Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Ecol Appl ; 34(6): e3016, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39138827

RESUMO

Understanding the relationship between a dam's size and its ecological effects is important for prioritization of river restoration efforts based on dam removal. Although much is known about the effects of large storage dams, this information may not be applicable to small dams, which represent the vast majority of dams being considered for removal. To better understand how dam effects vary with size, we conducted a multidisciplinary study of the downstream effect of dams on a range of ecological characteristics including geomorphology, water chemistry, periphyton, riparian vegetation, benthic macroinvertebrates, and fish. We related dam size variables to the downstream-upstream fractional difference in measured ecological characteristics for 16 dams in the mid-Atlantic region ranging from 0.9 to 57 m high, with hydraulic residence times (HRTs) ranging from 30 min to 1.5 years. For a range of physical attributes, larger dams had larger effects. For example, the water surface width below dams was greater below large dams. By contrast, there was no effect of dam size on sediment grain size, though the fraction of fine-grained bed material was lower below dams independently of dam size. Larger dams tended to reduce water quality more, with decreased downstream dissolved oxygen and increased temperature. Larger dams decreased inorganic nutrients (N, P, Si), but increased particulate nutrients (N, P) in downstream reaches. Aquatic organisms tended to have greater dissimilarity in species composition below larger dams (for fish and periphyton), lower taxonomic diversity (for macroinvertebrates), and greater pollution tolerance (for periphyton and macroinvertebrates). Plants responded differently below large and small dams, with fewer invasive species below large dams, but more below small dams. Overall, these results demonstrate that larger dams have much greater impact on the ecosystem components we measured, and hence their removal has the greatest potential for restoring river ecosystems.


Assuntos
Ecossistema , Invertebrados , Rios , Animais , Invertebrados/fisiologia , Peixes/fisiologia , Conservação dos Recursos Naturais , Movimentos da Água , Monitoramento Ambiental
2.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161277

RESUMO

Riparian ecosystems fundamentally depend on groundwater, especially in dryland regions, yet their water requirements and sources are rarely considered in water resource management decisions. Until recently, technological limitations and data gaps have hindered assessment of groundwater influences on riparian ecosystem health at the spatial and temporal scales relevant to policy and management. Here, we analyze Sentinel-2-derived normalized difference vegetation index (NDVI; n = 5,335,472 observations), field-based groundwater elevation (n = 32,051 observations), and streamflow alteration data for riparian woodland communities (n = 22,153 polygons) over a 5-y period (2015 to 2020) across California. We find that riparian woodlands exhibit a stress response to deeper groundwater, as evidenced by concurrent declines in greenness represented by NDVI. Furthermore, we find greater seasonal coupling of canopy greenness to groundwater for vegetation along streams with natural flow regimes in comparison with anthropogenically altered streams, particularly in the most water-limited regions. These patterns suggest that many riparian woodlands in California are subsidized by water management practices. Riparian woodland communities rely on naturally variable groundwater and streamflow components to sustain key ecological processes, such as recruitment and succession. Altered flow regimes, which stabilize streamflow throughout the year and artificially enhance water supplies to riparian vegetation in the dry season, disrupt the seasonal cycles of abiotic drivers to which these Mediterranean forests are adapted. Consequently, our analysis suggests that many riparian ecosystems have become reliant on anthropogenically altered flow regimes, making them more vulnerable and less resilient to rapid hydrologic change, potentially leading to future riparian forest loss across increasingly stressed dryland regions.


Assuntos
Florestas , Água Subterrânea , Atividades Humanas , Rios , California , Geografia , Humanos , Hidrologia , Modelos Lineares , Plantas , Tecnologia de Sensoriamento Remoto , Reologia , Propriedades de Superfície , Água
3.
Environ Manage ; 73(1): 130-143, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37891388

RESUMO

How people value rivers, wetlands and floodplains influences their attitudes, beliefs and behaviours towards these ecosystems, and can shape policy and management interventions. Better understanding why people value rivers, wetlands and floodplains and their key ecosystem components, such as vegetation, helps to determine what factors underpin the social legitimacy required for effective management of these systems. This study sought to ascertain perspectives on the value of non-woody vegetation in river-floodplain systems via an online survey. The survey found that participants valued non-woody vegetation for their provision of a range of ecosystem functions and services, with strong emphasis on ecological aspects such as regulation functions, habitat provision and biodiversity. However, the inclusion of a question framed to focus on stories or narratives resulted in a different emphasis. Responses indicated that non-woody vegetation, and rivers, wetlands and floodplains were valued for the way they made people feel through lived experiences such as recreational activities, personal interactions with nature, educational and research experiences. This highlights the important role of storytelling in navigating complex natural resource management challenges and ascertaining a deeper understanding of values that moves beyond provision of function to feeling. Improved understanding of the diverse ways people value and interact with river-floodplain systems will help develop narratives and forms of engagement that foster shared understanding, empathy and collaboration. Appreciation of plural values such as the provision of functions and services along with the role of emotional connections and lived experience will likely increase lasting engagement of the general public with management to protect and restore river-floodplain systems.


Assuntos
Ecossistema , Áreas Alagadas , Humanos , Rios , Biodiversidade , Conservação dos Recursos Naturais/métodos
4.
Environ Monit Assess ; 196(10): 916, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254906

RESUMO

Soil and water characteristics in micro basins with different land uses/land cover (LULC) can influence riparian vegetation diversity, stream water quality, and benthic diatom diversity. We analyzed 18 streams in the upper part of the La Antigua River basin, México, surrounded by cloud forests, livestock pastures, and coffee plantations. Concentrations of P, C, and N were elevated in the humus of forested streams compared to other land uses. In contrast, cations, ammonium, and total suspended solids (TSS) of water streams were higher in pastures and coffee plantations. These results indicate that LULC affects stream chemistry differently across land uses. Vegetation richness was highest (86-133 spp.) in forest streams and lowest in pastures (46-102), whereas pasture streams had the greatest richness of diatoms (9-24), likely due to higher light and temperatures. Some soil and water characteristics correlated with both true diversity and taxonomic diversity; soil carbon exchange capacity (CEC) correlated with vegetation diversity (r = 0.60), while water temperature correlated negatively (r = - 0.68). Diatom diversity was related to soil aluminum (r = - 0.59), magnesium (r = 0.57), water phosphorus (r = 0.88), and chlorophyll (r = 0.75). These findings suggest that land use affects riparian vegetation, while physical and chemical changes influence diatom diversity in stream water and soil. The lack of correlation between vegetation and diatom diversity indicates that one cannot predict the other. This research is an essential first step in understanding how land use changes impact vegetation and diatom diversity in mountain landscapes, providing valuable insights for environmental monitoring and conservation efforts in tropical cloud forests.


Assuntos
Biodiversidade , Diatomáceas , Monitoramento Ambiental , Florestas , Solo , México , Solo/química , Rios/química , Plantas , Fósforo/análise
5.
Environ Res ; 229: 115965, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37105281

RESUMO

Freshwaters are considered among the most endangered ecosystems globally due to multiple stressors, which coincide in time and space. These local stressors typically result from land-use intensification or hydroclimatic alterations, among others. Despite recent advances on multiple stressor effects, current knowledge is still limited to manipulative approaches minimizing biological and abiotic variability. Thus, the assessment of multiple stressor effects in real-world ecosystems is required. Using an extensive survey of 50 stream reaches across North Portugal, we evaluated taxonomic and functional macroinvertebrate responses to multiple stressors, including marked gradients of nutrient enrichment, flow reduction, riparian vegetation structure, thermal stress and dissolved oxygen depletion. We analyzed multiple stressor effects on two taxonomic (taxon richness, Shannon-diversity) and two trait-based diversity indices (functional richness, functional dispersion), as well as changes in trait composition. We found that multiple stressors had additive effects on all diversity metrics, with nutrient enrichment identified as the most important stressor in three out of four metrics, followed by dissolved oxygen depletion and thermal stress. Taxon richness, Shannon-diversity and functional richness responded similarly, whereas functional dispersion was driven by changes in flow velocity and thermal stress. Functional trait composition changed along a major stress gradient determined by nutrient enrichment and oxygen depletion, which was positively correlated with organisms possessing fast-living strategies, aerial respiration, adult phases, and gathering-collector feeding habits. Overall, our results reinforce the need to consider complementary facets of biodiversity to better identify assembly processes in response to multiple stressors. Our data suggest that stressor interactions may be less frequent in real-word streams than predicted by manipulative experiments, which can facilitate mitigation strategies. By combining an extensive field survey with an integrative consideration of multiple biodiversity facets, our study provides new insights that can help to better assess and manage rivers in a global change context.


Assuntos
Ecossistema , Rios , Animais , Biodiversidade , Portugal , Invertebrados/fisiologia , Monitoramento Ambiental
6.
Environ Manage ; 72(3): 488-504, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37344578

RESUMO

Water storage reservoirs alternately inundate and expose the drawdown zones, limiting riparian vegetation that provides wildlife habitats and contributes to the aquatic food-web. To characterize plant distributions and hydrogeomorphic associations, we inventoried quadrats in transects extending from the full-pool (FP) margin, downwards 12 m through the drawdown zones at sites around the Duncan Reservoir in British Columbia, Canada. Among the 69 plant species, black cottonwoods (Populus trichocarpa), willows (primarily Salix sitchensis) and other trees and shrubs occurred sparsely, rarely extending below 2 m below FP. Perennial herbaceous plants, especially horsetail (Equisetum arvense) and sedges (primarily Carex utriculata), were most common, extending down ~5 m below FP, and ruderal annual plants occurred sparsely at greater depths. Vegetation Cover and Species Richness were correlated with environmental factors, with (1) Elevation being highly influential, reflecting inundation duration and depth. (2) Position, longitudinal location, reflected greater vegetation diversity downstream of the reservoir. (3) Finer Substrate texture was favorable to retain moisture, but coarse sediments would resist erosion. (4) Shallow Slope was favorable to reduce drainage and included finer sediments. (5) Distance from the FP shoreline could reflect seed source proximity. Stepwise linear modeling with combined environmental factors accounted for ~30% of the variation in Vegetation Cover and Richness, and Canonical Correspondence Analysis revealed plant groupings relative to the environmental influences. At this and other storage reservoirs, regimes that reduce the frequency and duration of inundation could promote vegetation in locations with suitable environmental conditions in the upper drawdown zones, thus providing ecosystem enhancement.


Assuntos
Ecossistema , Plantas , Árvores , Colúmbia Britânica
7.
Ecol Appl ; 32(6): e2591, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35343023

RESUMO

Large dams and their removal can profoundly affect riparian ecosystems by altering flow and sediment regimes, hydrochory, and landform dynamics, yet few studies have documented these effects on downstream plant communities. Ecological theory and empirical results suggest that by altering disturbance regimes, reducing hydrochory, and shifting communities to later successional stages, dams reduce downstream plant diversity. Dam removal could reverse these processes, but the release of large volumes of sediment could have unexpected, transient effects. Two large dams were removed on the Elwha River in Washington State, USA, from 2011 to 2014, representing an unprecedented opportunity to study large dam removal effects on riparian plant communities. Our research objectives were to determine: (1) whether the Elwha River dams were associated with lower downstream plant diversity and altered species composition across riparian landforms pre-dam removal, and (2) whether dam removal has begun to restore downstream diversity and composition. To address these objectives, we compared plant species richness and community composition in river segments above, below, and between the two dams. Plant communities were sampled twice before (2005 and 2010) and four times after (2013, 2014, 2016, and 2017) the start of dam removal, with 2013 and 2014 sampled while the upstream dam removal was ongoing. Prior to dam removal, native species richness was 41% lower below dams compared with the upstream segment; 6 years after dam removal began, it increased ~31% between the dams, whereas nonnative species richness and cover were not apparently affected by dams or their removal. Deposition caused by large volumes of released reservoir sediment had mixed effects on native species richness (increased on floodplains, decreased elsewhere) in the lowest river segment. Plant community composition was also different downstream from dams compared with the upstream reference, and has changed in downstream floodplains and bars since dam removal. In the long term, we expect that diversity will continue to increase in downstream river segments. Our results provide evidence that (1) large dams reduce downstream native plant diversity, (2) dam removal may restore it, and (3) given the natural dynamics of riparian vegetation, long-term, multiyear before-and-after monitoring is essential for understanding dam removal effects.


Assuntos
Ecossistema , Rios , Plantas , Washington
8.
Conserv Biol ; 36(6): e13982, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35946319

RESUMO

River conservation efforts traditionally focus on perennial watercourses (i.e., those that do not dry) and their associated aquatic biodiversity. However, most of the global river network is not perennial and thus supports both aquatic and terrestrial biodiversity. We assessed the conservation value of nonperennial rivers and streams (NPRS) in one of Europe's driest regions based on aquatic (macroinvertebrates, diatoms) and terrestrial (riparian plants, birds, and carabid beetles) community data. We mapped the distribution of taxa at 90 locations and across wide environmental gradients. Using the systematic planning tool Marxan, we identified priority conservation sites under 2 scenarios: aquatic taxa alone or aquatic and terrestrial taxa together. We explored how environmental factors (runoff, flow intermittence, elevation, salinity, anthropogenic impact) influenced Marxan's site selection frequency. The NPRS were selected more frequently (over 13% on average) than perennial rivers when both aquatic and terrestrial taxa were considered, suggesting that NPRS have a high conservation value at the catchment scale. We detected an underrepresentation of terrestrial taxa (8.4-10.6% terrestrial vs. 0.5-1.1% aquatic taxa were unrepresented in most Marxan solutions) when priority sites were identified based exclusively on aquatic biodiversity, which points to a low surrogacy value of aquatic taxa for terrestrial taxa. Runoff explained site selection when focusing on aquatic taxa (all best-fitting models included runoff, r2  = 0.26-0.27), whereas elevation, salinity, and flow intermittence were more important when considering both groups. In both cases, site selection frequency declined as anthropogenic impact increased. Our results highlight the need to integrate terrestrial and aquatic communities when identifying priority areas for conservation in catchments with NPRS. This is key to overcoming drawbacks of traditional assessments based only on aquatic taxa and to ensure the conservation of NPRS, especially as NPRS become more prevalent worldwide due to climate change and increasing water demands.


Los esfuerzos de conservación fluvial se enfocan tradicionalmente en los cauces permanentes (aquellos que no se secan) y la biodiversidad acuática asociada. Sin embargo, la mayor parte de la red hidrográfica mundial no es permanente, por lo que sustenta biodiversidad tanto acuática como terrestre. Evaluamos el valor de conservación de los ríos y arroyos no permanentes (RANP) en una de las regiones más secas de Europa con datos de comunidades acuáticas (macroinvertebrados, diatomeas) y terrestres (escarabajos carábidos). Mapeamos la distribución de los taxones en 90 localidades que cubren gradientes ambientales amplios. Con la herramienta de planificación sistemática Marxan identificamos los sitios prioritarios de conservación bajo dos escenarios: considerando sólo los taxones acuáticos o los taxones acuáticos y terrestres juntos. Exploramos cómo los factores ambientales (escorrentía, intermitencia del caudal, altitud, salinidad, impacto antropogénico) influyeron sobre la frecuencia de selección de sitio de Marxan. Los RANP fueron seleccionados con mayor frecuencia (más del 13% en promedio) que los ríos permanentes cuando consideramos los taxones acuáticos y terrestres, lo que sugiere que los RANP tienen un valor elevado de conservación a escala de cuenca. Detectamos que los taxones terrestres estaban infrarrepresentados (8.4-10.6% taxones terrestres vs. 0.5-1.1% acuáticos no tuvieron representación en la mayoría de las soluciones de Marxan) cuando los sitios prioritarios para la conservación se identificaban exclusivamente con la biodiversidad acuática, lo que indica que los taxones acuáticos tienen un reducido valor indicador para los taxones terrestres. La escorrentía determinó la selección de sitios cuando se basó en los taxones acuáticos (los mejores modelos incluyeron la escorrentía, r2 = 0.26-0.27), mientras que la altitud, la salinidad y la intermitencia del caudal fueron más importantes cuando se consideraron ambos grupos. En ambos casos, la frecuencia de selección disminuyó conforme se incrementó el impacto antropogénico. Nuestros resultados resaltan la necesidad de integrar las comunidades terrestres y acuáticas a la identificación de las áreas prioritarias para la conservación de la biodiversidad en cuencas con RANP. Lo anterior es importante para superar las evaluaciones tradicionales basadas solamente en los taxones acuáticos y para garantizar la conservación de los RANP, especialmente ahora que estos son cada vez más frecuentes a nivel mundial debido al cambio climático y a la creciente demanda de agua.


Assuntos
Ecossistema , Rios , Conservação dos Recursos Naturais , Monitoramento Ambiental/métodos , Biodiversidade
9.
J Environ Manage ; 320: 115803, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35947904

RESUMO

The management of ecological water conveyance (EWC) can allow riparian vegetation communities to survive the threat of degradation in hyperarid inland areas and promote the health of groundwater-recharged riparian ecosystems. However, the ultrashort-term effects of periodic EWC scheduling on riparian vegetation remain unclear. This study explored the spatiotemporal differentiation in species structure (herbs, shrubs, and trees), diversity (measured by the Simpson, Shannon-Wiener, Pielou, and Margalef indices), stability (evaluated via Godron fitting distances and abundance-biomass comparison curves), and integrity (proxied by the vegetation-based index of biotic integrity) of vegetation communities in the downstream Heihe River Basin, China. Empirical orthogonal function, Pearson correlation, canonical correspondence analysis (CCA), and partial CCA methods were used to evaluate the effects of dominant habitat environmental factors from the hydrogeographic features, soil physicochemical properties, and anthropogenic impacts. The results showed that the riparian vegetation community diversity, stability, and integrity varied moderately to slightly with hierarchical distance from near wetlands (<200 m; containing mainly herbs) to far desert edges (>800 m; occupied by shrubs/subshrubs). The middle transition zone (200-800 m; occupied mostly by trees/subtrees) had the best diversity and integrity but relatively poor stability. The most significant influencing factors were EWC and soil moisture. The simple diversity, fair-level integrity, and disturbed but not irreversibly damaged stability of the vegetation community were generally improved by 14.82%, 20.33%, and 30.57%, respectively, in the pre-EWC period but worsened in the post-EWC period. The difference in spatially distributed EWC quantities caused more apparent vegetation restoration in high water-supplied subareas where certain biological community instability existed. Therefore, adequate EWC management can be considered a prerequisite for the maintenance of high richness and structural stability in local communities and requires a good balance between interregional vegetation abundance and enhanced environmental tolerance.


Assuntos
Ecossistema , Água , Rios/química , Solo , Árvores , Áreas Alagadas
10.
J Environ Manage ; 322: 116046, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36081260

RESUMO

The role of vegetation in supporting life on Earth is widely known. Nevertheless, the relevance of riparian corridors has been overlooked for a long time, leading to a dramatic reduction of vegetated buffers alongside them. Vegetation monitoring systems, including those for biomass estimation, are required to manage riparian corridors properly. Field surveys may support monitoring, but their usefulness is reduced by numerous drawbacks, therefore needing coupling with other data sources. The present work shows how Light Detection And Ranging (LiDAR) datasets can integrate targeted field measurements to estimate above-ground biomass at temperate or boreal latitudes and generate accurate biomass maps over large areas. By referring to the case study of the Orco river (northwest Italy), we defined a technique to reconstruct the geometry of an individual shrub from LiDAR point clouds. We tested the technique by comparing field measurements with Terrestrial and Airborne Laser Scanner data (TLS and ALS, respectively), assessing the former's superiority but the broader range of applicability of the latter. After these preliminary tests, we coupled the presented technique with a literature algorithm for individual tree detection, providing a more generalized procedure for the overall mapping and budgeting of riparian biomass based on ALS data. We applied the procedure to a fluvial bar of the Orco river, achieving a quantitative assessment of the shrub and tree biomass budget for 2019 and 2021 and visualizing the changes that occurred in that period. These results allowed us to shed light on the prevailing natural and anthropogenic processes in the investigated area and provide insights into the strengths and weaknesses of the proposed procedure.


Assuntos
Poluentes do Solo , Poluentes Químicos da Água , Agricultura , Biomassa , Árvores
11.
Ecol Indic ; 141: 109046, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35991319

RESUMO

Anthropogenic alteration of physical habitat structure in streams and rivers is increasingly recognized as a major cause of impairment worldwide. As part of their assessment of the status and trends in the condition of rivers and streams in the U.S., the U.S. Environmental Protection Agency's (USEPA) National Aquatic Resource Surveys (NARS) quantify and monitor channel size and slope, substrate size and stability, instream habitat complexity and cover, riparian vegetation cover and structure, anthropogenic disturbance activities, and channel-riparian interaction. Like biological assemblages and water chemistry, physical habitat is strongly controlled by natural geoclimatic factors that can obscure or amplify the influence of human activities. We developed a systematic approach to estimate the deviation of observed river and stream physical habitat from that expected in least-disturbed reference conditions. We applied this approach to calculate indices of anthropogenic alteration of three aspects of physical habitat condition in the conterminous U.S. (CONUS): streambed sediment size and stability, riparian vegetation cover, and instream habitat complexity. The precision and responsiveness of these indices led the USEPA to use them to evaluate physical habitat condition in CONUS rivers and streams. The scores of these indices systematically decreased with greater anthropogenic disturbance at river and stream sites in the CONUS and within ecoregions, which we interpret as a response of these physical habitat indices to anthropogenic influences. Although anthropogenic activities negatively influenced all three physical habitat indices in the least-disturbed sites within most ecoregions, natural geoclimatic and geomorphic factors were the dominant influences. For sites over the full range of anthropogenic disturbance, analyses of observed/expected sediment characteristics showed augmented flood flows and basin and riparian agriculture to be the leading predictors of streambed instability and excess fine sediments. Similarly, basin and riparian agriculture and non-agricultural riparian land uses were the leading predictors of reduced riparian vegetation cover complexity in the CONUS and within ecoregions. In turn, these reductions in riparian vegetation cover and complexity, combined with reduced summer low flows, were the leading predictors of instream habitat simplification. We conclude that quantitative measures of physical habitat structure are useful and important indicators of the impacts of human activities on stream and river condition.

12.
Ecol Indic ; 141: 109047, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35991318

RESUMO

Rigorous assessments of the ecological condition of water resources and the effect of human activities on those waters require quantitative physical, chemical, and biological data. The U.S. Environmental Protection Agency's river and stream surveys quantify river and stream bed particle size and stability, instream habitat complexity and cover, riparian vegetation cover and structure, and anthropogenic disturbance activities. Physical habitat is strongly controlled by natural geoclimatic factors that co-vary with human activities. We expressed the anthropogenic alteration of physical habitat as O/E ratios of observed habitat metric values divided by values expected under least-disturbed reference conditions, where site-specific expected values vary given their geoclimatic and geomorphic context. We set criteria for good, fair, and poor condition based on the distribution of O/E values in regional least-disturbed reference sites. Poor conditions existed in 22-24% of the 1.2 million km of streams and rivers in the conterminous U.S. for riparian human disturbance, streambed sediment and riparian vegetation cover, versus 14% for instream habitat complexity. Based on the same four indicators, the percentage of stream length in poor condition within 9 separate U.S. ecoregions ranged from 4% to 42%. Associations of our physical habitat indices with anthropogenic pressures demonstrate the scope of anthropogenic habitat alteration; habitat condition was negatively related to the level of anthropogenic disturbance nationally and in nearly all ecoregions. Relative risk estimates showed that streams and rivers with poor sediment, riparian cover complexity, or instream habitat cover conditions were 1.4 to 2.6 times as likely to also have fish or macroinvertebrate assemblages in poor condition. Our physical habitat condition indicators help explain deviations in biological conditions from those observed among least-disturbed sites and inform management actions for rehabilitating impaired waters and mitigating further ecological degradation.

13.
Environ Manage ; 67(4): 589-599, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33582868

RESUMO

Flow regulation impacts on riparian vegetation composition, often increasing the prevalence of exotic and terrestrial plant species. Environmental flows may benefit native riparian vegetation via the promotion of plant recruitment from riparian soil seedbanks, but this is dependent on an intact native seedbank. Thus, we assessed the composition of the soil seedbank of different riverine geomorphic features to determine its potential response to environmental flows. Soil seedbank samples were taken from channel bars, benches and floodplains at six sites along the Campaspe River, Australia, a heavily regulated river that receives environmental flows. These geomorphic features represent a gradient in elevation and thus flooding frequency from frequently flooded (bars) to infrequently flooded (floodplain). Seedbank samples were 'grown out' in a glasshouse, and seedlings identified and classified according to taxa, flood tolerance and origin (native or exotic). We identified 6515 seedlings across all geomorphic features and sites, with monocots most abundant. Soil seedbank composition varied between geomorphic features. Overall, seedling abundances were greater for in-channel features (bars and benches) than floodplains, but taxa richness did not vary likewise. Soil seedbanks of in-channel features were dominated by flood tolerant and native taxa, while flood intolerant and exotic taxa were generally associated with floodplains. The dominance of native flood tolerant taxa in the soil seedbanks of in-channel geomorphic features suggest these seedbanks can play an important role in the resilience of native riparian plant communities. Moreover, environmental flows are likely to play a positive role in maintaining native riparian plant communities given such conditions.


Assuntos
Rios , Solo , Austrália , Ecossistema , Plantas , Banco de Sementes
14.
J Environ Manage ; 276: 111339, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32920462

RESUMO

Native riparian vegetation communities have declined downstream of large water infrastructure like dams and diversions, owing to water management operations that prevent successful seedling colonization and recruitment. Altered timing and magnitude of reservoir releases to fulfill competing water demands often lead to reduced peak discharges and flow recession rates that do not support native riparian reproduction processes. To achieve short-term ecosystem function in highly regulated rivers an alternative method might be restoration planting, whereby success depends on identifying appropriate planting location and spatial extents. This study aims to provide a methodology to inform resource managers about the extent of possible natural seedling recruitment under average and wet hydrologic conditions, as well as constrain restoration planting operational uncertainties. Results from field surveys and simulations showed limited favorable areas for successful riparian seedling recruitment under regulated flows, regardless of hydrologic conditions in the basin. However, wet (11.4 ha) hydrologic conditions were more (approximately 11 times) favorable than average (1 ha) conditions for seedling recruitment. Furthermore, model results identified the location and spatial extent (25.6 ha) of favorable restoration planting areas during average flow. This extent is approximately 25 times larger than natural recruitment during an average (hydrological) year and even twice that for natural recruitment for a wet year. This suggests that ground operational activities guided by numerical modeling may effectively constrain planting uncertainties.


Assuntos
Ecossistema , Plântula , Hidrologia , Plantas , Rios
15.
Glob Chang Biol ; 25(4): 1358-1367, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30638293

RESUMO

Climate change will have large consequences for flooding frequencies in freshwater systems. In interaction with anthropogenic activities (flow regulation, channel restoration and catchment land-use) this will both increase flooding and drought across the world. Like in many other ecosystems facing changed environmental conditions, it remains difficult to predict the rate and trajectory of vegetation responses to changed conditions. Given that critical ecosystem services (e.g. bank stabilization, carbon subsidies to aquatic communities or water purification) depend on riparian vegetation composition, it is important to understand how and how fast riparian vegetation responds to changing flooding regimes. We studied vegetation changes over 19 growing seasons in turfs that were transplanted in a full-factorial design between three riparian elevations with different flooding frequencies. We found that (a) some transplanted communities may have developed into an alternative stable state and were still different from the target community, and (b) pathways of vegetation change were highly directional but alternative trajectories did occur, (c) changes were rather linear but faster when flooding frequencies increased than when they decreased, and (d) we observed fastest changes in turfs when proxies for mortality and colonization were highest. These results provide rare examples of alternative transient trajectories and stable states under field conditions, which is an important step towards understanding their drivers and their frequency in a changing world.

16.
J Environ Manage ; 202(Pt 2): 392-402, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28190693

RESUMO

Implementing long-term monitoring programs that effectively inform conservation plans is a top priority in environmental management. In floodplain forests, historical pressures interplay with the complex multiscale dynamics of fluvial systems and require integrative approaches to pinpoint drivers for their deterioration and ecosystem services loss. Combining a conceptual framework such as the Driver-Pressure-State-Impact-Response (DPSIR) with the development of valid biological indicators can contribute to the analysis of the driving forces and their effects on the ecosystem in order to formulate coordinated conservation measures. In the present study, we evaluate the initial results of a decade (2004-2014) of floodplain forest monitoring. We adopted the DPSIR framework to summarize the main drivers in land use and environmental change, analyzed the effects on biological indicators of foundation trees and compared the consistency of the main drivers and their effects at two spatial scales. The monitoring program was conducted in one of the largest and best preserved floodplain forests in SW Europe located within Doñana National Park (Spain) which is dominated by Salix atrocinerea and Fraxinus angustifolia. The program combined field (in situ) surveys on a network of permanent plots with several remote sensing sources. The accuracy obtained in spectral classifications allowed shifts in species cover across the whole forest to be detected and assessed. However, remote sensing did not reflect the ecological status of forest populations. The field survey revealed a general decline in Salix populations, especially in the first five years of sampling -a factor probably associated with a lag effect from past human impact on the hydrology of the catchment and recent extreme climatic episodes (drought). In spite of much reduced seed regeneration, a resprouting strategy allows long-lived Salix individuals to persist in complex spatial dynamics. This suggests the beginning of a recovery resulting from recent coordinated societal responses to control excessive water extraction in the catchment, highlighting the need for continuing long-term monitoring. The DPSIR framework proved useful as a conceptual tool in analyzing the entire environmental system, while both field and remote sensing approaches complemented each other in quantifying indicator trends, improving the monitoring design and informing conservation plans.


Assuntos
Florestas , Tecnologia de Sensoriamento Remoto , Conservação dos Recursos Naturais , Ecossistema , Monitoramento Ambiental , Europa (Continente) , Humanos , Espanha
17.
J Environ Manage ; 202(Pt 2): 348-362, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27604752

RESUMO

Over the last twenty years, significant technical advances turned photogrammetry into a relevant tool for the integrated analysis of biogeomorphic cross-scale interactions within vegetated fluvial corridors, which will largely contribute to the development and improvement of self-sustainable river restoration efforts. Here, we propose a cost-effective, easily reproducible approach based on stereophotogrammetry and Structure from Motion (SfM) technique to study feedbacks between fluvial geomorphology and riparian vegetation at different nested spatiotemporal scales. We combined different photogrammetric methods and thus were able to investigate biogeomorphic feedbacks at all three spatial scales (i.e., corridor, alluvial bar and micro-site) and at three different temporal scales, i.e., present, recent past and long term evolution on a diversified riparian landscape mosaic. We evaluate the performance and the limits of photogrammetric methods by targeting a set of fundamental parameters necessary to study biogeomorphic feedbacks at each of the three nested spatial scales and, when possible, propose appropriate solutions. The RMSE varies between 0.01 and 2 m depending on spatial scale and photogrammetric methods. Despite some remaining difficulties to properly apply them with current technologies under all circumstances in fluvial biogeomorphic studies, e.g. the detection of vegetation density or landform topography under a dense vegetation canopy, we suggest that photogrammetry is a promising instrument for the quantification of biogeomorphic feedbacks at nested spatial scales within river systems and for developing appropriate river management tools and strategies.


Assuntos
Ecossistema , Fotogrametria , Rios
18.
Naturwissenschaften ; 103(11-12): 96, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27866229

RESUMO

Ant-gardens (AGs) are considered one of the most complex mutualist systems between ants and plants, since interactions involving dispersal, protection, and nutrition occur simultaneously in them; however, little is known about the effects of the transformation of ecosystems on their diversity and interactions. In five environments with different land use within an anthropic landscape in southeastern Mexico, we investigated the diversity and composition of epiphytes and host trees of AGs built by Azteca gnava. A total of 10,871 individuals of 26 epiphytic species, associating with 859 AGs located in 161 host trees, were recorded. The diversity and composition of epiphytes tended to be different between environments; however, Aechmea tillandsioides and Codonanthe uleana were the most important species and considered true AG epiphytes, because they were the most frequent, abundant, and occurred exclusively in AGs. Other important species were the orchids Epidendrum flexuosum, Coryanthes picturata, and Epidendrum pachyrachis, and should also be considered true AG epiphytes, because they occurred almost exclusively in the AGs. The AG abundance in agroforestry plantations was similar or even greater than in riparian vegetation (natural habitat). The AGs were registered in 37 host species but were more frequent in Mangifera indica and Citrus sinensis. We conclude that true epiphytes of A. gnava AGs persist in different environments and host trees, and even these AGs could proliferate in agroforestry plantations of anthropic landscapes.


Assuntos
Formigas , Meio Ambiente , Fenômenos Fisiológicos Vegetais , Simbiose , Árvores , Animais , Biodiversidade , México
19.
J Environ Manage ; 158: 85-94, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25974311

RESUMO

We examined how restoration of riparian vegetation has been implemented and evaluated in the scientific literature during the past 25 years. A total of 169 papers were read systematically to extract information about the following: 1) restoration strategies applied, 2) scale of monitoring and use of reference sites, 3) metrics used for evaluation, and 4) drivers of success. Hydro-geomorphic approaches (e.g., dam operations, controlled floods, landform reconfiguration) were the most frequent, followed by active plant introduction, exotic species control, natural floodplain conversion and grazing and herbivory control. Our review revealed noteworthy limitations in the spatio-temporal approaches chosen for evaluation. Evaluations were mostly from one single project and frequently ignored the multi-dimensional nature of rivers: landscape spatial patterns were rarely assessed, and most projects were assessed locally (i.e., ≤meander scale). Monitoring rarely lasted for more than six years and the projects evaluated were usually not more than six years old. The impact of the restoration was most often (43%) assessed by tracking change over time rather than by comparing restored sites to unrestored and reference sites (12%), and few projects (30%) did both. Among the ways which restoration success was evaluated, vegetation structure (e.g., abundance, density, etc.) was assessed more often (152 papers) than vegetation processes (e.g., biomass accumulation, survival, etc.) (112 papers) and vegetation diversity (78 papers). Success was attributed to hydro-geomorphic factors in 63% of the projects. Future evaluations would benefit from incorporating emerging concepts in ecology such as functional traits to assess recovery of functionality, more rigorous experimental designs, enhanced comparisons among projects, longer term monitoring and reporting failure.


Assuntos
Recuperação e Remediação Ambiental , Plantas , Rios , Poluição da Água/prevenção & controle , Ecologia , Monitoramento Ambiental , Saúde Global , Humanos , Revisão por Pares
20.
Environ Monit Assess ; 187(11): 714, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26514797

RESUMO

Riparian vegetation is one of the most important abiotic components determining the water flow pattern in lotic ecosystems, influencing the composition, richness, and diversity of invertebrates. We have identified whether differences in the structure of the assemblages of invertebrates between riffles and pools may influence the responses of fauna to the effects of land use. In addition, we investigated which fauna metrics are responsible for the differentiation between riffles and pools in streams subject to different land uses. During the dry season of 2012, the main substrates of riffles and pools were sampled (Surber collector) from nine streams within forest, pasture, and urban areas. Principal component analysis (PCA) and Permanova showed differences in the set of environmental variables between streams and mesohabitats. The first PCA axis distinguished the forest and pasture streams from the urban area streams and was related to variables indicative of nutrient enrichment and land use, while the second axis was formed by velocity flow and by the quantities of ultrafine and coarse sand, which distinguished the riffles and pools of the streams. The faunal composition distinguished the streams in pasture and forest areas from the urban streams. Riffles and pools were not concordant in the representation of the invertebrate fauna, indicating the importance of sampling both mesohabitats in the types of streams investigated. The richness, taxonomic composition, and relative abundance of families of Ephemeroptera, Plecoptera, and Trichoptera showed robust responses in riffles to the effects of environmental changes, while in pools, only the richness showed a significant response. It was possibly concluded that riffles were more sensitive in detecting the effects of land use. The information from this study help to understand how the community of invertebrates and the types of habitats in streams may be affected by anthropogenic impacts.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Biodiversidade , Ecossistema , Monitoramento Ambiental , Invertebrados/crescimento & desenvolvimento , Rios/química , Animais , Organismos Aquáticos/classificação , Alimentos , Florestas , Insetos , Invertebrados/classificação , Análise de Componente Principal , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa