RESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) expresses a multifunctional papain-like proteinase (PLpro), which mediates the processing of the viral replicase polyprotein. Inhibition of PLpro has been shown to suppress the viral replication. This study aimed to explore new anti-PLpro candidates by applying virtual screening based on GRL0617, a known PLpro inhibitor of SARS coronavirus (SARS-CoV). The three-dimensional (3D) structure of SARS-CoV-2 PLpro was built by homology modeling, using SARS-CoV PLpro as the template. The model was refined and studied through molecular dynamic simulation. AutoDock Vina was then used to perform virtual screening where 50 chemicals with at least 65% similarity to GRL0617 were docked with the optimized SARS-CoV-2 PLpro. In this screening, 5-(aminomethyl)-2-methyl-N-[(1R)-1-naphthalen-1-ylethyl]benzamide outperformed GRL0617 in terms of binding affinity (-9.7 kcal/mol). Furthermore, 2-(4-fluorobenzyl)-5-nitro-1H-isoindole-1,3(2H)-dione (previously introduced as an inhibitor of cyclooxygenase-2), 3-nitro-N-[(1r)-1-phenylethyl]-5-(trifluoromethyl)benzamide (inhibitor against Mycobacterium tuberculosis), as well as the recently introduced SARS-CoV-2 PLpro inhibitor 5-acetamido-2-methyl-N-[(1S)-1-naphthalen-1-ylethyl]benzamide showed promising affinity for the viral proteinase. All of the identified compounds demonstrated an acceptable pharmacokinetic profile. In conclusion, our findings represent rediscovery of analgesic, anti-inflammatory, antibacterial, or antiviral drugs as promising pharmaceutical candidates against the ongoing coronavirus.
Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Inibidores de Proteases/farmacologia , Antivirais/efeitos adversos , Antivirais/química , Antivirais/farmacocinética , Sítios de Ligação , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Simulação por Computador , Proteases 3C de Coronavírus/genética , Proteases 3C de Coronavírus/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/efeitos adversos , Inibidores de Proteases/química , Inibidores de Proteases/farmacocinética , Conformação Proteica , Relação Estrutura-AtividadeRESUMO
Objective: The study purpose was to compare the anti- novel coronavirus disease 2019 (COVID-19) property of chlorogenic acid (CGA) and Zinc oxide nanoparticles (ZnO-NP) with the new valid synthesized complex of ZnO /CGA-NPs. Methods: The facile mixing method was utilized to prepare ZnO/CGA-NPs. The in vitro effect of different ZnO/CGA-NPs concentrations on papain-like protease (PLpro) and spike protein- receptor-binding domain (RBD) was measured by ELISA technique. The compounds effects on SARS-CoV2 were determined on viral entry, replication, and assembly by using plaque reduction assay, qPCR, and ELISA techniques. Their individual effects or mixed with hydroxychloroquine (HCQ) on erythrocytes (RBCs) and leukocytes (WBCs) were evaluated by routine cell culture technique. Finally, turbidity and agar well diffusion assays were done to evaluate their antimicrobial properties against Escherichia. coli, klebsila pneumonia, Streptococcus pyogenes, Staphylococcus aureus, and Candida albicans. Results: The results confirmed that the uniformly dispersed ZnO-NPs were converted to aggregated form of ZnO/CGA-NPs upon the addition of CGA. The inhibitory concentration 50 (IC50) of ZnO /CGA-NPs against RBD, angiotensin-converting enzyme 2 (ACE2) and PLpro were 1647.7, 323.3 µg/mL and 38.7 µg/mL, respectively. Also, it inhibited E-gene, RdRp gene, E-protein, and spike protein with an IC50 of 0.11, 0.13, 0.48, and 0.37 µg/mL, respectively. It acted as an antimicrobial against all tested organisms with a minimum inhibitory concentration (MIC) of 26 µg/mL. Finally, ZnO/CGA-NPs Complex (0.1 IC50) prevented the cytotoxic effect of HCQ on RBCs and WBC by 92.3 and 90 %, respectively. Conclusion: ZnO/CGA-NPs Complex can be considered as a new anti- severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) compound.
RESUMO
Brazilein sappan wood, played by Spike (S) glycoprotein, Papain-Like proteinase (PLpro), and Main protease (Mpro), is expected to be a candidate for the antiviral drug SARS-CoV-2, which can inhibit viral attachment to the human body, replication, and transcription processes. The aim of this study was to predict in silico, using the comparative drug hydroxychloroquine, the working goal of brazilein sappan wood as a candidate for the antiviral drug SARS-CoV-2 against protein S, PLpro, and Mpro. The approach used is the in silico docking test using the computer program Molegro Virtual Docker. Receptor used by protein S, Protein Data Bank (PDB) code: 6M0J, NAG_601[E] ligand; PLpro, PDB code: 7JIT, Y95_501[A] ligand; and Mpro, PDB code: 1WOF, I12_1145[A] ligand. Data analysis was carried out by comparing the docking bond energies between the ligands at the target receptor. Silico test results for protein S: ligand bond energy NAG_601 [E] = -59.4555, brazilein = -71.5537, hydroxychloroquine = -79.3704; PLpro protein: Ligand bond energy Y95_501 [A] = -129.561, brazilein = -94.9761, hydroxychloroquine = -100.984; Mpro protein: Ligand bond energy I12 1145 [A] = -141.135, brazilein = -96.6169, hydroxychloroquine = -104.88. The above test results indicate that brazilein sappan wood has potential as a SARS-CoV-2 drug candidate, has a stable bond, and that the biological activity of the compound is stronger against S protein than the proteins of PLpro and Mpro.
RESUMO
[Coronaviruses (CoVs) are enveloped positive-stranded RNA viruses with spike (S) protein projections that allow the virus to enter and infect host cells. The S protein is a key virulence factor determining viral pathogenesis, host tropism, and disease pathogenesis. There are currently diverse corona viruses that are known to cause disease in humans. The occurrence of Middle East respiratory syndrome coronavirus (MERS-CoV) and Severe Acute Respiratory Syndrome coronavirus (SARS-CoV), as fatal human CoV diseases, has induced significant interest in the medical field. The novel coronavirus disease (COVID-19) is an infectious disease caused by a novel strain of coronavirus (SAR-CoV-2). The SARS-CoV2 outbreak has been evolved in Wuhan, China, in December 2019, and identified as a pandemic in March 2020, resulting in 53.24 M cases and 1.20M deaths worldwide. SARS-CoV-2 main proteinase (MPro), a key protease of CoV-2, mediates viral replication and transcription. SARS-CoV-2 MPro has been emerged as an attractive target for SARS-CoV-2 drug design and development. Diverse scaffolds have been released targeting SARS-CoV-2 MPro. In this review, we culminate the latest published information about SARS-CoV-2 main proteinase (MPro) and reported inhibitors.
Assuntos
Antivirais/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Compostos Fitoquímicos/química , Inibidores de Proteases/química , SARS-CoV-2/química , Sequência de Aminoácidos , Antivirais/classificação , Antivirais/farmacologia , Domínio Catalítico , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/genética , Proteases 3C de Coronavírus/metabolismo , Descoberta de Drogas , Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/classificação , Compostos Fitoquímicos/farmacologia , Inibidores de Proteases/classificação , Inibidores de Proteases/farmacologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Relação Estrutura-Atividade , Tratamento Farmacológico da COVID-19RESUMO
Purpose: A novel coronavirus (COVID-19) that has not been previously identified in humans and has no specific treatment has recently spread. Treatment trials using antiviral and immune-modulating drugs such as hydroxychloroquine (HCQ) were used to control this viral outbreak however several side effects have emerged. Berberine (BER) is an alkaloid that has been reported to reveal some pharmacological properties including antioxidant and antimicrobial activities. Additionally, Zinc oxide nanoparticles (ZnO-NPs) possess potent antioxidant and anti-inflammatory properties. Therefore, this study was undertaken to estimate the efficiency of both BER and synthetic ZnO/BER complex as an anti-COVID-19 therapy. Methods: First, the ZnO/BER complex was prepared by the facile mixing method. Then in vitro studies on the two compounds were conducted including VeroE6 toxicity, anti-COVID-19 activity, determination of inhibitory activity towards papain-like proteinase (PL pro) and spike protein- and receptor- binding domain (RBD) as well as assessment of drug toxicity on RBCs. Results: The results showed that ZnO/BER complex acts as an anti-COVID-19 by inhibiting spike protein binding with angiotensin-converting enzyme II (ACE II), PL pro activity, spike protein and E protein levels, and expression of both E-gene and RNA dependent RNA polymerase (RdRp) at a concentration lower than that of BER or ZnO-NPs alone. Furthermore, ZnO/BER complex had antioxidant and antimicrobial properties where it prevents the auto oxidation of 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and the culture of lower respiratory system bacteria that affected Covid 19 patients. The ZnO/BER complex prevented as well the HCQ cytotoxic effect on both RBC and WBC (in vitro) and hepatotoxicity, nephrotoxicity and anemia that occurred after HCQ long administration in vivo. Conclusion: The ZnO/BER complex can be accounted as promising anti-COVID 19 candidate because it inhibited the virus entry, replication, and assembly. Furthermore, it could be used to treat a second bacterial infection that took place in hospitalized COVID 19 patients. Moreover, ZnO/BER complex was found to eliminate the toxicity of long-term administration of HCQ in vivo.
RESUMO
The high mortality rate from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in humans and the lack of effective therapeutic regime for its treatment necessitates the identification of new antivirals. SARS-CoV-2 relies on non-structural proteins such as Nsp13 helicase and nsp14 which are the key components of the replication-transcription complex (RTC) to complete its infectious life cycle. Therefore, targeting these essential viral proteins with small molecules will most likely to halt the disease pathogenesis. The lack of experimental structures of these proteins deters the process of structure-based identification of their specific inhibitors. In the present study, the in silico models of SARS-CoV-2 nsp13 helicase and nsp14 protein were elucidated using a comparative homology modelling approach. These in silico model structures were validated using various parameters such as Ramachandran plot, Verify 3D score, ERRAT score, knowledge-based energy and Z-score. The in silico models were further used for virtual screening of the Food and Drug Administration (FDA) approved antiviral drugs. Simeprevir (SMV), Paritaprevir (PTV) and Grazoprevir (GZR) were the common leads identified which show higher binding affinity to both nsp13 helicase and nsp14 as compared to the control inhibitors and therefore, they might be potential dual-target inhibitors. The leads also establish a network of hydrogen bonds and hydrophobic interactions with the key residues lining the active site pockets. The present findings suggest that these FDA approved antiviral drugs can be subjected to repurposing against SARS-CoV-2 infection after verifying the in silico results through in vitro and in vivo studies.