Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Mol Biol Rep ; 51(1): 485, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578399

RESUMO

BACKGROUND: Ovarian cancer is the leading cause of gynecological cancer deaths. One of the major challenges in treating ovarian cancer with chemotherapy is managing the resistance developed by cancer cells to drugs, while also minimizing the side effects caused by these agents In the present study, we aimed to examine the effects of a combination of alpha lipoic acid (ALA), with cisplatin and paclitaxel in ovarian cancer(OVCAR-3). METHODS: The cytotoxic effects of ALA, cisplatin and paclitaxel on OVCAR-3 cells were determined. Four groups were formed: Control, ALA, Cisplatin + Paclitaxel, ALA + Cisplatin + Paclitaxel. The effects of single and combined therapy on cell migration, invasion and colony formation were analyzed. Changes in the expression of genes related to apoptosis, cell adhesion and cell cycle were analyzed with Real-time polymerase chain reaction(RT-PCR). The oxidative stress index and The Annexin V test were performed. RESULTS: The reduction in rapamycin-insensitive companion of mTOR(RICTOR) expression in the ALA + Cisplatin + Paclitaxel group was found statistically significant(p < 0.05). The decrease in MMP-9 and - 11 expressions the ALA + Cisplatin + Paclitaxel group was statistically significant(p < 0.05). The lowest values for mitogen-activated protein kinase(MAPK) proteins were found in the ALA + Cisplatin + Paclitaxel group. No colony formation was observed in the Cisplatin + Paclitaxel and ALA + Cisplatin + Paclitaxel groups. The lowest wound healing at 24 h was seen in the ALA + Cisplatin + Paclitaxel group. CONCLUSIONS: This study is the first one to investigate the combined treatment of ALA, Cisplatin, Paclitaxel on OVCAR-3. While ALA alone was not effective, combined therapy with ALA, has been found to reduce cell invasion, especially wound healing in the first 24 h, along with tumor cell adhesion.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias Ovarianas , Ácido Tióctico , Humanos , Feminino , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Ácido Tióctico/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Apoptose , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Antineoplásicos/uso terapêutico , Carcinoma Epitelial do Ovário , Adenocarcinoma/tratamento farmacológico , Fatores de Transcrição
2.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37833894

RESUMO

The purpose of this study was to confirm the antiproliferative and apoptotic induction potential of a saccharin and caffeine combination in ovarian cancer cells. The cell line used was Ovcar-3, and the cell viability was measured through a WST-8 assay, while a Chou-Talalay assay was used to confirm the synergistic effect of saccharin and caffeine on the ovarian cancer cells. A clonogenic assay, annexin V-FITC/PI-PE double-staining, and RT-PCR were performed to confirm the expression of genes that induce colony formation, cell viability, and apoptosis in ovarian cancer cells treated with the saccharin-caffeine combination. It was demonstrated that both saccharin and caffeine decreased the viability of Ovcar-3 cells, and the cell viability decreased even more significantly when the cells were treated with the combination of saccharin and caffeine. The clonogenic assay results showed that the number of colonies decreased the most when saccharin and caffeine were combined, and the number of colonies also significantly decreased compared to the single-treatment groups. Based on flow cytometry analysis using annexin V-FITC/PI-PE double-staining, it was confirmed that the decrease in cell viability caused by the combination of saccharin and caffeine was correlated with the induction of apoptosis. The results of the RT-PCR confirmed that the combined treatment of saccharin and caffeine promoted cell apoptosis by regulating the expression of apoptosis-inducing genes. These results demonstrate that the combination of saccharin and caffeine more efficiently inhibits the proliferation of Ovcar-3 cells and induces apoptosis in vitro.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Cafeína/farmacologia , Apoptose , Sacarina/farmacologia , Proliferação de Células , Linhagem Celular Tumoral , Carcinoma Epitelial do Ovário
3.
Molecules ; 28(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38067507

RESUMO

Ovarian cancer ranks as the eighth most prevalent form of cancer in women across the globe and stands as the third most frequent gynecological cancer, following cervical and endometrial cancers. Given its resistance to standard chemotherapy and high recurrence rates, there is an urgent imperative to discover novel compounds with potential as chemotherapeutic agents for treating ovarian cancer. Chalcones exhibit a wide array of biological properties, with a particular focus on their anti-cancer activities. In this research, we documented the synthesis and in vitro study of a small library of chalcone derivatives designed for use against high-grade serous ovarian cancer (HGSOC) cell lines, specifically OVCAR-3, OVSAHO, and KURAMOCHI. Our findings revealed that three of these compounds exhibited cytotoxic and anti-proliferative effects against all the tested HGSOC cell lines, achieving IC50 concentrations lower than 25 µM. Further investigations disclosed that these chalcones prompted an increase in the subG1 phase cell cycle and induced apoptosis in OVCAR-3 cells. In summary, our study underscores the potential of chalcones as promising agents for the treatment of ovarian cancer.


Assuntos
Antineoplásicos , Chalcona , Chalconas , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Chalcona/farmacologia , Chalcona/uso terapêutico , Chalconas/farmacologia , Chalconas/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
4.
Glycoconj J ; 38(6): 669-688, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34748163

RESUMO

A N-glycan specific lectin from Rhizoctonia bataticola [RBL] was shown to induce growth inhibitory and apoptotic effect in human ovarian, colon and leukemic cells but mitogenic effect on normal PBMCs as reported earlier, revealing its clinical potential. RBL has unique specificity for high mannose tri and tetra antennary N-glycans, expressed in ovarian cancer and also recognizes glycans which are part of CA 125 antigen, a well known ovarian cancer marker. Hence, in the present study diagnostic and therapeutic potential of RBL was investigated using human ovarian epithelial cancer SKOV3 and OVCAR3 cells known for differentially expressing CA 125. RBL binds differentially to human ovarian normal, cyst and cancer tissues. Flow cytometry, western blot analysis of membrane proteins showed the competitive binding of RBL and CA 125 antibody for the same binding sites on SKOV3 and OVCAR3 cells. RBL has strong binding to both SKOV3 and OVCAR3 cells with MFI of 173 and 155 respectively. RBL shows dose and time dependent growth inhibitory effect with IC50 of 2.5 and 8 µg/mL respectively for SKOV3 and OVCAR3 cells. RBL induces reproductive cell death, morphological changes, nuclear degradation and increased release of ROS in SKOV3 and OVCAR3 cells leading to cell death. This is also supported by increase in hypodiploid population, altered MMP leading to apoptosis possibly involving intrinsic pathway. Adhesion, wound healing, invasion and migration assays demonstrated anti-metastasis effect of RBL apart from its growth inhibitory effect. These results show the promising potential of RBL both as a diagnostic and therapeutic agent.


Assuntos
Antígeno Ca-125 , Neoplasias Ovarianas , Apoptose , Ascomicetos , Antígeno Ca-125/farmacologia , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Lectinas/metabolismo , Lectinas/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia
5.
Pharm Res ; 38(2): 301-317, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33608808

RESUMO

PURPOSE: Folic acid-doxorubicin-double-functionalized-lipid-core nanocapsules (LNC-CS-L-Zn+2-DOX-FA) were prepared, characterized, and evaluated in vitro against ovarian and bladder cancer cell lines (OVCAR-3 and T24). METHODS: LNC-CS-L-Zn+2-DOX-FA was prepared by self-assembly and interfacial reactions, and characterized using liquid chromatography, particle sizing, transmission electron microscopy, and infrared spectroscopy. Cell viability and cellular uptake were studied using MTT assay and confocal microscopy. RESULTS: The presence of lecithin allows the formation of nanocapsules with a lower tendency of agglomeration, narrower size distributions, and smaller diameters due to an increase in hydrogen bonds at the surface. LNC-L-CS-Zn+2-DOX-FA, containing 98.00 ± 2.34 µg mL-1 of DOX and 105.00 ± 2.05 µg mL-1 of FA, had a mean diameter of 123 ± 4 nm and zeta potential of +12.0 ± 1.3 mV. After treatment with LNC-L-CS-Zn+2-DOX-FA (15 µmol L-1 of DOX), T24 cells had inhibition rates above 80% (24 h) and 90% (48 h), whereas OVCAR-3 cells showed inhibition rates of 68% (24 h) and 93% (48 h), showing higher cytotoxicity than DOX.HCl. The fluorescent-labeled formulation showed a higher capacity of internalization in OVCAR-3 compared to T24 cancer cells. CONCLUSION: Lecithin favored the increase of hydrogen bonds at the surface, leading to a lower tendency of agglomeration for nanocapsules. LNC-CS-L-Zn+2-DOX-FA is a promising therapeutic agent against tumor-overexpressing folate receptors.


Assuntos
Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Nanocápsulas/química , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacocinética , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Ácido Fólico/química , Humanos , Lecitinas/química , Neoplasias Ovarianas/patologia , Tamanho da Partícula , Neoplasias da Bexiga Urinária/patologia
6.
Drug Dev Ind Pharm ; 47(8): 1248-1260, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34606388

RESUMO

The main objective of this study was to prepare cisplatin (CDDP) bound triblock polymeric micelle solution which will have a hydrophilic shell not being phagocytosed by mononuclear phagocyte system, and evaluate in vitro behavior for the treatment of ovarian cancer. For this aim, CDDP was bound to polyglutamic acid (PGA) and the triblock polymer was prepared using polyethylene glycol)-polylactide-co-glycolide (PEG-PLGA). CDDP-bound triblock copolymer conjugation was characterized, in vitro release and permeability studies were performed using USP II method and Caco-2 cell lines, respectively. The release of CDDP from CDDP-bound triblock polymeric micelle solution was found 87.3 ± 3.56% at the end of the 24th hour. CDDP bound triblock polymeric micelle solution was detected as biocompatible, and permeable according to in vitro studies. According to the MTT results, the measured cytotoxicity was found to be maximum in CDDP-bound triblock polymeric micelle solution when compared with CDDP solution and conjugate in SKOV-3 and OVCAR-3 cells, whereas annexin V-FITC apoptosis results were found to be maximum in A2780 cells.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Antineoplásicos/farmacologia , Apoptose , Células CACO-2 , Linhagem Celular Tumoral , Cisplatino/farmacologia , Feminino , Humanos , Micelas , Neoplasias Ovarianas/tratamento farmacológico , Polietilenoglicóis , Polímeros
7.
Int J Mol Sci ; 22(9)2021 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-34065149

RESUMO

Ovarian cancer is a fatal gynecological cancer because of a lack of early diagnosis, which often relapses as chemoresistant. Trichodermin, a trichothecene first isolated from Trichoderma viride, is an inhibitor of eukaryotic protein synthesis. However, whether trichodermin is able to suppress ovarian cancer or not was unclear. In this study, trichodermin (0.5 µM or greater) significantly decreased the proliferation of two ovarian cancer cell lines A2780/CP70 and OVCAR-3. Normal ovarian IOSE 346 cells were much less susceptible to trichodermin than the cancer cell lines. Trichodermin predominantly inhibited ovarian cancer cells by inducing G0/G1 cell cycle arrest rather than apoptosis. Trichodermin decreased the expression of cyclin D1, CDK4, CDK2, retinoblastoma protein, Cdc25A, and c-Myc but showed little effect on the expression of p21Waf1/Cip1, p27Kip1, or p16Ink4a. c-Myc was a key target of trichodermin. Trichodermin regulated the expression of Cdc25A and its downstream proteins via c-Myc. Overexpression of c-Myc attenuated trichodermin's anti-ovarian cancer activity. In addition, trichodermin decelerated tumor growth in BALB/c nude mice, proving its effectiveness in vivo. These findings suggested that trichodermin has the potential to contribute to the treatment of ovarian cancer.


Assuntos
Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes myc , Tricodermina/farmacologia , Animais , Biomarcadores Tumorais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quinases Ciclina-Dependentes/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Neoplasias Ovarianas , Tricodermina/química , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Appl Microbiol ; 128(5): 1414-1426, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31891438

RESUMO

AIMS: Fructooligosaccharides (FOSs) known for their health properties and ß-(2→6)-levan-type FOSs have shown prebiotic and immunomodulatory activities that overcome those of commercial ß-(2→1)-FOSs, but costs do not favour their use. Moreover, FOSs can reach the bloodstream through the diet, and little is known about their direct effect on cells. The aim of this work was to produce high-content FOSs by Bacillus subtilis natto CCT7712 in a bioreactor using commercial sucrose and to evaluate their antiproliferative effects in OVCAR-3 cells. METHODS AND RESULTS: FOS production reached 173·60 g l-1 , 0·2 vvm aeration and uncontrolled pH. Levan-type FOSs, composed of ß-(2 â†’ 6) links and mainly GF3 (6-nystose), were identified using RMN spectroscopy, FT-IR and ESI-MS. FOSs decreased the viability and proliferation of OVCAR-3 cells, and the effects were associated with an increased pro-inflammatory response by the induction of IL-8 and TNF-α, and the repression of ER-ß genes. The metabolic profiles showed disruption of cellular homeostasis that can be associated with a decrease in proliferation. CONCLUSIONS: The high production of levan-type FOSs from B. subtilis natto CCT7712 in a bioreactor was achieved, and they showed antiproliferative potential in OVCAR-3 cells. SIGNIFICANCE AND IMPACT OF THE STUDY: FOS could be a good target for future therapeutic studies and commercial use.


Assuntos
Bacillus subtilis/metabolismo , Proliferação de Células/efeitos dos fármacos , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia , Reatores Biológicos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Frutanos/química , Frutanos/metabolismo , Frutanos/farmacologia , Humanos , Oligossacarídeos/química , Sacarose/metabolismo
9.
Biol Res ; 53(1): 10, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32156314

RESUMO

BACKGROUND: The aim of this study was to investigate the effect role and mechanism of miR-30b-3p on ovarian cancer cells biological function. METHODS: The expression of miR-30b-3p was detected in ovarian cancer cell lines and normal ovarian epithelial cell line by qRT-PCR. Mir-30b-3p mimic was transfected into OVCAR3 cells. Cell-counting kit-8 (CCK-8) assay was conducted to explore the effect of mir-30b-3p on the OVCAR3 cells' proliferation. Cell cycle and apoptosis were detected by Flow cytometry. Cell invasion ability was detected by Transwell test. The regulation of putative target of miR-30b-3p was verified by double luciferase reporter assays and Western blot. RESULT: We found that miR-30b-3p was downregulated in OVCAR3 cells. Overexpression of miR-30b-3p suppressed proliferation, promoted apoptosis, slowed cell cycle and inhibited migration and invasion of OVCAR3 cells. Bioinformatics analysis identified 3'-untranslated region (3'UTR) of Collagen triple helix repeat-containing 1 (CTHRC1) as the presumed binding site for miR-30b-3p. Detection of double luciferase reporter and Western-Blot result confirmed that CTHRC1 was the target gene of miR-30b-3p. Furthermore, E-cadherin, ß-cadherin and Vimentin protein expression level were changed after transfection of miR-30b-3p. CONCLUSION: miR-30b-3p function as an anti-cancer gene. Overexpression of miR-30b-3p can inhibit the biological function of ovarian cancer cells. MiR-30b-3p targets CTHRC1 gene plays an important role in epithelial-mesenchymal transformation (EMT), and supports miR-30b-3p as a potential biological indicator for ovarian cancer in the future.


Assuntos
Transição Epitelial-Mesenquimal/genética , Proteínas da Matriz Extracelular/genética , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/genética , Neoplasias Ovarianas/genética , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteínas da Matriz Extracelular/metabolismo , Feminino , Humanos , Invasividade Neoplásica , Neoplasias Ovarianas/metabolismo , Transdução de Sinais
10.
Int J Mol Sci ; 21(12)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580345

RESUMO

The treatment for ovarian cancers includes chemotherapies which use drugs such as cisplatin, paclitaxel, carboplatin, platinum, taxanes, or their combination, and other molecular target therapies. However, these current therapies are often accompanied with side effects. Vernonia calvoana (VC) is a valuable edible medicinal plant that is widespread in West Africa. In vitro data in our lab demonstrated that VC crude extract inhibits human ovarian cancer cells in a dose-dependent manner, suggesting its antitumor activity. From the VC crude extract, we have generated 10 fractions and VC fraction 7 (F7) appears to show the highest antitumor activity towards ovarian cancer cells. However, the mechanisms by which VC F7 exerts its antitumor activity in cancer cells remain largely unknown. We hypothesized that VC F7 inhibits cell proliferation and induces DNA damage and cell cycle arrest in ovarian cells through oxidative stress. To test our hypothesis, we extracted and fractionated VC leaves. The effects of VC F7 were tested in OVCAR-3 cells. Viability was assessed by the means of MTS assay. Cell morphology was analyzed by acridine orange and propidium iodide (AO/PI) dye using a fluorescent microscope. Oxidative stress biomarkers were evaluated by the means of lipid peroxidation, catalase, and glutathione peroxidase assays, respectively. The degree of DNA damage was assessed by comet assay. Cell cycle distribution was assessed by flow cytometry. Data generated from the MTS assay demonstrated that VC F7 inhibits the growth of OVCAR-3 cells in a dose-dependent manner, showing a gradual increase in the loss of viability in VC F7-treated cells. Data obtained from the AO/PI dye assessment revealed morphological alterations and exhibited characteristics such as loss of cellular membrane integrity, cell shrinkage, cell membrane damage, organelle breakdown, and detachment from the culture plate. We observed a significant increase (p < 0.05) in the levels of malondialdhyde (MDA) production in treated cells compared to the control. A gradual decrease in both catalase and glutathione peroxidase activities were observed in the treated cells compared to the control. Data obtained from the comet assay showed a significant increase (p < 0.05) in the percentages of DNA cleavage and comet tail length. The results of the flow cytometry analysis indicated VC F7 treatment caused cell cycle arrest at the S-phase checkpoint. Taken together, our results demonstrate that VC F7 exerts its anticancer activity by inhibiting cell proliferation, inducing DNA damage, and causing cell cycle arrest through oxidative stress in OVAR-3 cells. This finding suggests that VC F7 may be a potential alternative dietary agent for the prevention and/or treatment of ovarian cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Vernonia/química , Apoptose , Ciclo Celular , Proliferação de Células , Ensaio Cometa , Dano ao DNA , Feminino , Humanos , Neoplasias Ovarianas/patologia , Células Tumorais Cultivadas
11.
J Bioenerg Biomembr ; 51(4): 301-310, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31332716

RESUMO

The aim of this study was to determine the effects of hyperthermia, cisplatin and their combination on mitochondrial functions such as glutamate dehydrogenase (GDH) activity and mitochondrial respiration rates, as well as survival of cultured ovarian adenocarcinoma OVCAR-3 cells. Cells treated for 1 h with hyperthermia (40 and 43 °C) or cisplatin (IC50) or a combination of both treatments were left for recovery at 37 °C temperature for 24 h or 48 h. The obtained results revealed that 43 °C hyperthermia potentiated effects of cisplatin treatment: combinatory treatment more strongly suppressed GDH activity and expression, mitochondrial functions, and decreased survival of OVCAR-3 cells in comparison to separate single treatments. We obtained evidence that in the OVCAR-3 cell line GDH was directly activated by hyperthermia (cisplatin eliminated this effect); however, this effect was followed by GDH inhibition after 48 h recovery. A combination of 43 °C hyperthermia with cisplatin induced stronger GDH inhibition in comparison to separate treatments, and negative effects exerted on GDH activity correlated with suppression of mitochondrial respiration with glutamate + malate. Cisplatin did not induce uncoupling of oxidative phosphorylation in OVCAR-3 cells but induced impairment of the outer mitochondrial membrane in combination with 43 °C hyperthermia. Hyperthermia (43 °C) potentiated cytotoxicity of cisplatin in an OVCAR-3 cell line.


Assuntos
Adenocarcinoma , Cisplatino/farmacologia , Hipertermia Induzida , Mitocôndrias , Membranas Mitocondriais , Neoplasias Ovarianas , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma/terapia , Linhagem Celular , Feminino , Glutamato Desidrogenase/metabolismo , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos
12.
Clin Exp Pharmacol Physiol ; 44(1): 79-87, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27658187

RESUMO

In clinical practice, human ovarian cancer shows considerable resistance to chemotherapy. This study aimed to investigate the role of c-Met in the chemoresistance of ovarian cancer. Ovarian cancer cell line SKOV3 and OVCAR-3 were pretreated with c-Met inhibitor INCB28060, and then treated with paclitaxel. Cell survival, cell cycle and apoptosis were analyzed by MTT assay, flow cytometry analysis and TUNEL assay, respectively. The activation of c-Met signalling was detected by western blot analysis. INCB28060 inhibited the survival of SKOV3 and OVCAR-3 cells and enhanced the chemosensitivity of SKOV3 and OVCAR-3 cells to paclitaxel. INCB28060 inhibited c-Met signalling, caused mitochondrial membrane depolarization and DNA repair, and induced the apoptosis of SKOV3 and OVCAR-3 cells. c-Met plays an important role in mediating the chemoresistance of ovarian cancer. The combination of c-Met inhibitor and chemotherapy is a promising strategy to human ovarian cancer.


Assuntos
Benzamidas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Neoplasias Ovarianas/metabolismo , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , Benzamidas/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Humanos , Imidazóis , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Triazinas
13.
J Appl Toxicol ; 37(4): 426-435, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27589474

RESUMO

Data concerning possible carcinogenic action of polybrominated diphenyl ethers (PBDEs) in hormone-dependent tissues are limited. Our earlier studies showed that 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) stimulated OVCAR-3 and MCF-7 cell proliferation, while its hydroxylated metabolites (5-OH-BDE-47 and 6-OH-BDE-47) increased estrogen receptors protein expression and extracellular signal-regulated kinase 1/2 and protein kinase Cα phosphorylation in these cell lines. In addition to cell proliferative disorder, a failure in the regulation of apoptosis can also lead to the formation and development of tumors. Therefore, in the present study, we investigated the effect of BDE-47 and its metabolites (2.5-50 ng ml-1 ) on the expression of apoptosis regulatory genes and proteins, caspase-8 and -9 activity and DNA fragmentation induced by extracellular signal-regulated kinase inhibitor (PD098059) and protein kinase Cα inhibitor (GÓ§ 6976) in ovarian (OVCAR-3) and breast (MCF-7) cancer cells. In OVCAR-3 cells, BDE-47 upregulated expression of most of the investigated genes and increased protein expression of tumor necrosis factor (TNF)-α, TNF receptor 1, caspase-6, Bcl-xl and caspase-8 activity. Whereas in MCF-7 cells, BDE-47 resulted in the downregulation of most of the investigated genes, and decreased caspase-8 and -9 activity. In both OVCAR-3 and MCF-7 cells, the expression of most of the investigated genes were downregulated by metabolites. Exposure of OVCAR-3 cells to 5-OH-BDE-47 corresponded with a decrease in the protein expression of caspase-6, caspase-9 and Bcl-xl and treatment with 6-OH-BDE-47 decreased Bcl-xl and TNF receptor 1 expression in OVCAR-3 cells and caspase-9 expression in MCF-7 cells. Hydroxylated metabolites of BDE-47 have strong inhibitory effects on apoptosis in ovarian and breast tumor cells and thus should be considered potential carcinogens in hormone-dependent cancers. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Apoptose/efeitos dos fármacos , Éteres Difenil Halogenados/farmacologia , Proteínas Reguladoras de Apoptose/biossíntese , Proteínas Reguladoras de Apoptose/genética , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Biotransformação , Caspase 8/biossíntese , Caspase 8/genética , Caspase 9/biossíntese , Caspase 9/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Éteres Difenil Halogenados/farmacocinética , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células MCF-7 , Proteína Quinase C/antagonistas & inibidores
14.
Ginekol Pol ; 88(2): 68-74, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28326515

RESUMO

OBJECTIVES: Cisplatin is a classical anticancer drug used in the treatment of ovarian cancer. Unfortunately, the treatment is associated with numerous adverse effects. Studies concerning new platinum derivatives with less organ toxicity are conducted. The aim of this study was to analyse the effect of a new trans-platinum(II) complex of 3-aminoflavone on the viability and mortality of the cells from OVCAR 3 and CAOV 3 ovarian cancer cell lines and on the expression of the selected genes involved in the process of apoptosis. MATERIAL AND METHODS: The viability of ovarian cancer cells and the cytotoxicity of a trans-platinum(II) complex of 3-amino-flavone: [trans-Pt(3-af )2Cl2), trans-bis-(3-aminoflavone) dichloridoplatinum(II)] and cisplatin were analysed using a spectrophotometric method with the use of MTT assay and LDH assay. BAX, BCL2, BIRC5 gene expression analysis on mRNA level was conducted with the use of Real-Time PCR method. RESULTS: It was observed that parallel to an increase in the concentration of the new complex compound and cisplatin there is a decrease in viability and an increase in mortality of ovarian cancer cells. As a result of exposure to the studied compound and cisplatin, an increased BAX gene expression and decreased BCL2 and BIRC5 gene expression were observed in the studied ovarian cancer cell lines. CONCLUSION: Trans-Pt(3-af )2Cl2 exhibits anticancer activity towards OVCAR 3 and CAOV 3 ovarian cancer cell lines. The studied complex compound can be considered as a potential anticancer drug.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Flavonoides/farmacologia , Compostos Organoplatínicos/farmacologia , Neoplasias Ovarianas/genética , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Proteínas Inibidoras de Apoptose/efeitos dos fármacos , Proteínas Inibidoras de Apoptose/genética , L-Lactato Desidrogenase/efeitos dos fármacos , L-Lactato Desidrogenase/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Survivina , Proteína X Associada a bcl-2/efeitos dos fármacos , Proteína X Associada a bcl-2/genética
15.
Cancer Invest ; 34(10): 517-520, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27824515

RESUMO

OBJECTIVES: To investigate the tumor-suppressive properties of enzalutamide in androgen-driven ovarian cancer. METHODS: Mice were implanted subcutaneously with OVCAR-3 cells and treated with dihydrotestosterone in combination with enzalutamide or vehicle control. Tumor volumes were measured twice weekly until day 56. RESULTS: Dihydrotestosterone exposure led to a significant increase in tumor growth, while concomitant treatment with enzalutamide led to significant reductions in tumor volume compared to the androgen-exposed groups. CONCLUSIONS: We present the first evidence that the second-generation anti-androgen enzalutamide may possess efficacy in the treatment of ovarian cancer, paving the way for the future clinical trials.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ovarianas/patologia , Feniltioidantoína/análogos & derivados , Animais , Benzamidas , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Camundongos , Nitrilas , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Feniltioidantoína/farmacologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Appl Toxicol ; 36(12): 1558-1567, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26988655

RESUMO

Data concerning the possible action of polybrominated diphenyl ethers (PBDEs) in hormone-dependent cancer are scarce. Some data showed that PBDEs may directly affect breast cancer cells formation and only one research showed increased proliferation of the OVCAR-3 cells, but the results are ambiguous and the mechanisms are not clear. There is growing evidence that not only parent compounds but also its metabolites may be involved in cancer development. The present study was, therefore, designed to determine the effect of BDE-47 and its metabolites (2.5 to 50 ng ml-1 ) on proliferation (BrdU), cell-cycle genes (real-time PCR) and protein expression (Western blot), protein expression of oestrogen receptors (α ß), extracellular signal-regulated kinases 1 and 2 (ERK1/2) and protein kinase Cα (PKCα) in OVCAR-3 ovarian and MCF-7 breast cancer cells. In OVCAR-3 cells, the parent compound stimulated cell proliferation by activating CDK1, CDK7, E2F1 and E2F2. Independent of time of exposure, BDE-47 had no effect on ERα and ERß protein expression and ERK1/2 and PKCα phosphorylation. Metabolites had no effect on cell proliferation but increased both ERs protein expression and ERK1/2 and PKCα phosphorylation. In MCF-7 cells, the parent compound displayed no effect on cell proliferation but decreased ERα and increased ERß protein expression with concomitant induction of PKCα phosphorylation. Both metabolites increased MCF-7 cell proliferation, ERK1/2 and PKCα phosphorylation and decreased ERα and ERß protein expression.We suggest that studies concerning PBDEs with fewer bromine atoms should be continued to understand environmental links to different hormone-dependent cancers. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Proliferação de Células/efeitos dos fármacos , Éteres Difenil Halogenados/toxicidade , Bifenil Polibromatos/toxicidade , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/efeitos dos fármacos , Feminino , Genes cdc/efeitos dos fármacos , Éteres Difenil Halogenados/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células MCF-7 , Neoplasias Ovarianas/patologia , Fosforilação , Bifenil Polibromatos/metabolismo , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo
17.
Drug Dev Ind Pharm ; 42(1): 136-149, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26006330

RESUMO

CONTEXT: Synergistically active combinations have been used to enhance therapeutic efficacy for ovarian cancer chemotherapy. OBJECTIVE: The synergistically active combination of paclitaxel-topotecan (Pac-Top; 20:1, w/w) were loaded into folate-anchored PEGylated liposomes (FPL-Pac-Top) for safe and effective treatment of ovarian cancer. MATERIALS AND METHODS: Coupling reactions were carried out using carbodiimide chemistry and confirmed by infrared spectral analysis. These liposomes were studied for shape and physical interaction (and integrity), in vitro drug release kinetics, hemolytic toxicity, ex vivo pharmacodynamics in OVCAR-3 cell lines, and pharmacokinetics in ovarian tumor-bearing mice. RESULTS: The differential scanning calorimeter studies exhibited melting of liposomes (∼150 nm) at ∼41 °C. The drug(s) release from liposomes followed Fickian diffusion model. The hematological studies revealed insignificant toxicity to blood cells. In vivo studies showed long circulatory behavior (increased AUC0-t and AUMC0-t and MRT) and selective accumulation of FPL-Pac-Top in the ovaries. FPL-Pac-Top showed less necrosis and more apoptosis in flow cytometry. Kaplan-Meier survival analysis revealed the doubling of the survival time with FPL-Pac-Top in comparison to Pac-Top solution. DISCUSSION AND CONCLUSION: Potentiated anti-cancer activity of FPL-Pac-Top was attributed to multiple features viz. thermosensitivity, long circulatory nature and targetability. Such approach could be a paradigm chemotherapeutic approach for safe and effective targeting of cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Lipossomos/química , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/farmacologia , Inibidores da Topoisomerase I/farmacologia , Topotecan/farmacologia , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/uso terapêutico , Células Sanguíneas/efeitos dos fármacos , Varredura Diferencial de Calorimetria , Linhagem Celular Tumoral , Combinação de Medicamentos , Liberação Controlada de Fármacos , Sinergismo Farmacológico , Feminino , Ácido Fólico/química , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Paclitaxel/administração & dosagem , Paclitaxel/farmacocinética , Paclitaxel/uso terapêutico , Polietilenoglicóis/química , Inibidores da Topoisomerase I/administração & dosagem , Inibidores da Topoisomerase I/farmacocinética , Inibidores da Topoisomerase I/uso terapêutico , Topotecan/administração & dosagem , Topotecan/farmacocinética , Topotecan/uso terapêutico
18.
Med Oncol ; 40(9): 250, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37493998

RESUMO

Heat shock protein 27 (Hsp27) is an important member of the chaperone protein family and its overexpression promotes cancer cell survival. Here, we investigated the apoptosis inducer role of the J2 compound (Hsp27 inhibitor) in human ovarian cancer cell lines (SKOV3 and OVCAR-3). Cell proliferation was measured by MTT assay. The parameters of J2-Hsp27 interaction were determined with molecular docking calculation. The inhibitory effect of the J2 compound on Hsp27 chaperone activity was investigated by luciferase activity assay. Finally, the apoptotic inducer role of the J2 compound on SKOV3 and OVCAR-3 cells was determined by RT-PCR and caspase-3 activity assay. J2 compound decreased SKOV3 and OVCAR-3 cell proliferation in a dose-dependent manner at 48 h with IC50 values of 17.34 µM and 12.63 µM, respectively. J2 inhibited the refolding process of denatured luciferase as an Hsp27 inhibitor. Molecular docking calculation was carried out to determine the interaction between Hsp27 and J2. The results indicated that J2 selectively binds to the phosphorylation site of the Hsp27 and inhibits the phosphorylation process of Hsp27. To determine the apoptotic potential of the J2 compound against ovarian cancer cells, the mRNA expression levels of apoptotic and antiapoptotic markers (Bax, Bcl-2, Bcl-xL, Cyt-c, p53, Apaf-1, Cas-3, Cas-8, Cas-9, TNF-α, DAXX, and Ask-1) were measured using RT-PCR. While J2 increased the expressions of apoptotic genes, it decreased the expressions of anti-apoptotic genes. Further, the J2 compound increased Cas-3 activity in SKOV3 and OVCAR-3 at 5.52 and 4.12 folds, respectively. These results confirm that J2 has great potential and significance in the stimulation of apoptosis in ovarian cancer cells as an Hsp27 inhibitor.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/metabolismo , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP27/farmacologia , Apoptose , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Antineoplásicos/uso terapêutico , Proliferação de Células
19.
Front Endocrinol (Lausanne) ; 14: 1277155, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027211

RESUMO

In this study, response of ovarian cells (human granulosa cell line HGL5, and human adenocarcinoma cell line OVCAR-3) to short-term pomegranate peel extract (PPE) treatment (for 24 hours in cell culture) was evaluated in vitro. Quantitative and qualitative screening of polyphenols revealed punicalagins α and ß as major polyphenolic components. Total phenolic content (TPC) was 93.76 mg GAE/g d.w. with a high antioxidant activity of 95.30 mg TEAC/g d.w. In OVCAR-3, PPE treatment inhibited the metabolic activity, and increased cyclin-dependent kinase 1 (CDKN1A, p21) level at the highest dose, but not in HGL5. Flow cytometry analysis could not detect any significant difference between proportions of live, dead, and apoptotic cells in both cell lines. Reactive oxygen species (ROS) revealed an antioxidant effect on HGL5, and a prooxidant effect by stimulating ROS generation in OVCAR-3 cells at the higher doses of PPE. However, in contrast to HGL5, PPE treatment decreased release of growth factors - TGF-ß2 and EGF at the highest dose, as well as their receptors TGFBR2 and EGFR in OVCAR-3 cells. PPE also influenced steroidogenesis in granulosa cells HGL5 by stimulating 17ß-estradiol secretion at higher doses. In conclusion, the present study highlighted the bioactive compounds in pomegranate peels and the possible mechanisms of action of PPE, shedding light on its promising role in ovarian cancer (chemo)prevention and/or management.


Assuntos
Neoplasias Ovarianas , Punica granatum , Humanos , Feminino , Apoptose , Espécies Reativas de Oxigênio , Neoplasias Ovarianas/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Linhagem Celular Tumoral , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa