Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 254: 114740, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907094

RESUMO

This study investigated the growth, SPAD value, chlorophyll fluorescence and transcriptome response of endophyte uninoculated and inoculated rice seedlings under Pb stress after treatment of 1 d and 5 d. Inoculation of endophytes significantly improved the plant height, SPAD value, Fv/F0, Fv/Fm and PIABS by 1.29, 1.73, 0.16, 1.25 and 1.90 times on the 1 d, by 1.07, 2.45, 0.11, 1.59 and 7.90 times on the 5 d, respectively, however, decreased the root length by 1.11 and 1.65 times on the 1 d and 5 d, respectively under Pb stress. Analysis of rice seedlings leaves by RNA-seq, there were 574 down-regulated and 918 up-regulated genes after treatment of 1 d, 205 down-regulated and 127 up-regulated genes after treatment of 5 d, of which 20 genes (11 up-regulated and 9 down-regulated) exhibited the same changing pattern after treatment of 1 d and 5 d. Using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to annotate these DEGs, and it was found that many of DEGs involved in photosynthesis, oxidative detoxification, hormone synthesis and signal transduction, protein phosphorylation/kinase and transcription factors. These findings provide new insights into the molecular mechanism of interaction between endophyte and plants under heavy metal stress, and contribute to agricultural production in limited environments.


Assuntos
Oryza , Transcriptoma , Plântula/genética , Plântula/metabolismo , Endófitos/genética , Endófitos/metabolismo , Perfilação da Expressão Gênica , Oryza/metabolismo , Chumbo/toxicidade , Chumbo/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Sensors (Basel) ; 23(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38067934

RESUMO

In order to rapidly and accurately monitor cadmium contamination in lettuce and understand the growth conditions of lettuce under cadmium pollution, lettuce is used as the test material. Under different concentrations of cadmium stress and at different growth stages, relative chlorophyll content of lettuce leaves, the cadmium content in the leaves, and the visible-near infrared reflectance spectra are detected and analyzed. An inversion model of the cadmium content and relative chlorophyll content in the lettuce leaves is established. The results indicate that cadmium concentrations of 1 mg/kg and 5 mg/kg promote relative chlorophyll content, while concentrations of 10 mg/kg and 20 mg/kg inhibit relative chlorophyll content. The cadmium content in the leaves increases with increasing cadmium concentrations. Cadmium stress caused a "blue shift" in the red edge position only during the mature period, while the red valley position underwent a "blue shift" during the seedling and growth periods and a "red shift" during the mature period. The green peak position exhibited a "blue shift". After model validation, it was found that the model constructed using the ratio of red edge area to yellow edge area and the normalized values of red edge area and yellow edge area effectively estimated the cadmium content in lettuce leaves. The model established using the normalized vegetation index of the red edge and the ratio of the peak green value to red shoulder amplitude can effectively estimate the relative chlorophyll content in lettuce leaves. This study demonstrates that the visible-near infrared spectroscopy technique holds great potential for monitoring cadmium contamination and estimating chlorophyll content in lettuce.


Assuntos
Cádmio , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Cádmio/análise , Clorofila/análise , Luz , Folhas de Planta/química
3.
Sensors (Basel) ; 22(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35009724

RESUMO

Chlorophyll content is an important indicator of plant photosynthesis, which directly affects the growth and yield of crops. Using hyperspectral imaging technology to quickly and non-destructively estimate the soil plant analysis development (SPAD) value of pepper leaf and its distribution inversion is of great significance for agricultural monitoring and precise fertilization during pepper growth. In this study, 150 samples of pepper leaves with different leaf positions were selected, and the hyperspectral image data and SPAD value were collected for the sampled leaves. The correlation coefficient, stability competitive adaptive reweighted sampling (sCARS), and iteratively retaining informative variables (IRIV) methods were used to screen characteristic bands. These were combined with partial least-squares regression (PLSR), extreme gradient boosting (XGBoost), random forest regression (RFR), and gradient boosting decision tree (GBDT) to build regression models. The developed model was then used to build the inversion map of pepper leaf chlorophyll distribution. The research results show that: (1) The IRIV-XGBoost model demonstrates the most comprehensive performance in the modeling and inversion stages, and its Rcv2, RMSEcv, and MAEcv are 0.81, 2.76, and 2.30, respectively; (2) The IRIV-XGBoost model was used to calculate the SPAD value of each pixel of pepper leaves, and to subsequently invert the chlorophyll distribution map of pepper leaves at different leaf positions, which can provide support for the intuitive monitoring of crop growth and lay the foundation for the development of hyperspectral field dynamic monitoring sensors.


Assuntos
Folhas de Planta , Solo , Clorofila , Análise dos Mínimos Quadrados , Desenvolvimento Vegetal
4.
Plants (Basel) ; 13(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931021

RESUMO

This study focuses on optimizing chlorophyll extraction techniques, in which leaf discs are cut from places on the leaf blade to enhance chlorophyll concentration in sesame (Sesamum indicum L.) leaves. Thirty sesame genotypes, categorized into light green (LG), middle green (MG), and deep green (DG) pigment groups based on leaf coloration, were selected from a larger pool of field-grown accessions. The investigation involved determining optimal Soil Plant Analysis Development (SPAD) value index measurements, quantifying pigment concentrations, exploring extraction solvents, and selecting suitable leaf disk positions. Significant variations in chlorophyll content were observed across genotypes, greenness categories, and leaf disk positions. The categorization of genotypes into DG, MG, and LG groups revealed a correlation between leaf appearance and chlorophyll content. The study highlighted a consistent relationship between carotenoids and chlorophyll, indicating their role in adaptation to warm environments. An examination of leaf disk positions revealed a significant chlorophyll gradient along the leaf blade, emphasizing the need for standardized protocols. Chlorophyll extraction experiments identified DMSO and 96% ethanol, particularly in those incubated for 10 min at 85 °C, as effective choices. This recommendation considers factors like cost-effectiveness, time efficiency, safety, and environmental regulations, ensuring consistent and simplified extraction processes. For higher chlorophyll extraction, focusing on leaf tips and the 75% localization along the sesame leaf blade is suggested, as this consistently yields increased chlorophyll content. Furthermore, our examination revealed significant anatomical variations in the internal structure of the mesophyll tissue leaves between deep green and light green sesame plants, primarily linked to chloroplast density and pigment-producing structures. Our findings, therefore, provide insightful knowledge of chlorophyll gradients and encourage the use of standardized protocols that enable researchers to refine their experimental designs for precise and comparable chlorophyll measurements. The recommended solvent choices ensure reliable outcomes in plant physiology, ecology, and environmental studies.

5.
Front Plant Sci ; 15: 1435613, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148623

RESUMO

Chlorophyll monitoring is an important topic in phenotypic research. For fruit trees, chlorophyll content can reflect the real-time photosynthetic capacity, which is a great reference for nutrient status assessment. Traditional in situ estimation methods are labor- and time-consuming. Remote sensing spectral imagery has been widely applied in agricultural research. This study aims to explore a transferable model to estimate canopy SPAD across growth stages and tree species. Unmanned aerial vehicle (UAV) system was applied for multispectral images acquisition. The results showed that the univariate model yielded with Green Normalized Difference Vegetation Index (GNDVI) gave valuable prediction results, providing a simple and effective method for chlorophyll monitoring for single species. Reflection features (RF) and texture features (TF) were extracted for multivariate modeling. Gaussian Process Regression (GPR) models yielded better performance for mixed species research than other algorithm models, and the R 2 of the RF+TF+GPR model was approximately 0.7 in both single and mixed species. In addition, this method can also be used to predict canopy SPAD over various growth stages, especially in the third and fourth stages with R 2 higher than 0.6. This paper highlights the importance of using RF+TF for canopy feature expression and deep connection exploration between canopy features with GPR algorithm. This research provides a universal model for canopy SPAD inversion which can promote the growth status monitoring and management of fruit trees.

6.
Plants (Basel) ; 13(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39065453

RESUMO

Monitoring winter wheat Soil-Plant Analysis Development (SPAD) values using Unmanned Aerial Vehicles (UAVs) is an effective and non-destructive method. However, predicting SPAD values during the booting stage is less accurate than other growth stages. Existing research on UAV-based SPAD value prediction has mainly focused on low-altitude flights of 10-30 m, neglecting the potential benefits of higher-altitude flights. The study evaluates predictions of winter wheat SPAD values during the booting stage using Vegetation Indices (VIs) from UAV images at five different altitudes (i.e., 20, 40, 60, 80, 100, and 120 m, respectively, using a DJI P4-Multispectral UAV as an example, with a resolution from 1.06 to 6.35 cm/pixel). Additionally, we compare the predictive performance using various predictor variables (VIs, Texture Indices (TIs), Discrete Wavelet Transform (DWT)) individually and in combination. Four machine learning algorithms (Ridge, Random Forest, Support Vector Regression, and Back Propagation Neural Network) are employed. The results demonstrate a comparable prediction performance between using UAV images at 120 m (with a resolution of 6.35 cm/pixel) and using the images at 20 m (with a resolution of 1.06 cm/pixel). This finding significantly improves the efficiency of UAV monitoring since flying UAVs at higher altitudes results in greater coverage, thus reducing the time needed for scouting when using the same heading overlap and side overlap rates. The overall trend in prediction accuracy is as follows: VIs + TIs + DWT > VIs + TIs > VIs + DWT > TIs + DWT > TIs > VIs > DWT. The VIs + TIs + DWT set obtains frequency information (DWT), compensating for the limitations of the VIs + TIs set. This study enhances the effectiveness of using UAVs in agricultural research and practices.

7.
Life (Basel) ; 13(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36836855

RESUMO

The hormonal imbalances, including abscisic acid (ABA) and brassinosteroid (BR) levels, caused by salinity constitute a key factor in hindering spikelet development in rice and in reducing rice yield. However, the effects of ABA and BRs on spikelet development in plants subjected to salinity stress have been explored to only a limited extent. In this research, the effect of ABA and BRs on rice growth characteristics and the development of spikelets under different salinity levels were investigated. The rice seedlings were subjected to three different salt stress levels: 0.0875 dS m-1 (Control, CK), low salt stress (1.878 dS m-1, LS), and heavy salt stress (4.09 dS m-1, HS). Additionally, independent (ABA or BR) and combined (ABA+BR) exogenous treatments of ABA (at 0 and 25 µM concentration) and BR (at 0 and 5 µM concentration) onto the rice seedlings were performed. The results showed that the exogenous application of ABA, BRs, and ABA+BRs triggered changes in physiological and agronomic characteristics, including photosynthesis rate (Pn), SPAD value, pollen viability, 1000-grain weight (g), and rice grain yield per plant. In addition, spikelet sterility under different salt stress levels (CK, LS, and HS) was decreased significantly through the use of both the single phytohormone and the cocktail, as compared to the controls. The outcome of this study reveals new insights about rice spikelet development in plants subjected to salt stress and the effects on this of ABA and BR. Additionally, it provides information on the use of plant hormones to improve rice yield under salt stress and on the enhancement of effective utilization of salt-affected soils.

8.
Front Plant Sci ; 13: 965649, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874011

RESUMO

Understanding the selenium tolerance of different sweet potato [Dioscorea esculenta (Lour.) Burkill] is essential for simultaneously for breeding of new selenium-tolerant varieties and improving the selenium content in sweet potato. Therefore, a greenhouse experiment was conducted from February to April 2022 to evaluate the effect of sweet potato cultivars and selenium (Na2SeO3) concentrations (0-40 mg/L) on plant growth, physiological activities and plant selenium content distribution. The results showed that when the selenium concentration was more than 3 mg/L, the plant growth was significantly affected and the plant height and root length were significantly different compared to the control. While the selenium concentration was 20 and 40 mg/L had the greatest effect on plant growth when the number of internodes and leaves of the plant decreased, the root system stopped growing and the number of internodes of the plant, the number of leaves and the dry-to-fresh weight ratio of the plant a very significant level compared to reached control. The relative amount of chlorophyll in leaves under treatment with a selenium concentration of 1 mg/L was increased, and the relative amount of chlorophyll in 3 mg/L leaves gradually increased with the increase in the selenium concentration. The values of the maximum photochemical efficiency PSII (fv/fm) and the potential activity of PSII (fv/fo) compared to the control under treatment with 40 mg/L selenium concentration and photosynthesis of plants was inhibited. The selenium content in root, stem and leaf increased with the increase in selenium concentration, and the distribution of selenium content in the plant was leaf

9.
Plant Methods ; 18(1): 67, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585547

RESUMO

BACKGROUND: The chlorophyll content is a vital indicator for reflecting the photosynthesis ability of plants and it plays a significant role in monitoring the general health of plants. Since the chlorophyll content and the soil-plant analysis development (SPAD) value are positively correlated, it is feasible to predict the SPAD value by calculating the vegetation indices (VIs) through hyperspectral images, thereby evaluating the severity of plant diseases. However, current indices simply adopt few wavelengths of the hyperspectral information, which may decrease the prediction accuracy. Besides, few researches explored the applicability of VIs over rice under the bacterial blight disease stress. METHODS: In this study, the SPAD value was predicted by calculating the spectral fractal dimension index (SFDI) from a hyperspectral curve (420 to 950 nm). The correlation between the SPAD value and hyperspectral information was further analyzed for determining the sensitive bands that correspond to different disease levels. In addition, a SPAD prediction model was built upon the combination of selected indices and four machine learning methods. RESULTS: The results suggested that the SPAD value of rice leaves under different disease levels are sensitive to different wavelengths. Compared with current VIs, a stronger positive correlation was detected between the SPAD value and the SFDI, reaching an average correlation coefficient of 0.8263. For the prediction model, the one built with support vector regression and SFDI achieved the best performance, reaching R2, RMSE, and RE at 0.8752, 3.7715, and 7.8614%, respectively. CONCLUSIONS: This work provides an in-depth insight for accurately and robustly predicting the SPAD value of rice leaves under the bacterial blight disease stress, and the SFDI is of great significance for monitoring the chlorophyll content in large-scale fields non-destructively.

10.
Environ Sci Pollut Res Int ; 28(21): 27376-27390, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33507502

RESUMO

Contamination of soils with heavy metals (HMs) caused serious problems because plants tend to absorb HMs from the soil. In view of HM hazards to plants as well as agro-ecosystems, we executed this study to assess metal toxicity to mung bean (Vigna radiata) plants cultivated in soil with six treatment levels of cadmium (Cd) and nickel (Ni) and to find metal tolerant variety, i.e., M-93 (V1) and M-1(V2) with multifarious plant biochemical and physiological attributes. Increasing doses of Cd and Ni inhibited plant growth and photosynthesis and both varieties showed highly significant differences in the morpho-physiological attributes. V2 showed sensitivity to Cd and Ni treatments alone or in combination. Tolerance indices for attributes presented a declined growth of Vigna plants under HM stress accompanied by highly significant suppression in gas exchange characteristics. Of single element applications, the adverse effects on mung bean were more pronounced in Cd treatments. V1 showed much reduction in photosynthesis attributes except sub-stomatal CO2 concentration in all treatments compared to V2. The yield attributes, i.e., seed yield/plant and 100-seed weight, were progressively reduced in T5 for both varieties. In combination, we have observed increased mobility of Cd and Ni in both varieties. The results showed that water use efficiency (WUE) generally increased in all the treatments for both varieties compared to control. V2 exhibited less soluble sugars and free amino acids compared to V1 in all the treatments. Similarly, we recorded an enhanced total free amino acid contents in both varieties among all the metal treatments against control plants. We conclude that combinatorial treatment proved much lethal for Vigna plants, but V1 performed better than V2 in counteracting the adverse effects of Cd and Ni.


Assuntos
Vigna , Cádmio , Ecossistema , Homeostase , Níquel , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa