Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.203
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(7): e2315447121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315856

RESUMO

The kinetic resolution of racemic amino acids mediated by dipeptides and pyridoxal provides a prebiotically plausible route to enantioenriched proteinogenic amino acids. The enzymatic transamination cycles that are key to modern biochemical formation of enantiopure amino acids may have evolved from this half of the reversible reaction couple. Kinetic resolution of racemic precursors emerges as a general route to enantioenrichment under prebiotic conditions.


Assuntos
Aminoácidos , Peptídeos , Aminoácidos/química , Peptídeos/química
2.
Proc Natl Acad Sci U S A ; 121(2): e2309360120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165938

RESUMO

Peptide formation from amino acids is thermodynamically unfavorable but a recent study provided evidence that the reaction occurs at the air/solution interfaces of aqueous microdroplets. Here, we show that i) the suggested amino acid complex in microdroplets undergoes dehydration to form oxazolone; ii) addition of water to oxazolone forms the dipeptide; and iii) reaction of oxazolone with other amino acids forms tripeptides. Furthermore, the chirality of the reacting amino acids is preserved in the oxazolone product, and strong chiral selectivity is observed when converting the oxazolone to tripeptide. This last fact ensures that optically impure amino acids will undergo chain extension to generate pure homochiral peptides. Peptide formation in bulk by wet-dry cycling shares a common pathway with the microdroplet reaction, both involving the oxazolone intermediate.


Assuntos
Oxazolona , Peptídeos , Peptídeos/química , Aminoácidos/química , Dipeptídeos , Água/química
3.
Proc Natl Acad Sci U S A ; 120(41): e2303302120, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782799

RESUMO

An increasing amount of evidence suggests that early ocean hydrothermal systems were sustained sources of ammonia, an essential nitrogen species for prebiotic synthesis of life's building blocks. However, it remains a riddle how the abiotically generated ammonia was retained at the vent-ocean interface for the subsequent chemical evolution. Here, we demonstrate that, under simulated geoelectrochemical conditions in early ocean hydrothermal systems ([Formula: see text][Formula: see text] V versus the standard hydrogen electrode), mackinawite gradually reduces to zero-valent iron ([Formula: see text]), generating interlayer [Formula: see text] sites. This reductive conversion leads to an up to 55-fold increase in the solid/liquid partition coefficient for ammonia, enabling over 90% adsorption of 1 mM ammonia in 1 M NaCl at neutral pH. A coordinative binding of ammonia on the interlayer [Formula: see text] sites was computed to be the major mechanism of selective ammonia adsorption. Mackinawite is a ubiquitous sulfide precipitate in submarine hydrothermal systems. Given its reported catalytic function in amination, the extreme accumulation of ammonia on electroreduced mackinawite should have been a crucial initial step for prebiotic nitrogen assimilation, paving the way to the origin of life.

4.
Proc Natl Acad Sci U S A ; 120(43): e2218876120, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37847736

RESUMO

The emergence of functional oligonucleotides on early Earth required a molecular selection mechanism to screen for specific sequences with prebiotic functions. Cyclic processes such as daily temperature oscillations were ubiquitous in this environment and could trigger oligonucleotide phase separation. Here, we propose sequence selection based on phase separation cycles realized through sedimentation in a system subjected to the feeding of oligonucleotides. Using theory and experiments with DNA, we show sequence-specific enrichment in the sedimented dense phase, in particular of short 22-mer DNA sequences. The underlying mechanism selects for complementarity, as it enriches sequences that tightly interact in the dense phase through base-pairing. Our mechanism also enables initially weakly biased pools to enhance their sequence bias or to replace the previously most abundant sequences as the cycles progress. Our findings provide an example of a selection mechanism that may have eased screening for auto-catalytic self-replicating oligonucleotides.


Assuntos
DNA , Oligonucleotídeos , Oligonucleotídeos/genética , DNA/genética , Temperatura , Pareamento de Bases
5.
Annu Rev Phys Chem ; 75(1): 307-327, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38382568

RESUMO

The discovery of more than 200 gas-phase chemical compounds in interstellar space has led to the speculation that this nonterrestrial synthesis may play a role in the origin of life. These identifications were possible because of laboratory spectroscopy, which provides the molecular fingerprints for astronomical observations. Interstellar chemistry produces a wide range of small, organic molecules in dense clouds, such as NH2COCH3, CH3OCH3, CH3COOCH3, and CH2(OH)CHO. Carbon (C) is also carried in the fullerenes C60 and C70, which can preserve C-C bonds from circumstellar environments for future synthesis. Elusive phosphorus has now been found in molecular clouds, the sites of star formation, in the molecules PO and PN. Such clouds can collapse into solar systems, although the chemical/physical processing of the emerging planetary disk is uncertain. The presence of molecule-rich interstellar starting material, as well as the link to planetary bodies such as meteorites and comets, suggests that astrochemical processes set a prebiotic foundation.

6.
Proc Natl Acad Sci U S A ; 119(28): e2204765119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35787048

RESUMO

Life as we know it is homochiral, but the origins of biological homochirality on early Earth remain elusive. Shallow closed-basin lakes are a plausible prebiotic environment on early Earth, and most are expected to have significant sedimentary magnetite deposits. We hypothesize that ultraviolet (200- to 300-nm) irradiation of magnetite deposits could generate hydrated spin-polarized electrons sufficient to induce enantioselective prebiotic chemistry. Such electrons are potent reducing agents that drive reduction reactions where the spin polarization direction can enantioselectively alter the reaction kinetics. Our estimate of this chiral bias is based on the strong effective spin-orbit coupling observed in the chiral-induced spin selectivity (CISS) effect, as applied to energy differences in reduction reactions for different isomers. In the original CISS experiments, spin-selective electron transmission through a monolayer of double-strand DNA molecules is observed at room temperature-indicating a strong coupling between molecular chirality and electron spin. We propose that the chiral symmetry breaking due to the CISS effect, when applied to reduction chemistry, can induce enantioselective synthesis on the prebiotic Earth and thus facilitate the homochiral assembly of life's building blocks.


Assuntos
Elétrons , Óxido Ferroso-Férrico , DNA/química , Planeta Terra , Estereoisomerismo
7.
Proc Natl Acad Sci U S A ; 119(17): e2116429119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35446612

RESUMO

Nonenzymatic template-directed RNA copying using chemically activated nucleotides is thought to have played a key role in the emergence of genetic information on the early Earth. A longstanding question concerns the number and nature of different environments that might have been necessary to enable all of the steps from nucleotide synthesis to RNA copying. Here we explore three sequential steps from this overall pathway: nucleotide activation, synthesis of imidazolium-bridged dinucleotides, and template-directed RNA copying. We find that all three steps can take place in one reaction mixture undergoing multiple freeze-thaw cycles. Recent experiments have demonstrated a potentially prebiotic methyl isocyanide-based nucleotide activation chemistry. However, the original version of this approach is incompatible with nonenzymatic RNA copying because the high required concentration of the imidazole activating group prevents the accumulation of the essential imidazolium-bridged dinucleotide. Here we report that ice eutectic phase conditions facilitate not only the methyl isocyanide-based activation of ribonucleotide 5'-monophosphates with stoichiometric 2-aminoimidazole, but also the subsequent conversion of these activated mononucleotides into imidazolium-bridged dinucleotides. Furthermore, this one-pot approach is compatible with template-directed RNA copying in the same reaction mixture. Our results suggest that the simple and common environmental fluctuation of freeze-thaw cycles could have played an important role in prebiotic nucleotide activation and nonenzymatic RNA copying.


Assuntos
Nucleotídeos , RNA , Nucleotídeos/química , Nucleotídeos/genética , Polimerização , RNA/química , RNA/genética
8.
Proc Natl Acad Sci U S A ; 119(42): e2212642119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36191178

RESUMO

Amide bond formation, the essential condensation reaction underlying peptide synthesis, is hindered in aqueous systems by the thermodynamic constraints associated with dehydration. This represents a key difficulty for the widely held view that prebiotic chemical evolution leading to the formation of the first biomolecules occurred in an oceanic environment. Recent evidence for the acceleration of chemical reactions at droplet interfaces led us to explore aqueous amino acid droplet chemistry. We report the formation of dipeptide isomer ions from free glycine or L-alanine at the air-water interface of aqueous microdroplets emanating from a single spray source (with or without applied potential) during their flight toward the inlet of a mass spectrometer. The proposed isomeric dipeptide ion is an oxazolidinone that takes fully covalent and ion-neutral complex forms. This structure is consistent with observed fragmentation patterns and its conversion to authentic dipeptide ions upon gentle collisions and for its formation from authentic dipeptides at ultra-low concentrations. It also rationalizes the results of droplet fusion experiments that show that the dipeptide isomer facilitates additional amide bond formation events, yielding authentic tri- through hexapeptides. We propose that the interface of aqueous microdroplets serves as a drying surface that shifts the equilibrium between free amino acids in favor of dehydration via stabilization of the dipeptide isomers. These findings offer a possible solution to the water paradox of biopolymer synthesis in prebiotic chemistry.


Assuntos
Aminoácidos , Oxazolidinonas , Alanina , Amidas , Aminoácidos/química , Biopolímeros , Desidratação , Dipeptídeos/química , Glicina , Humanos , Peptídeos/química , Água/química
9.
Gut ; 73(10): 1632-1649, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-38740509

RESUMO

OBJECTIVE: To decipher the mechanisms by which the major human milk oligosaccharide (HMO), 2'-fucosyllactose (2'FL), can affect body weight and fat mass gain on high-fat diet (HFD) feeding in mice. We wanted to elucidate whether 2'FL metabolic effects are linked with changes in intestinal mucus production and secretion, mucin glycosylation and degradation, as well as with the modulation of the gut microbiota, faecal proteome and endocannabinoid (eCB) system. RESULTS: 2'FL supplementation reduced HFD-induced obesity and glucose intolerance. These effects were accompanied by several changes in the intestinal mucus layer, including mucus production and composition, and gene expression of secreted and transmembrane mucins, glycosyltransferases and genes involved in mucus secretion. In addition, 2'FL increased bacterial glycosyl hydrolases involved in mucin glycan degradation. These changes were linked to a significant increase and predominance of bacterial genera Akkermansia and Bacteroides, different faecal proteome profile (with an upregulation of proteins involved in carbon, amino acids and fat metabolism and a downregulation of proteins involved in protein digestion and absorption) and, finally, to changes in the eCB system. We also investigated faecal proteomes from lean and obese humans and found similar changes observed comparing lean and obese mice. CONCLUSION: Our results show that the HMO 2'FL influences host metabolism by modulating the mucus layer, gut microbiota and eCB system and propose the mucus layer as a new potential target for the prevention of obesity and related disorders.


Assuntos
Dieta Hiperlipídica , Fezes , Microbioma Gastrointestinal , Obesidade , Trissacarídeos , Animais , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Obesidade/microbiologia , Obesidade/prevenção & controle , Microbioma Gastrointestinal/efeitos dos fármacos , Trissacarídeos/metabolismo , Camundongos , Fezes/microbiologia , Fezes/química , Humanos , Leite Humano/metabolismo , Leite Humano/química , Mucosa Intestinal/metabolismo , Proteoma/metabolismo , Proteoma/análise , Muco/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mucinas/metabolismo
10.
J Mol Evol ; 92(5): 539-549, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39244680

RESUMO

Abiogenesis is frequently envisioned as a linear, ladder-like progression of increasingly complex chemical systems, eventually leading to the ancestors of extant cellular life. This "pre-cladistics" view is in stark contrast to the well-accepted principles of organismal evolutionary biology, as informed by paleontology and phylogenetics. Applying this perspective to origins, I explore the paradigm of "Stem Life," which embeds abiogenesis within a broader continuity of diversification and extinction of both hereditary lineages and chemical systems. In this new paradigm, extant life's ancestral lineage emerged alongside and was dependent upon many other complex prebiotic chemical systems, as part of a diverse and fecund prebiosphere. Drawing from several natural history analogies, I show how this shift in perspective enriches our understanding of Origins and directly informs debates on defining Life, the emergence of the Last Universal Common Ancestor (LUCA), and the implications of prebiotic chemical experiments.


Assuntos
Evolução Biológica , Origem da Vida , Prebióticos , Filogenia
11.
J Mol Evol ; 92(4): 449-466, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39052031

RESUMO

Quantum mechanical calculations are used to explore the thermodynamics of possible prebiotic synthesis of the building blocks of nucleic acids. Different combinations of D-ribofuranose (Ribf) and N-(2-aminoethyl)-glycine (AEG) (trifunctional connectors (TCs)); the nature of the Ribf, its anomeric form, and its ring puckering (conformation); and the nature of the nucleobases (recognition units (RUs)) are considered. The combinatorial explosion of possible nucleosides has been drastically reduced on physicochemical grounds followed by a detailed thermodynamic evaluation of alternative synthetic pathways. The synthesis of nucleosides containing N-(2-aminoethyl)-glycine (AEG) is predicted to be thermodynamically favored suggesting a possible role of AEG as a component of an ancestral proto-RNA that may have preceded today's nucleic acids. A new pathway for the building of free nucleotides (exemplified by 5'-uridine monophosphate (UMP)) and of AEG dipeptides is proposed. This new pathway leads to a spontaneous formation of free UMP assisted by an AEG nucleoside in an aqueous environment. This appears to be a workaround to the "water problem" that prohibits the synthesis of nucleotides in water.


Assuntos
Glicina , RNA , Termodinâmica , RNA/química , Glicina/análogos & derivados , Glicina/química , Origem da Vida , Evolução Química , Nucleosídeos
12.
Biochem Biophys Res Commun ; 709: 149725, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38579617

RESUMO

Proteinoids are synthetic polymers that have structural similarities to natural proteins, and their formation is achieved through the application of heat to amino acid combinations in a dehydrated environment. The thermal proteins, initially synthesised by Sidney Fox during the 1960s, has the ability to undergo self-assembly, resulting in the formation of microspheres that resemble cells. These microspheres have fascinating biomimetic characteristics. In recent studies, substantial advancements have been made in elucidating the electrical signalling phenomena shown by proteinoids, hence showcasing their promising prospects in the field of neuro-inspired computing. This study demonstrates the advancement of experimental prototypes that employ proteinoids in the construction of fundamental neural network structures. The article provides an overview of significant achievements in proteinoid systems, such as the demonstration of electrical excitability, emulation of synaptic functions, capabilities in pattern recognition, and adaptability of network structures. This study examines the similarities and differences between proteinoid networks and spontaneous neural computation. We examine the persistent challenges associated with deciphering the underlying mechanisms of emergent proteinoid-based intelligence. Additionally, we explore the potential for developing bio-inspired computing systems using synthetic thermal proteins in forthcoming times. The results of this study offer a theoretical foundation for the advancement of adaptive, self-assembling electronic systems that operate using artificial bio-neural principles.


Assuntos
Aminoácidos , Proteínas , Proteínas/metabolismo , Temperatura Alta , Redes Neurais de Computação
13.
Appl Environ Microbiol ; 90(8): e0096424, 2024 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-39007602

RESUMO

Members of the mammalian gut microbiota metabolize diverse complex carbohydrates that are not digested by the host, which are collectively labeled "dietary fiber." While the enzymes and transporters that each strain uses to establish a nutrient niche in the gut are often exquisitely specific, the relationship between carbohydrate structure and microbial ecology is imperfectly understood. The present study takes advantage of recent advances in complex carbohydrate structure determination to test the effects of fiber monosaccharide composition on microbial fermentation. Fifty-five fibers with varied monosaccharide composition were fermented by a pooled feline fecal inoculum in a modified MiniBioReactor array system over a period of 72 hours. The content of the monosaccharides glucose and xylose was significantly associated with the reduction of pH during fermentation, which was also predictable from the concentrations of the short-chain fatty acids lactic acid, propionic acid, and the signaling molecule indole-3-acetic acid. Microbiome diversity and composition were also predictable from monosaccharide content and SCFA concentration. In particular, the concentrations of lactic acid and propionic acid correlated with final alpha diversity and were significantly associated with the relative abundance of several of the genera, including Lactobacillus and Dubosiella. Our results suggest that monosaccharide composition offers a generalizable method to compare any dietary fiber of interest and uncover links between diet, gut microbiota, and metabolite production. IMPORTANCE: The survival of a microbial species in the gut depends on the availability of the nutrients necessary for that species to survive. Carbohydrates in the form of non-host digestible fiber are of particular importance, and the set of genes possessed by each species for carbohydrate consumption can vary considerably. Here, differences in the monosaccharides that are the building blocks of fiber are considered for their impact on both the survival of different species of microbes and on the levels of microbial fermentation products produced. This work demonstrates that foods with similar monosaccharide content will have consistent effects on the survival of microbial species and on the production of microbial fermentation products.


Assuntos
Bactérias , Fibras na Dieta , Fermentação , Microbioma Gastrointestinal , Monossacarídeos , Fibras na Dieta/metabolismo , Monossacarídeos/metabolismo , Monossacarídeos/análise , Animais , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Fezes/microbiologia , Fezes/química , Ácidos Graxos Voláteis/metabolismo
14.
Appl Environ Microbiol ; 90(3): e0144523, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38411084

RESUMO

Galacto-N-biose (GNB) is an important core structure of glycan of mucin glycoproteins in the gastrointestinal (GI) mucosa. Because certain beneficial bacteria inhabiting the GI tract, such as bifidobacteria and lactic acid bacteria, harbor highly specialized GNB metabolic capabilities, GNB is considered a promising prebiotic for nourishing and manipulating beneficial bacteria in the GI tract. However, the precise interactions between GNB and beneficial bacteria and their accompanying health-promoting effects remain elusive. First, we evaluated the proliferative tendency of beneficial bacteria and their production of beneficial metabolites using gut bacterial strains. By comparing the use of GNB, glucose, and inulin as carbon sources, we found that GNB enhanced acetate production in Lacticaseibacillus casei, Lacticaseibacillus rhamnosus, Lactobacillus gasseri, and Lactobacillus johnsonii. The ability of GNB to promote acetate production was also confirmed by RNA-seq analysis, which indicated the upregulation of gene clusters that catalyze the deacetylation of N-acetylgalactosamine-6P and biosynthesize acetyl-CoA from pyruvate, both of which result in acetate production. To explore the in vivo effect of GNB in promoting acetate production, antibiotic-treated BALB/cA mice were administered with GNB with L. rhamnosus, resulting in a fecal acetate content that was 2.7-fold higher than that in mice administered with only L. rhamnosus. Moreover, 2 days after the last administration, a 3.7-fold higher amount of L. rhamnosus was detected in feces administered with GNB with L. rhamnosus than in feces administered with only L. rhamnosus. These findings strongly suggest the prebiotic potential of GNB in enhancing L. rhamnosus colonization and converting L. rhamnosus into higher acetate producers in the GI tract. IMPORTANCE: Specific members of lactic acid bacteria, which are commonly used as probiotics, possess therapeutic properties that are vital for human health enhancement by producing immunomodulatory metabolites such as exopolysaccharides, short-chain fatty acids, and bacteriocins. The long residence time of probiotic lactic acid bacteria in the GI tract prolongs their beneficial health effects. Moreover, the colonization property is also desirable for the application of probiotics in mucosal vaccination to provoke a local immune response. In this study, we found that GNB could enhance the beneficial properties of intestinal lactic acid bacteria that inhabit the human GI tract, stimulating acetate production and promoting intestinal colonization. Our findings provide a rationale for the addition of GNB to lactic acid bacteria-based functional foods. This has also led to the development of therapeutics supported by more rational prebiotic and probiotic selection, leading to an improved healthy lifestyle for humans.


Assuntos
Lactobacillales , Probióticos , Humanos , Animais , Camundongos , Prebióticos , Lactobacillales/genética , Dissacaridases , Probióticos/metabolismo , Acetatos , Bactérias
15.
Microb Pathog ; 194: 106844, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39128644

RESUMO

This study investigated the effect of pumpkin powder (2 %, 4 %, and 6 %) and Enterococcus faecium and Enterococcus faecalis probiotics on the physicochemical, microbiological, and sensory properties of yogurt samples during 28 days of storage at 4 °C. The prebiotic effect of pumpkin powder (Cucurbita pepo) and the probiotic effect of Enterococcus faecium and E. faecalis were determined. Adding pumpkin powder to yogurt did not significantly alter the pH, acidity, fat, protein, and ash content (p > 0.05). Water holding was not changed during the storage time in the samples of probiotic yogurts, but as the pumpkin powder content increased, the water holding capacity also increased (p < 0.05). This situation did lead to a reduction in syneresis (p < 0.05). The lowest gumminess value at the end of storage was found in the D2 sample (p < 0.05), and the highest adhesiveness value was found in the D4 sample (p < 0.05). Furthermore, throughout the 28-day storage period, E. faecium and E. faecalis maintained a live cell count of ≥6 log CFU g-1 in the probiotic product. As a result of the statistical evaluation, there was a decrease in E. faecium in the D4, S2, and S4 samples, and then it increased again (p > 0.05) during the storage time. As a result of the statistical evaluation, it was determined that the smell, consistency in the spoon, consistency in the mouth, flavor, and acidity changes during the storage were not substantial (p > 0.05). In conclusion, it was found that pumpkin, a byproduct of the pumpkin seed industry, has the potential to act as a prebiotic and improve the properties of dairy products. Additionally, the study suggests that E. faecium and E. faecalis strains could be suitable for probiotic yogurts.


Assuntos
Cucurbita , Enterococcus faecalis , Enterococcus faecium , Prebióticos , Probióticos , Iogurte , Enterococcus faecium/crescimento & desenvolvimento , Cucurbita/microbiologia , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/efeitos dos fármacos , Iogurte/microbiologia , Concentração de Íons de Hidrogênio , Microbiologia de Alimentos , Armazenamento de Alimentos , Contagem de Colônia Microbiana , Paladar
16.
Diabetes Metab Res Rev ; 40(2): e3675, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37381688

RESUMO

AIMS: Type 2 Diabetes is intrinsically linked to cardiovascular disease (CVD) via diabetic dyslipidemia, both of which remain global health concerns with annually increasing prevalence. Given the established links between gut microbiome dysbiosis and metabolic diseases, its modulation is an attractive target to ameliorate metabolic imbalances in such patients. There is a need to quantitively summarise, analyse, and describe future directions in this field. METHODS: We conducted a systematic review, meta-analysis, and meta-regression following searches in major scientific databases for clinical trials investigating the effect of pro/pre/synbiotics on lipid profile published until April 2022. Data were pooled using random-effects meta-analysis and reported as mean differences with 95% confidence intervals (CIs). PROSPERO No. CRD42022348525. RESULTS: Data from 47 trial comparisons across 42 studies (n = 2692) revealed that, compared to placebo/control groups, the administration of pro/pre/synbiotics was associated with statistically significant changes in total cholesterol (-9.97 mg/dL [95% CI: -15.08; -4.87], p < 0.0001), low-density lipoprotein (-6.29 mg/dL [95% CI: -9.25; -3.33], p < 0.0001), high-density lipoprotein (+3.21 mg/dL [95% CI: 2.20; 4.22], p < 0.0001), very-low-density lipoprotein (-4.52 mg/dL [95% CI: -6.36; -2.67], p < 0.0001) and triglyceride (-22.93 mg/dL [95% CI: -33.99; -11.87], p < 0.001). These results are influenced by patient characteristics such as age or baseline BMI, and intervention characteristics such as dosage and duration. CONCLUSIONS: Our study shows that adjunct supplementation with a subset of pro/pre/synbiotics ameliorates dyslipidemia in diabetic individuals and has the potential to reduce CVD risk. However, widespread inter-study heterogeneity and the presence of several unknown confounders limit their adoption in clinical practice; future trials should be designed with these in mind.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Dislipidemias , Microbioma Gastrointestinal , Probióticos , Simbióticos , Humanos , Diabetes Mellitus Tipo 2/complicações , Doenças Cardiovasculares/complicações , Dislipidemias/complicações
17.
Chemistry ; 30(48): e202402055, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-38884181

RESUMO

Enzymes play a fundamental role in cellular metabolism. A wide range of enzymes require the presence of complementary coenzymes and cofactors to function properly. While coenzymes are believed to have been part of the last universal ancestor (LUCA) or have been present even earlier, the syntheses of crucial coenzymes like the redox-active coenzymes flavin adenine dinucleotide (FAD) or nicotinamide adenine dinucleotide (NAD+) remain challenging. Here, we present a pathway to NAD+ under prebiotic conditions starting with ammonia, cyanoacetaldehyde, prop-2-ynal and sugar-forming precursors, yielding in situ the nicotinamide riboside. Regioselective phosphorylation and water stable light activated adenosine monophosphate derivatives allow for topographically and irradiation-controlled formation of NAD+. Our findings indicate that NAD+, a coenzyme vital to life, can be formed non-enzymatically from simple organic feedstock molecules via photocatalytic activation under prebiotically plausible early Earth conditions in a continuous process under aqueous conditions.


Assuntos
NAD , NAD/química , NAD/metabolismo , Amônia/química , Niacinamida/química , Niacinamida/análogos & derivados , Fosforilação , Prebióticos , Monofosfato de Adenosina/química , Catálise , Acetaldeído/química , Oxirredução , Água/química , Compostos de Piridínio/química , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo
18.
Chemistry ; 30(57): e202401856, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39163007

RESUMO

This study explores the electrochemical properties of the carbonaceous Allende CV3 meteorite, focusing on its potential as a Fe-based catalyst derived from Mackinawite iron sulfide for electrocatalytic reactions facilitating nitrogen (N2) fixation into ammonia. Through comprehensive analysis, we not only monitored the evolution of key compounds such as CN-, sulfur/H2S, H2 and carbonyl compounds, but also identified potential reagent carriers, indicating significant implications for the Strecker synthesis of amino acids in space environments. Initial examination revealed the presence of polypeptides, notably sequences including dimer Ala-α-HO-Gly, pentamer Gly3-Ala2, and hexamer Gly4-(HO-Gly)2. These discoveries greatly enhance our understanding of astrobiological chemistry, offering valuable insights into prebiotic processes and the potential presence of life-building blocks throughout the universe.


Assuntos
Aminoácidos , Meteoroides , Peptídeos , Aminoácidos/química , Peptídeos/química , Catálise , Técnicas Eletroquímicas , Compostos Ferrosos/química , Amônia/química , Nitrogênio/química , Origem da Vida , Evolução Química
19.
Chemistry ; : e202403202, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349361

RESUMO

Glyoxylic acid and glycine are widely considered to have been important prebiotic building blocks. Several mechanistic routes have been previously examined for conversion of glyoxylic acid to glycine. Here we provide evidence for a new mechanistic path. Glycine is spontaneously formed from glyoxylic acid in ammonium-rich aqueous solutions at neutral pH; oxamic acid is generated as well. Hydride transfer from the glyoxylate-derived hemiaminal to the corresponding iminium ion appears to underlie this transformation. This proposed mechanism parallels the well-known Cannizzaro reaction mechanism, which leads us to suggest the designation "aza-Cannizzaro reaction." This discovery offers a new perspective on prebiotic nitrogen incorporation because glycine can be a source of nitrogen for more complex molecules, including other α-amino acids.

20.
Chemistry ; 30(35): e202400411, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38640109

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is a redox active molecule that is universally found in biology. Despite the importance and simplicity of this molecule, few reports exist that investigate which molecular features are important for the activity of this ribodinucleotide. By exploiting the nonenzymatic reduction and oxidation of NAD+ by pyruvate and methylene blue, respectively, we were able to identify key molecular features necessary for the intrinsic activity of NAD+ through kinetic analysis. Such features may explain how NAD+ could have been selected early during the emergence of life. Simpler molecules, such as nicotinamide, that lack an anomeric carbon are incapable of accepting electrons from pyruvate. The phosphate moiety inhibits activity in the absence of metal ions but facilitates activity at physiological pH and model prebiotic conditions by recruiting catalytic Mg2+. Reduction proceeds through consecutive single electron transfer events. Of the derivatives tested, including nicotinamide mononucleotide, nicotinamide riboside, 3-(aminocarbonyl)-1-(2,3-dihydroxypropyl)pyridinium, 1-methylnicotinamide, and nicotinamide, only NAD+ and nicotinamide mononucleotide would be capable of efficiently accepting and donating electrons within a nonenzymatic electron transport chain. The data are consistent with early metabolic chemistry exploiting NAD+ or nicotinamide mononucleotide and not simpler molecules.


Assuntos
Magnésio , NAD , Niacinamida , Oxirredução , NAD/química , NAD/metabolismo , Magnésio/química , Niacinamida/química , Niacinamida/análogos & derivados , Sítios de Ligação , Cinética , Mononucleotídeo de Nicotinamida/química , Mononucleotídeo de Nicotinamida/metabolismo , Compostos de Piridínio/química , Azul de Metileno/química , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo , Transporte de Elétrons
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa