia , Resultado do Tratamento , Vacinação/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa