Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1854(9): 1138-49, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25770681

RESUMO

In addition to its role as a redox coenzyme, NAD is a substrate of various enzymes that split the molecule to either catalyze covalent modifications of target proteins or convert NAD into biologically active metabolites. The coenzyme bioavailability may be significantly affected by these reactions, with ensuing major impact on energy metabolism, cell survival, and aging. Moreover, through the activity of the NAD-dependent deacetylating sirtuins, NAD behaves as a beacon molecule that reports the cell metabolic state, and accordingly modulates transcriptional responses and metabolic adaptations. In this view, NAD biosynthesis emerges as a highly regulated process: it enables cells to preserve NAD homeostasis in response to significant NAD-consuming events and it can be modulated by various stimuli to induce, via NAD level changes, suitable NAD-mediated metabolic responses. Here we review the current knowledge on the regulation of mammalian NAD biosynthesis, with focus on the relevant rate-limiting enzymes. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.


Assuntos
Sinais (Psicologia) , NAD/biossíntese , Animais , Humanos , Nicotinamida Fosforribosiltransferase/fisiologia , Pentosiltransferases/fisiologia , Sirtuínas/fisiologia
2.
Appl Biochem Biotechnol ; 178(6): 1113-28, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26590848

RESUMO

Genetic modifications are considered as one of the most important technologies for improving fermentative hydrogen yield. Herein, we overexpress fhlA and pncB genes from Klebsiella HQ-3 independently to enhance hydrogen molar yield. HQ-3-fhlA/pncB strain is developed by manipulation of pET28-Pkan/fhlA Kan(r) and pBBR1-MCS5/pncB Gm(r) as expression vectors to examine the synchronous effects of fhlA and pncB. Optimization of anaerobic batch fermentations is achieved and the maximum yield of biohydrogen (1.42 mol H2/mol of glucose) is produced in the range of pH 6.5-7.0 at 33-37 °C. Whole cell H2 yield is increased up to 40 % from HQ-3-fhlA/pncB, as compared with HQ-3-fhlA 20 % and HQ-3-pncB 12 % keeping HQ-3-C as a control. Mechanism of improved H2 yield is studied in combination with metabolic flux analysis by measuring glucose consumption and other metabolites including formate, succinate, 2,3 butanediol, lactate, acetate, ethanol, and hydrogen. The results suggest that under transient conditions, the increase in the total level of NAD by NAPRTase can enhance the rate of NADH-dependent pathways, and therefore, final distribution of metabolites is changed. Combined overexpression of fhlA and pncB eventually modifies the energy and carbon balance leading to enhanced H2 production from FHL as well as by NADH pathway.


Assuntos
Proteínas de Bactérias/metabolismo , Hidrogênio/metabolismo , Klebsiella/metabolismo , Anaerobiose , Proteínas de Bactérias/genética , Eletroforese em Gel de Poliacrilamida , Fermentação , Concentração de Íons de Hidrogênio , Klebsiella/genética , Temperatura
3.
FEBS Open Bio ; 5: 419-28, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26042198

RESUMO

Nicotinic acid phosphoribosyltransferase (EC 2.4.2.11) (NaPRTase) is the rate-limiting enzyme in the three-step Preiss-Handler pathway for the biosynthesis of NAD. The enzyme catalyzes the conversion of nicotinic acid (Na) and 5-phosphoribosyl-1-pyrophosphate (PRPP) to nicotinic acid mononucleotide (NaMN) and pyrophosphate (PPi). Several studies have underlined the importance of NaPRTase for NAD homeostasis in mammals, but no crystallographic data are available for this enzyme from higher eukaryotes. Here, we report the crystal structure of human NaPRTase that was solved by molecular replacement at a resolution of 2.9 Å in its ligand-free form. Our structural data allow the assignment of human NaPRTase to the type II phosphoribosyltransferase subfamily and reveal that the enzyme consists of two domains and functions as a dimer with the active site located at the interface of the monomers. The substrate-binding mode was analyzed by molecular docking simulation and provides hints into the catalytic mechanism. Moreover, structural comparison of human NaPRTase with the other two human type II phosphoribosyltransferases involved in NAD biosynthesis, quinolinate phosphoribosyltransferase and nicotinamide phosphoribosyltransferase, reveals that while the three enzymes share a conserved overall structure, a few distinctive structural traits can be identified. In particular, we show that NaPRTase lacks a tunnel that, in nicotinamide phosphoribosiltransferase, represents the binding site of its potent and selective inhibitor FK866, currently used in clinical trials as an antitumoral agent.

4.
Biochim Open ; 1: 61-69, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-29632831

RESUMO

Giardia lamblia is an intestinal protozoan parasite that causes giardiasis, a disease of high prevalence in Latin America, Asia and Africa. Giardiasis leads to poor absorption of nutrients, severe electrolyte loss and growth retardation. In addition to its clinical importance, this parasite is of special biological interest due to its basal evolutionary position and simplified metabolism, which has not been studied thoroughly. One of the most important and conserved metabolic pathways is the biosynthesis of nicotinamide adenine dinucleotide (NAD). This molecule is widely known as a coenzyme in multiple redox reactions and as a substrate in cellular processes such as synthesis of Ca2+ mobilizing agents, DNA repair and gene expression regulation. There are two pathways for NAD biosynthesis, which converge at the step catalyzed by nicotinamide/nicotinate mononucleotide adenylyltransferase (NMNAT, EC 2.7.7.1/18). Using bioinformatics tools, we found two NMNAT sequences in Giardia lamblia (glnmnat-a and glnmnat-b). We first verified the identity of the sequences in silico. Subsequently, glnmnat-a was cloned into an expression vector. The recombinant protein (His-GlNMNAT) was purified by nickel-affinity binding and was used in direct in vitro enzyme assays assessed by C18-HPLC, verifying adenylyltransferase activity with both nicotinamide (NMN) and nicotinic acid (NAMN) mononucleotides. Optimal reaction pH and temperature were 7.3 and 26 °C. Michaelis-Menten kinetics were observed for NMN and ATP, but saturation was not accomplished with NAMN, implying low affinity yet detectable activity with this substrate. Double-reciprocal plots showed no cooperativity for this enzyme. This represents an advance in the study of NAD metabolism in Giardia spp.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa