Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Ecotoxicol Environ Saf ; 276: 116332, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626608

RESUMO

According to the International Agency for Research on Cancer (IARC), aflatoxin B1 (AFB1) has been recognized as a major contaminant in food and animal feed and which is a common mycotoxin with high toxicity. Previous research has found that AFB1 inhibited zebrafish muscle development. However, the potential mechanism of AFB1 on fish muscle development is unknown, so it is necessary to conduct further investigation. In the present research, the primary myoblast of grass carp was used as a model, we treated myoblasts with AFB1 for 24 h. Our results found that 5 µM AFB1 significantly inhibited cell proliferation and migration (P < 0.05), and 10 µM AFB1 promoted lactate dehydrogenase (LDH) release (P < 0.05). Reactive oxygen species (ROS), protein carbonyl (PC) and malondialdehyde (MDA) levels were increased in 15, 5 and 10 µM AFB1 (P < 0.05), respectively. Catalase (CAT), glutathione peroxidase (GPx) and total superoxide dismutase (T-SOD) activities were decreased in 10, 10 and 15 µM AFB1 (P < 0.05), respectively. Furthermore, 15 µM AFB1 induced oxidative damage by Nrf2 pathway, also induced apoptosis in primary myoblast of grass carp. Meanwhile, 15 µM AFB1 decreased MyoD gene and protein expression (P < 0.05). Importantly, 15 µM AFB1 decreased the protein expression of collagen Ⅰ and fibronectin (P < 0.05), and increased the protein levels of urokinase plasminogen activator (uPA), matrix metalloproteinase 9 (MMP-9), matrix metalloproteinase 2 (MMP-2), and p38 mitogen-activated protein kinase (p38MAPK) (P < 0.05). As a result, our findings suggested that AFB1 damaged the cell morphology, induced oxidative damage and apoptosis, degraded ECM components, in turn inhibiting myoblast development by activating the p38MAPK/urokinase-type plasminogen activator (uPA)/matrix metalloproteinase (MMPs)/extracellular matrix (ECM) signaling pathway.


Assuntos
Aflatoxina B1 , Carpas , Proliferação de Células , Matriz Extracelular , Mioblastos , Espécies Reativas de Oxigênio , Animais , Aflatoxina B1/toxicidade , Mioblastos/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos
2.
Lab Invest ; 103(3): 100037, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36925196

RESUMO

Sarcoglycanopathies, limb-girdle muscular dystrophies (LGMD) caused by genetic loss-of-function of the membrane proteins sarcoglycans (SGs), are characterized by progressive degeneration of skeletal muscle. In these disorders, muscle necrosis is associated with immune-mediated damage, whose triggering and perpetuating molecular mechanisms are not fully elucidated yet. Extracellular adenosine triphosphate (eATP) seems to represent a crucial factor, with eATP activating purinergic receptors. Indeed, in vivo blockade of the eATP/P2X7 purinergic pathway ameliorated muscle disease progression. P2X7 inhibition improved the dystrophic process by restraining the activity of P2X7 receptors on immune cells. Whether P2X7 blockade can display a direct action on muscle cells is not known yet. In this study, we investigated eATP effects in primary cultures of myoblasts isolated from patients with LGMDR3 (α-sarcoglycanopathy) and in immortalized cells isolated from a patient with LGMDR5 (γ-sarcoglycanopathy). Our results demonstrated that, owing to a reduced ecto-ATPase activity and/or an enhanced release of ATP, patient cells are exposed to increased juxtamembrane concentrations of eATP and display a higher susceptivity to eATP signals. The purinoceptor P2Y2, which proved to be overexpressed in patient cells, was identified as a pivotal receptor responsible for the enhanced ATP-induced or UTP-induced Ca2+ increase in affected myoblasts. Moreover, P2Y2 stimulation in LDMDR3 muscle cells induced chemotaxis of immune cells and release of interleukin-8. In conclusion, a higher eATP concentration and sensitivity in primary human muscle cells carrying different α-SG or γ-SG loss-of-function mutations indicate that eATP/P2Y2 is an enhanced signaling axis in cells from patients with α-/γ-sarcoglycanopathy. Understanding the basis of the innate immune-mediated damage associated with the dystrophic process may be critical in overcoming the immunologic hurdles associated with emerging gene therapies for these disorders.


Assuntos
Trifosfato de Adenosina , Sarcoglicanopatias , Humanos , Trifosfato de Adenosina/metabolismo , Músculo Esquelético/metabolismo , Sarcoglicanopatias/metabolismo , Transdução de Sinais , Receptores Purinérgicos P2Y2
3.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958531

RESUMO

The quality and quantity of animal meat are closely related to the development of skeletal muscle, which, in turn, is determined by myogenic cells, including myoblasts and skeletal muscle satellite cells (SMSCs). Circular RNA, an endogenous RNA derivative formed through specific reverse splicing in mRNA precursors, has the potential to influence muscle development by binding to miRNAs or regulating gene expression involved in muscular growth at the transcriptional level. Previous high-throughput sequencing of circRNA in chicken liver tissue revealed a circular transcript, circIGF2BP3, derived from the gene encoding insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3). In this study, we confirmed the presence of the natural circular molecule of circIGF2BP3 through an RNase R enzyme tolerance assay. RT-qPCR results showed high circIGF2BP3 expression in the pectoral and thigh muscles of Yuexi frizzled feather chickens at embryonic ages 14 and 18, as well as at 7 weeks post-hatch. Notably, its expression increased during embryonic development, followed by a rapid decrease after birth. As well as using RT-qPCR, Edu, CCK-8, immunofluorescence, and Western blot techniques, we demonstrated that overexpressing circIGF2BP3 could promote the proliferation and differentiation of chicken primary myoblasts through upregulating genes such as proliferating cell nuclear antigen (PCNA), cyclin D1 (CCND1), cyclin E1 (CCNE1), cyclin dependent kinase 2 (CDK2), myosin heavy chain (MyHC), myoblast-determining 1 (MyoD1), myogenin (MyoG), and Myomaker. In conclusion, circIGF2BP3 promotes the proliferation and differentiation of myoblasts in chickens. This study establishes a foundation for further investigation into the biological functions and mechanisms of circIGF2BP3 in myoblasts proliferation and differentiation.


Assuntos
Galinhas , MicroRNAs , Animais , Galinhas/genética , Galinhas/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Diferenciação Celular/genética , MicroRNAs/genética , Mioblastos/metabolismo , Proliferação de Células/genética , RNA Mensageiro/metabolismo , Desenvolvimento Muscular/genética
4.
BMC Genomics ; 23(1): 258, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379193

RESUMO

BACKGROUND: The characteristics of muscle fibers determine the growth and meat quality of poultry. In this study, we performed a weighted gene co-expression network analysis (WGCNA) on the muscle fiber characteristics and transcriptome profile of the breast muscle tissue of Gushi chicken at 6, 14, 22, and 30 weeks. RESULTS: A total of 27 coexpressed biological functional modules were identified, of which the midnight blue module had the strongest correlation with muscle fiber and diameter. In addition, 7 hub genes were found from the midnight blue module, including LC8 dynein light chain 2 (DYNLL2). Combined with miRNA transcriptome data, miR-148a-3p was found to be a potential target miRNA of DYNLL2. Experiments on chicken primary myoblasts (CPMs) demonstrated that miR-148a-3p promotes the expression of myosin heavy chain (MYHC) protein by targeting DYNLL2, proving that it can promote differentiation of myoblasts. CONCLUSIONS: This study proved that the hub gene DYNLL2 and its target miR-148-3p are important regulators in chicken myogenesis. These results provide novel insights for understanding the molecular regulation mechanisms related to the development of chicken breast muscle.


Assuntos
Galinhas , MicroRNAs , Animais , Galinhas/genética , Redes Reguladoras de Genes , MicroRNAs/genética , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas
5.
Biotechnol Bioeng ; 118(6): 2234-2242, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33629347

RESUMO

Microfluidic-based technologies enable the development of cell culture systems that provide tailored microenvironmental inputs to mammalian cells. Primary myoblasts can be induced to differentiate into multinucleated skeletal muscle cells, myotubes, which are a relevant model system for investigating skeletal muscle metabolism and physiology in vitro. However, it remains challenging to differentiate primary myoblasts into mature myotubes in microfluidics devices. Here we investigated the effects of integrating continuous (solid) and intermittent (dashed) walls in microfluidic channels as topological constraints in devices designed to promote the alignment and maturation of primary myoblast-derived myotubes. The topological constraints caused alignment of the differentiated myotubes, mimicking the native anisotropic organization of skeletal muscle cells. Interestingly, dashed walls facilitated the maturation of skeletal muscle cells, as measured by quantifying myotube cell area and the number of nuclei per myotube. Together, our results suggest that integrating dashed walls as topographic constraints in microfluidic devices supports the alignment and maturation of primary myoblast-derived myotubes.


Assuntos
Dispositivos Lab-On-A-Chip , Fibras Musculares Esqueléticas/citologia , Mioblastos/citologia , Animais , Diferenciação Celular , Células Cultivadas , Camundongos , Músculo Esquelético/citologia
6.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360750

RESUMO

Tissue regeneration depends on the complex processes of angiogenesis, inflammation and wound healing. Regarding muscle tissue, glucocorticoids (GCs) inhibit pro-inflammatory signalling and angiogenesis and lead to muscle atrophy. Our hypothesis is that the synthetic GC dexamethasone (dex) impairs angiogenesis leading to muscle atrophy or inhibited muscle regeneration. Therefore, this study aims to elucidate the effect of dexamethasone on HUVECs under different conditions in mono- and co-culture with myoblasts to evaluate growth behavior and dex impact with regard to muscle atrophy and muscle regeneration. Viability assays, qPCR, immunofluorescence as well as ELISAs were performed on HUVECs, and human primary myoblasts seeded under different culture conditions. Our results show that dex had a higher impact on the tube formation when HUVECs were maintained with VEGF. Gene expression was not influenced by dex and was independent of cells growing in a 2D or 3D matrix. In co-culture CD31 expression was suppressed after incubation with dex and gene expression analysis revealed that dex enhanced expression of myogenic transcription factors, but repressed angiogenic factors. Moreover, dex inhibited the VEGF mediated pro angiogenic effect of myoblasts and inhibited expression of angiogenic inducers in the co-culture model. This is the first study describing a co-culture of human primary myoblast and HUVECs maintained under different conditions. Our results indicate that dex affects angiogenesis via inhibition of VEGF release at least in myoblasts, which could be responsible not only for the development of muscle atrophy after dex administration, but also for inhibition of muscle regeneration after vascular damage.


Assuntos
Dexametasona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Mioblastos Esqueléticos/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Técnicas de Cocultura , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Mioblastos Esqueléticos/citologia
7.
FASEB J ; 33(9): 10353-10368, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31208207

RESUMO

The purpose of this study was to test the hypothesis that macrophage polarization is altered in old compared to young skeletal muscle, possibly contributing to the poor satellite cell response observed in older muscle tissue. Muscle biopsies were collected prior to and at 3, 24, and 72 h following a muscle-damaging exercise in young and old individuals. Immunohistochemistry was used to measure i.m. macrophage content and phenotype, and cell culture experiments tested macrophage behavior and influence on primary myoblasts from older individuals. We found that macrophage infiltration was similar between groups at 24 (young: 3712 ± 2407 vs. old: 5035 ± 2978 cells/mm3) and 72 (young: 4326 ± 2622 vs. old: 5287 ± 2248 cells/mm3) hours postdamage, yet the proportion of macrophages that expressed the proinflammatory marker CD11b were markedly lower in the older subjects (young: 74.5 ± 15 vs. old: 52.6 ± 17%). This finding was coupled with a greater overall proportion of CD206+, anti-inflammatory macrophages in the old (group: P = 0.0005). We further demonstrate in vitro that proliferation, and in some cases differentiation, of old primary human myoblasts increase as much as 30% when exposed to a young macrophage-conditioned environment. Collectively, the data suggest that old macrophages appear less capable of adapting and maintaining inflammatory function, which may contribute to poor satellite cell activation and delayed recovery from muscle damage.-Sorensen, J. R., Kaluhiokalani, J. P., Hafen, P. S., Deyhle, M. R., Parcell, A. C., Hyldahl, R. D. An altered response in macrophage phenotype following damage in aged human skeletal muscle: implications for skeletal muscle repair.


Assuntos
Envelhecimento/patologia , Exercício Físico/fisiologia , Ativação de Macrófagos/fisiologia , Macrófagos/patologia , Músculo Esquelético/fisiopatologia , Mioblastos/patologia , Adulto , Idoso , Células Cultivadas , Feminino , Humanos , Masculino , Músculo Esquelético/lesões , Fenótipo , Adulto Jovem
8.
Biotechnol Lett ; 39(11): 1611-1619, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28721582

RESUMO

OBJECTIVES: To explore the roles of miR-130b-3p and miR-301b-3p which may regulate Rb1-inducible coiled-coil 1 (Rb1cc1) expression during myogenic differentiation of chicken primary myoblasts. RESULTS: After 4 days of myogenic differentiation, myotubes appeared and after 6 days the cells fused to each other and expression of MyHC could be detected by immunofluorescence staining. TargetScan and RNAhybrid 2.2 showed miR-130b-3p and miR-301b-3p were well complementary with the target site of Rb1cc1 3'-untranslated region (3'-UTR). Using the dual-luciferase assay, we found miR-130b-3p and miR-301b-3p could inhibit Rb1cc1 expression by binding to its 3'-UTR. Real-time PCR showed Rb1cc1 mRNA expression level was almost reciprocal to that of miR-130b-3p or miR-301b-3p during myogenic differentiation. Furthermore, over-expression of miR-130b-3p or miR-301b-3p down-regulated the expression levels of Rb1cc1, myoblast determination protein, myogenin and myosin heavy chain. CONCLUSIONS: miR-130b-3p or miR-301b-3p negatively regulate Rb1cc1 expression to affect myogenic differentiation.


Assuntos
Regulação para Baixo , MicroRNAs/genética , Mioblastos/citologia , Proteínas Tirosina Quinases/genética , Regiões 3' não Traduzidas , Animais , Diferenciação Celular , Células Cultivadas , Galinhas , Regulação da Expressão Gênica , Mioblastos/metabolismo , Proteínas Tirosina Quinases/metabolismo
9.
Poult Sci ; 103(3): 103407, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38198913

RESUMO

During myogenesis and regeneration, the proliferation and differentiation of myoblasts play key regulatory roles and may be regulated by many genes. In this study, we analyzed the transcriptomic data of chicken primary myoblasts at different periods of proliferation and differentiation with protein‒protein interaction network, and the results indicated that there was an interaction between cyclin-dependent kinase 1 (CDK1) and ribonucleotide reductase regulatory subunit M2 (RRM2). Previous studies in mammals have a role for RRM2 in skeletal muscle development as well as cell growth, but the role of RRM2 in chicken is unclear. In this study, we investigated the effects of RRM2 on skeletal muscle development and regeneration in chickens in vitro and in vivo. The interaction between RRM2 and CDK1 was initially identified by co-immunoprecipitation and mass spectrometry. Through a dual luciferase reporter assay and quantitative real-time PCR, we identified the core promoter region of RRM2, which is regulated by the SP1 transcription factor. In this study, through cell counting kit-8 assays, 5-ethynyl-2'-deoxyuridine incorporation assays, flow cytometry, immunofluorescence staining, and Western blot analysis, we demonstrated that RRM2 promoted the proliferation and inhibited the differentiation of myoblasts. In vivo studies showed that RRM2 reduced the diameter of muscle fibers and slowed skeletal muscle regeneration. In conclusion, these data provide preliminary insights into the biological functions of RRM2 in chicken muscle development and skeletal muscle regeneration.


Assuntos
Galinhas , Oxirredutases , Animais , Galinhas/genética , Fibras Musculares Esqueléticas , Proliferação de Células , Regeneração , Mamíferos
10.
Animals (Basel) ; 13(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37508090

RESUMO

Skeletal muscle is an essential tissue in meat-producing animals, and meat-producing traits have been a hot topic in chicken genetic breeding research. Current research shows that creatine kinase M-type-like (CKM) is one of the most abundant proteins in skeletal muscle and plays an important role in the growth and development of skeletal muscle, but its role in the development of chicken skeletal muscle is still unclear. Via RNA sequencing (RNA-seq), we found that CKM was highly expressed in chicken breast muscle tissue. In this study, the expression profile of CKM was examined by quantitative real-time PCR (qPCR), and overexpression and RNA interference techniques were used to explore the functions of CKM in the proliferation, apoptosis and differentiation of chicken primary myoblasts (CPMs). It was shown that CKM was specifically highly expressed in breast muscle and leg muscle and was highly expressed in stage 16 embryonic muscle, while CKM inhibited proliferation, promoted the apoptosis and differentiation of CPMs and was involved in regulating chicken myogenesis. Transcriptome sequencing was used to identify genes that were differentially expressed in CPMs after CKM disruption, and bioinformatics analysis showed that CKM was involved in regulating chicken myogenesis. In summary, CKM plays an important role in skeletal muscle development during chicken growth and development.

11.
Cells ; 12(6)2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36980261

RESUMO

Regrowth of atrophied myofibers depends on muscle satellite cells (SCs) that exist outside the plasma membrane. Muscle atrophy appears to result in reduced number of SCs due to apoptosis. Given reduced AMP-activated protein kinase (AMPK) activity during differentiation of primary myoblasts derived from atrophic muscle, we hypothesized that there may be a potential link between AMPK and susceptibility of differentiating myoblasts to apoptosis. The aim of this study was to estimate the effect of AMPK activation (via AICAR treatment) on apoptosis in differentiating myoblasts derived from atrophied rat soleus muscle. Thirty rats were randomly assigned to the following two groups: control (C, n = 10) and 7-day hindlimb suspension (HS, n = 20). Myoblasts derived from the soleus muscles of HS rats were divided into two parts: AICAR-treated cells and non-treated cells. Apoptotic processes were evaluated by using TUNEL assay, RT-PCR and WB. In differentiating myoblasts derived from the atrophied soleus, there was a significant decrease (p < 0.05) in AMPK and ACC phosphorylation in parallel with increased number of apoptotic nuclei and a significant upregulation of pro-apoptotic markers (caspase-3, -9, BAX, p53) compared to the cells derived from control muscles. AICAR treatment of atrophic muscle-derived myoblasts during differentiation prevented reductions in AMPK and ACC phosphorylation as well as maintained the number of apoptotic nuclei and the expression of pro-apoptotic markers at the control levels. Thus, the maintenance of AMPK activity can suppress enhanced apoptosis in differentiating myoblasts derived from atrophied rat soleus muscle.


Assuntos
Proteínas Quinases Ativadas por AMP , Músculo Esquelético , Mioblastos , Animais , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Músculo Esquelético/metabolismo , Atrofia Muscular/patologia , Mioblastos/metabolismo , Fosforilação
12.
Genes (Basel) ; 13(5)2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35627108

RESUMO

As the quality of beef products has received increasing attention, it is essential to explore the underlying transcriptional and epigenetic mechanisms of meat traits. Our project uses Qinchuan cattle as the research subject. First, we examined the spatiotemporal expression pattern of the CFL1 gene in a panel of fetal bovine, calf, and adult cattle samples. Then, we performed DNA methylation experiments of CFL1 on myogenesis and muscle maturation using the BSP amplification and COBRA sequencing techniques and found that high DNA methylation levels showed low expression levels. Next, we performed an assay between bta-miR-182 and the CFL1 gene and demonstrated that miR-182 could promote bovine primary myoblast differentiation by negatively regulated the expression of CFL1. Finally, we constructed an adenovirus overexpression and interference vector and found that CFL1 could suppress the differentiation of bovine primary myoblasts. In summary, our experiment comprehensively analyzes the epigenetic regulation mechanisms of the CFL1 gene in the development and differentiation of bovine primary myoblasts. This has far-reaching significance for improving the meat production and meat quality of Qinchuan cattle. This can provide reliable data support and a theoretical research basis for the rapid and efficient breeding selection of local yellow cattle and the genetic improvement of meat quality.


Assuntos
Epigênese Genética , MicroRNAs , Fatores de Despolimerização de Actina/genética , Fatores de Despolimerização de Actina/metabolismo , Animais , Bovinos , Epigênese Genética/genética , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Mioblastos/metabolismo
13.
Biology (Basel) ; 11(5)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35625428

RESUMO

There is a substantial unmet need for the treatment of skeletal muscle mass loss that is associated with aging and obesity-related increases in FFA. Unsaturated FFAs stimulate the inflammatory gene expression in human skeletal myoblasts (SkMs). Farnesol is a hydrophobic acyclic sesquiterpene alcohol with potential anti-inflammatory effects. Here, we created farnesol-loaded small unilamellar (SUVs) or multilamellar lipid-based vesicles (MLVs), and investigated their effects on inflammatory gene expression in primary human skeletal myoblasts. The attachment of SUVs or MLVs to SkMs was tracked using BODIPY, a fluorescent lipid dye. The data showed that farnesol-loaded SUVs reduced FFA-induced IL6 and LIF expression by 77% and 70% in SkMs, respectively. Farnesol-loaded MLVs were less potent in inhibiting FFA-induced IL6 and LIF expression. In all experiments, equal concentrations of free farnesol did not exert significant effects on SkMs. This report suggests that farnesol, if efficiently directed into myoblasts through liposomes, may curb FFA-induced inflammation in human skeletal muscle.

14.
Poult Sci ; 101(11): 102120, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36113166

RESUMO

The regulation of skeletal muscle growth and development in chicken is complex. MicroRNAs (miRNAs) have been found to play an important role in the process, and more research is needed to further understand the regulatory mechanism of miRNAs. In this study, leg muscles of Jinghai yellow chickens at 300 d with low body weight (slow-growing group) and high body weight (fast-growing group) were collected for miRNA sequencing (miRNA-seq) and Bioinformatics analysis revealed 12 differentially expressed miRNAs (DEMs) between the two groups. We predicted 150 target genes for the DEMs, and GO and KEGG pathway analysis showed the target genes of miR-24-3p and novel_miR_133 were most enriched in the terms related to growth and development. Moreover, networks of DEMs and target genes showed that miR-24-3p and novel_miR_133 were the 2 core miRNAs. Hence, miR-24-3p was selected for further functional exploration in chicken primary myoblasts (CPMs) with molecular biology technologies including qPCR, cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) and immunofluorescence. When proliferating CPMs were transfected with miR-24-3p mimic, the expression of cyclin dependent kinase inhibitor 1A (P21) was up-regulated and both CCK-8 and EdU assays showed that the proliferation of CPMs was inhibited. However, when the inhibitor was transfected into the proliferating CPMs, the opposite results were found. In differentiated CPMs, transfection with miR-24-3p mimic resulted in up regulation of MYOD, MYOG and MYHC after 48 h. Myotube areas also increased significantly compared to the mimic negative control (NC) group. When treated with inhibitor, differentiation CPMs produced the opposite effects. Overall, we revealed 2 miRNAs (novel_miR_133 and miR-24-3p) significantly related with growth and development and further proved that miR-24-3p could suppress the proliferation and promote differentiation of CPMs. The results would facilitate understanding the effects of miRNAs on the growth and development of chickens at the post-transcriptional level and could also have an important guiding role in yellow-feathered chicken breeding.


Assuntos
Galinhas , MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Peso Corporal
15.
Cells ; 10(1)2021 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467116

RESUMO

Circular RNAs (circRNAs) are a class of endogenous non-coding RNAs (ncRNAs) involved in regulating skeletal muscle development by sponging miRNAs. In this study, we found that the circMYL1 expression was down-regulated during myoblast proliferation, while gradually up-regulated in myoblast differentiation. The potential role of circMYL1 was identified in the proliferation of bovine myoblast through mRNA and protein expression of proliferation marker genes (PCNA, CyclinD1, and CDK2), cell counting kit-8 assay, flow cytometry analysis, and 5-ethynyl 2'-deoxyuridine (EdU) assay. Analysis of the expression of differentiation marker genes (MyoD, MyoG, and MYH2) and immunofluorescence of Myosin heavy chain (MyHC) was used to assess cell differentiation. The proliferation analysis revealed that circMYL1 inhibited the proliferation of bovine primary myoblast. Furthermore, the differentiation analysis demonstrated that circMYL1 promoted the differentiation of bovine primary myoblast. The luciferase screening and RNA immunoprecipitation (RIP) assays found that circMYL1 could have interaction with miR-2400. Additionally, we demonstrated that miR-2400 promoted proliferation and inhibited differentiation of bovine primary myoblast, while circMYL1 may eliminate the effects of miR-2400, as showed by rescue experiments. Together, our results revealed that a novel circular RNA of circMYL1 could inhibit proliferation and promote differentiation of myoblast by sponging miR-2400.


Assuntos
Antígenos de Diferenciação , Diferenciação Celular , Proliferação de Células , MicroRNAs/metabolismo , Mioblastos/metabolismo , RNA Circular/metabolismo , Animais , Bovinos , MicroRNAs/genética , RNA Circular/genética
16.
Skelet Muscle ; 11(1): 12, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952323

RESUMO

BACKGROUND: In vitro maturation of human primary myoblasts using 2D culture remains a challenging process and leads to immature fibers with poor internal organization and function. This would however represent a valuable system to study muscle physiology or pathophysiology from patient myoblasts, at a single-cell level. METHODS: Human primary myoblasts were cultured on 800-nm wide striated surface between two layers of Matrigel, and in a media supplemented with an inhibitor of TGFß receptor. Gene expression, immunofluorescence, and Ca2+ measurements upon electrical stimulations were performed at various time points during maturation to assess the organization and function of the myotubes. RESULTS: We show that after 10 days in culture, myotubes display numerous functional acetylcholine receptor clusters and express the adult isoforms of myosin heavy chain and dihydropyridine receptor. In addition, the myotubes are internally well organized with striations of α-actinin and STIM1, and occasionally ryanodine receptor 1. We also demonstrate that the myotubes present robust Ca2+ responses to repetitive electrical stimulations. CONCLUSION: The present method describes a fast and efficient system to obtain well matured and functional myotubes in 2D culture allowing thorough analysis of single-cell Ca2+ signals.


Assuntos
Fibras Musculares Esqueléticas , Mioblastos , Actinina , Diferenciação Celular , Células Cultivadas , Humanos , Cadeias Pesadas de Miosina/genética
17.
Life (Basel) ; 11(7)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34357091

RESUMO

Equine atypical myopathy is a seasonal intoxication of grazing equids. In Europe, this poisoning is associated with the ingestion of toxins contained in the seeds and seedlings of the sycamore maple (Acer pseudoplatanus). The toxins involved in atypical myopathy are known to inhibit ß-oxidation of fatty acids and induce a general decrease in mitochondrial respiration, as determined by high-resolution respirometry applied to muscle samples taken from cases of atypical myopathy. The severe impairment of mitochondrial bioenergetics induced by the toxins may explain the high rate of mortality observed: about 74% of horses with atypical myopathy die, most within the first two days of signs of poisoning. The mechanism of toxicity is not completely elucidated yet. To improve our understanding of the pathological process and to assess therapeutic candidates, we designed in vitro assays using equine skeletal myoblasts cultured from muscle biopsies and subjected to toxins involved in atypical myopathy. We established that equine primary myoblasts do respond to one of the toxins incriminated in the disease.

18.
Front Genet ; 11: 842, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193566

RESUMO

The proliferation and differentiation of chicken primary myoblasts (CPMs) play an important role in the development of skeletal muscle. In our previous research, RNA-seq analysis showed that microRNA-7 (miR-7) was relatively highly expressed in the proliferation phase of CPMs, but its expression level decreased significantly after CPMS-induced differentiation. Meanwhile, the mechanism by which the miR-7 regulates the proliferation and differentiation of CPMs is still unknown. In this study, we found that the expression levels of miR-7 and the Krüppel-like factor 4 (KLF4) gene were negatively correlated during the embryonic phase, and in vitro induced differentiation. A dual-luciferase assay and a rescue experiment show that there is a target relationship between miR-7 and the KLF4 gene. Meanwhile, the results show that overexpression of miR-7 inhibited the proliferation and differentiation of CPMs, while inhibition of miR-7 had the opposite effects. Furthermore, overexpression of the KLF4 gene was found to significantly promote the proliferation and differentiation of CPMs. Conversely, inhibition of the KLF4 gene was able to significantly decrease the proliferation and differentiation of CPMs. Our results demonstrate, for the first time, that miR-7 inhibits the proliferation and differentiation of myoblasts by targeting the KLF4 gene in chicken primary myoblasts.

19.
Int J Parasitol ; 48(3-4): 275-285, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29258830

RESUMO

Trichinella spiralis infection in skeletal muscle culminates with nurse cell formation. The participation of excretory-secretory products of the muscle larvae has been implicated in this process through different studies performed in infected muscle and the muscle cell line C2C12. In this work, we developed primary myoblast cultures to analyse the changes induced by excretory-secretory products of the muscle larvae in muscle cells. Microarray analyses revealed expression changes in muscle cell differentiation, proliferation, cytoskeleton organisation, cell motion, transcription, cell cycle, apoptosis and signalling pathways such as MAPK, Jak-STAT, Wnt and PI3K-Akt. Some of these changes were further evaluated by other methodologies such as quantitative real-time PCR (qRT-PCR) and western blot, confirming that excretory-secretory products of the muscle larvae treated primary mouse myoblasts undergo increased proliferation, decreased expression of MHC and up-regulation of α-actin. In addition, changes in relevant muscle transcription factors (Pax7, Myf5 and Mef2c) were observed. Taken together, these results provide new information about how T. spiralis could alter the normal process of skeletal muscle repair after ML invasion to accomplish nurse cell formation.


Assuntos
Proteínas de Helminto/metabolismo , Mioblastos Esqueléticos/parasitologia , Trichinella spiralis/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Western Blotting , Proliferação de Células , Células Cultivadas , Citoesqueleto/metabolismo , Citoesqueleto/parasitologia , DNA de Helmintos/genética , DNA de Helmintos/metabolismo , Eletroforese em Gel de Poliacrilamida , Técnica Indireta de Fluorescência para Anticorpo , Expressão Gênica , Membro Posterior , Larva/metabolismo , Luminescência , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/citologia , Mioblastos Esqueléticos/metabolismo , RNA de Helmintos/genética , RNA de Helmintos/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia , Análise Serial de Tecidos , Trichinella spiralis/genética
20.
J Tissue Eng Regen Med ; 12(1): e408-e421, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28477583

RESUMO

Vascularization is a major hurdle for growing three-dimensional tissue engineered constructs. This study investigated the mechanisms involved in hypoxic preconditioning of primary rat myoblasts in vitro and their influence on local angiogenesis postimplantation. Primary rat myoblast cultures were exposed to 90 min hypoxia at <1% oxygen followed by normoxia for 24 h. Real time (RT) polymerase chain reaction evaluation indicated that 90 min hypoxia resulted in significant downregulation of miR-1 and miR-206 (p < 0.05) and angiopoietin-1 (p < 0.05) with upregulation of vascular endothelial growth factor-A (VEGF-A; p < 0.05). The miR-1 and angiopoietin-1 responses remained significantly downregulated after a 24 h rest phase. In addition, direct inhibition of miR-206 in L6 myoblasts caused a significant increase in VEGF-A expression (p < 0.05), further establishing that changes in VEGF-A expression are influenced by miR-206. Of the myogenic genes examined, MyoD was significantly upregulated, only after 24 h rest (p < 0.05). Preconditioned or control myoblasts were implanted with Matrigel™ into isolated bilateral tissue engineering chambers incorporating a flow-through epigastric vascular pedicle in severe combined immunodeficiency mice and the chamber tissue harvested 14 days later. Chambers implanted with preconditioned myoblasts had a significantly increased percentage volume of blood vessels (p = 0.0325) compared with chambers implanted with control myoblasts. Hypoxic preconditioned myoblasts promote vascularization of constructs via VEGF upregulation and downregulation of angiopoietin-1, miR-1 and miR-206. The relatively simple strategy of hypoxic preconditioning of implanted cells - including non-stem cell types - has broad, future applications in tissue engineering of skeletal muscle and other tissues, as a technique to significantly increase implant site angiogenesis.


Assuntos
Regulação para Baixo , Implantes Experimentais , MicroRNAs/genética , Mioblastos/patologia , Neovascularização Fisiológica , Engenharia Tecidual/instrumentação , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Biomarcadores/metabolismo , Hipóxia Celular/genética , Células Cultivadas , Desmina/metabolismo , Regulação para Baixo/genética , Masculino , Camundongos SCID , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Mioblastos/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Alicerces Teciduais/química , Regulação para Cima/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa