Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
EMBO Rep ; 23(4): e53477, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35166010

RESUMO

The vacuole/lysosome plays essential roles in the growth and proliferation of many eukaryotic cells via the activation of target of rapamycin complex 1 (TORC1). Moreover, the yeast vacuole/lysosome is necessary for progression of the cell division cycle, in part via signaling through the TORC1 pathway. Here, we show that an essential cyclin-dependent kinase, Bur1, plays a critical role in cell cycle progression in cooperation with TORC1. A mutation in BUR1 combined with a defect in vacuole inheritance shows a synthetic growth defect. Importantly, the double mutant, as well as a bur1-267 mutant on its own, has a severe defect in cell cycle progression from G1 phase. In further support that BUR1 functions with TORC1, mutation of bur1 alone results in high sensitivity to rapamycin, a TORC1 inhibitor. Mechanistic insight for Bur1 function comes from the findings that Bur1 directly phosphorylates Sch9, a target of TORC1, and that both Bur1 and TORC1 are required for the activation of Sch9. Together, these discoveries suggest that multiple signals converge on Sch9 to promote cell cycle progression.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Vacúolos , Ciclo Celular/genética , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição , Vacúolos/metabolismo
2.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37173282

RESUMO

Budding yeast uses the TORC1-Sch9p and cAMP-PKA signalling pathways to regulate adaptations to changing nutrient environments. Dynamic and single-cell measurements of the activity of these cascades will improve our understanding of the cellular adaptation of yeast. Here, we employed the AKAR3-EV biosensor developed for mammalian cells to measure the cellular phosphorylation status determined by Sch9p and PKA activity in budding yeast. Using various mutant strains and inhibitors, we show that AKAR3-EV measures the Sch9p- and PKA-dependent phosphorylation status in intact yeast cells. At the single-cell level, we found that the phosphorylation responses are homogenous for glucose, sucrose, and fructose, but heterogeneous for mannose. Cells that start to grow after a transition to mannose correspond to higher normalized Förster resonance energy transfer (FRET) levels, in line with the involvement of Sch9p and PKA pathways to stimulate growth-related processes. The Sch9p and PKA pathways have a relatively high affinity for glucose (K0.5 of 0.24 mM) under glucose-derepressed conditions. Lastly, steady-state FRET levels of AKAR3-EV seem to be independent of growth rates, suggesting that Sch9p- and PKA-dependent phosphorylation activities are transient responses to nutrient transitions. We believe that the AKAR3-EV sensor is an excellent addition to the biosensor arsenal for illuminating cellular adaptation in single yeast cells.


Assuntos
Técnicas Biossensoriais , Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Animais , Saccharomyces cerevisiae/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Manose/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Glucose/metabolismo , Mamíferos/metabolismo
3.
Biochem J ; 478(2): 357-375, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33394033

RESUMO

Multiple starvation-induced, high-affinity nutrient transporters in yeast function as receptors for activation of the protein kinase A (PKA) pathway upon re-addition of their substrate. We now show that these transceptors may play more extended roles in nutrient regulation. The Gap1 amino acid, Mep2 ammonium, Pho84 phosphate and Sul1 sulfate transceptors physically interact in vitro and in vivo with the PKA-related Sch9 protein kinase, the yeast homolog of mammalian S6 protein kinase and protein kinase B. Sch9 is a phosphorylation target of TOR and well known to affect nutrient-controlled cellular processes, such as growth rate. Mapping with peptide microarrays suggests specific interaction domains in Gap1 for Sch9 binding. Mutagenesis of the major domain affects the upstart of growth upon the addition of L-citrulline to nitrogen-starved cells to different extents but apparently does not affect in vitro binding. It also does not correlate with the drop in L-citrulline uptake capacity or transceptor activation of the PKA target trehalase by the Gap1 mutant forms. Our results reveal a nutrient transceptor-Sch9-TOR axis in which Sch9 accessibility for phosphorylation by TOR may be affected by nutrient transceptor-Sch9 interaction under conditions of nutrient starvation or other environmental challenges.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sítios de Ligação , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Citrulina/metabolismo , Mutação , Domínios e Motivos de Interação entre Proteínas/genética , Mapas de Interação de Proteínas , Proteínas Serina-Treonina Quinases/genética , Simportadores de Próton-Fosfato/genética , Simportadores de Próton-Fosfato/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética
4.
Yeast ; 38(6): 339-351, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33978982

RESUMO

Much like other living organisms, yeast cells have a limited life span, in terms of both the maximal length of time a cell can stay alive (chronological life span) and the maximal number of cell divisions it can undergo (replicative life span). Over the past years, intensive research revealed that the life span of yeast depends on both the genetic background of the cells and environmental factors. Specifically, the presence of stress factors, reactive oxygen species, and the availability of nutrients profoundly impact life span, and signaling cascades involved in the response to these factors, including the target of rapamycin (TOR) and cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathways, play a central role. Interestingly, yeast life span also has direct implications for its use in industrial processes. In beer brewing, for example, the inoculation of finished beer with live yeast cells, a process called "bottle conditioning" helps improve the product's shelf life by clearing undesirable carbonyl compounds such as furfural and 2-methylpropanal that cause staling. However, this effect depends on the reductive metabolism of living cells and is thus inherently limited by the cells' chronological life span. Here, we review the mechanisms underlying chronological life span in yeast. We also discuss how this insight connects to industrial observations and ultimately opens new routes towards superior industrial yeasts that can help improve a product's shelf life and thus contribute to a more sustainable industry.


Assuntos
Cerveja/análise , Cerveja/microbiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Divisão Celular , Regulação Fúngica da Expressão Gênica , Microbiologia Industrial , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Tempo
5.
Apoptosis ; 25(9-10): 686-696, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32666259

RESUMO

Caloric restriction mimetics (CRMs) are promising molecules to prevent age-related diseases as they activate pathways driven by a true caloric restriction. Hydroxycitric acid (HCA) is considered a bona fide CRM since it depletes acetyl-CoA pools by acting as a competitive inhibitor of ATP citrate lyase (ACLY), ultimately repressing protein acetylation and promoting autophagy. Importantly, it can reduce inflammation and tumour development. In order to identify phenotypically relevant new HCA targets we have investigated HCA effects in Saccharomyces cerevisiae, where ACLY is lacking. Strikingly, the drug revealed a powerful anti-aging effect, another property proposed to mark bona fide CRMs. Chronological life span (CLS) extension but also resistance to acetic acid of HCA treated cells were associated to repression of cell apoptosis and necrosis. HCA also largely prevented cell deaths caused by a severe oxidative stress. The molecule could act widely by negatively modulating cell metabolism, similarly to citrate. Indeed, it inhibited both growth reactivation and the oxygen consumption rate of yeast cells in stationary phase. Genetic analyses on yeast CLS mutants indicated that part of the HCA effects can be sensed by Sch9 and Ras2, two conserved key regulators of nutritional and stress signal pathways of primary importance. Our data together with published biochemical analyses indicate that HCA may act with multiple mechanisms together with ACLY repression and allowed us to propose an integrated mechanistic model as a basis for future investigations.


Assuntos
ATP Citrato (pro-S)-Liase/genética , Envelhecimento/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Citratos/farmacologia , Envelhecimento/genética , Apoptose/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
6.
Curr Genet ; 64(1): 155-161, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28856407

RESUMO

Recent research further clarified the molecular mechanisms that link nutrient signaling and pH homeostasis with the regulation of growth and survival of the budding yeast Saccharomyces cerevisiae. The central nutrient signaling kinases PKA, TORC1, and Sch9 are intimately associated to pH homeostasis, presumably allowing them to concert far-reaching phenotypical repercussions of nutritional cues. To exemplify such repercussions, we briefly describe consequences for phosphate uptake and signaling and outline interactions between phosphate homeostasis and the players involved in intra- and extracellular pH control. Inorganic phosphate uptake, its subcellular distribution, and its conversion into polyphosphates are dependent on the proton gradients created over different membranes. Conversely, polyphosphate metabolism appears to contribute in determining the intracellular pH. Additionally, inositol pyrophosphates are emerging as potent determinants of growth potential, in this way providing feedback from phosphate metabolism onto the central nutrient signaling kinases. All these data point towards the importance of phosphate metabolism in the reciprocal regulation of nutrient signaling and pH homeostasis.


Assuntos
Homeostase , Concentração de Íons de Hidrogênio , Fosfatos/metabolismo , Leveduras/fisiologia , Metabolismo Energético , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Polifosfatos/metabolismo
7.
Biochim Biophys Acta Mol Basis Dis ; 1864(1): 79-88, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28988886

RESUMO

The Niemann-Pick type C is a rare neurodegenerative disease that results from loss-of-function point mutations in NPC1 or NPC2, which affect the homeostasis of sphingolipids and sterols in human cells. We have previously shown that yeast lacking Ncr1, the orthologue of human NPC1 protein, display a premature ageing phenotype and higher sensitivity to oxidative stress associated with mitochondrial dysfunctions and accumulation of long chain bases. In this study, a lipidomic analysis revealed specific changes in the levels of ceramide species in ncr1Δ cells, including decreases in dihydroceramides and increases in phytoceramides. Moreover, the activation of Sit4, a ceramide-activated protein phosphatase, increased in ncr1Δ cells. Deletion of SIT4 or CDC55, its regulatory subunit, increased the chronological lifespan and hydrogen peroxide resistance of ncr1Δ cells and suppressed its mitochondrial defects. Notably, Sch9 and Pkh1-mediated phosphorylation of Sch9 decreased significantly in ncr1Δsit4Δ cells. These results suggest that phytoceramide accumulation and Sit4-dependent signaling mediate the mitochondrial dysfunction and shortened lifespan in the yeast model of Niemann-Pick type C1, in part through modulation of the Pkh1-Sch9 pathway.


Assuntos
Mitocôndrias/fisiologia , Dinâmica Mitocondrial/genética , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/patologia , Proteína Fosfatase 2/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Esfingolipídeos/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Modelos Biológicos , Organismos Geneticamente Modificados , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética
8.
FEMS Yeast Res ; 17(1)2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27956494

RESUMO

Grape juice fermentation is a harsh environment with many stressful conditions, and Saccharomyces cerevisiae adapts its metabolism in response to those environmental challenges. Many nutrient-sensing pathways control this feature. The Tor/Sch9p pathway promotes growth and protein synthesis when nutrients are plenty, while the transcription factor Gcn4p is required for the activation of amino acid biosynthetic pathways. We previously showed that Sch9p impact on longevity depends on the nitrogen/carbon ratio. When nitrogen is limiting, SCH9 deletion shortens chronological life span, which is the case under winemaking conditions. Its deletion also increases glycerol during fermentation, so the impact of this pathway on metabolism under winemaking conditions was studied by transcriptomic and metabolomic approaches. SCH9 deletion causes the upregulation of many amino acid biosynthesis pathways. When Gcn4p was overexpressed during winemaking, increased glycerol production was also observed. Therefore, both pathways are related in terms of glycerol production. SCH9 deletion increased the amount of the limiting enzyme in glycerol biosynthesis, glycerol-3-P dehydrogenase Gpd1p at the protein level. The impact on the metabolome of SCH9 deletion and GCN4 overexpression differed, although both showed a downregulation of glycolysis. SCH9 deletion downregulated the amount of most proteinogenic amino acids and increased the amount of lipids, such as ergosterol.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação Fúngica da Expressão Gênica , Glicerol/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Vinho/microbiologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Deleção de Genes , Expressão Gênica , Perfilação da Expressão Gênica , Metabolômica , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
9.
Biochem J ; 473(22): 4205-4225, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27647936

RESUMO

Oxidative stress plays a pivotal role in pathogenesis of cardiovascular diseases and diabetes; however, the roles of protein kinase A (PKA) and human phosphodiesterase 3A (hPDE3A) remain unknown. Here, we show that yeast expressing wild-type (WT) hPDE3A or K13R hPDE3A (putative ubiquitinylation site mutant) exhibited resistance or sensitivity to exogenous hydrogen peroxide (H2O2), respectively. H2O2-stimulated ROS production was markedly increased in yeast expressing K13R hPDE3A (Oxidative stress Sensitive 1, OxiS1), compared with yeast expressing WT hPDE3A (Oxidative stress Resistant 1, OxiR1). In OxiR1, YAP1 and YAP1-dependent antioxidant genes were up-regulated, accompanied by a reduction in thioredoxin peroxidase. In OxiS1, expression of YAP1 and YAP1-dependent genes was impaired, and the thioredoxin system malfunctioned. H2O2 increased cyclic adenosine monophosphate (cAMP)-hydrolyzing activity of WT hPDE3A, but not K13R hPDE3A, through PKA-dependent phosphorylation of hPDE3A, which was correlated with its ubiquitinylation. The changes in antioxidant gene expression did not directly correlate with differences in cAMP-PKA signaling. Despite differences in their capacities to hydrolyze cAMP, total cAMP levels among OxiR1, OxiS1, and mock were similar; PKA activity, however, was lower in OxiS1 than in OxiR1 or mock. During exposure to H2O2, however, Sch9p activity, a target of Rapamycin complex 1-regulated Rps6 kinase and negative-regulator of PKA, was rapidly reduced in OxiR1, and Tpk1p, a PKA catalytic subunit, was diffusely spread throughout the cytosol, with PKA activation. In OxiS1, Sch9p activity was unchanged during exposure to H2O2, consistent with reduced activation of PKA. These results suggest that, during oxidative stress, TOR-Sch9 signaling might regulate PKA activity, and that post-translational modifications of hPDE3A are critical in its regulation of cellular recovery from oxidative stress.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Saccharomyces cerevisiae/enzimologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Ativação Enzimática/efeitos dos fármacos , Citometria de Fluxo , Humanos , Peróxido de Hidrogênio/farmacologia , Imunoprecipitação , Microscopia de Fluorescência , Modelos Biológicos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
10.
J Biol Chem ; 290(10): 6243-55, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25593311

RESUMO

The enzyme ScHxk2 of Saccharomyces cerevisiae is a dual-function hexokinase that besides its catalytic role in glycolysis is involved in the transcriptional regulation of glucose-repressible genes. Relief from glucose repression is accompanied by the phosphorylation of the nuclear fraction of ScHxk2 at serine 15 and the translocation of the phosphoenzyme into the cytosol. Different studies suggest different serine/threonine protein kinases, Ymr291w/Tda1 or Snf1, to accomplish ScHxk2-S15 phosphorylation. The current paper provides evidence that Ymr291w/Tda1 is essential for that modification, whereas protein kinases Ydr477w/Snf1, Ynl307c/Mck1, Yfr014c/Cmk1, and Ykl126w/Ypk1, which are co-purified during Ymr291w/Tda1 tandem affinity purification, as well as protein kinase PKA and PKB homolog Sch9 are dispensable. Taking into account the detection of a significantly higher amount of the Ymr291w/Tda1 protein in cells grown in low-glucose media as compared with a high-glucose environment, Ymr291w/Tda1 is likely to contribute to glucose signaling in S. cerevisiae on the level of ScHxk2-S15 phosphorylation in a situation of limited external glucose availability. The evolutionary conservation of amino acid residue serine 15 in yeast hexokinases and its phosphorylation is illustrated by the finding that YMR291W/TDA1 of S. cerevisiae and the homologous KLLA0A09713 gene of Kluyveromyces lactis allow for cross-complementation of the respective protein kinase single-gene deletion strains.


Assuntos
Glucose/metabolismo , Glicólise , Hexoquinase/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Regulação Fúngica da Expressão Gênica , Hexoquinase/biossíntese , Hexoquinase/metabolismo , Isoenzimas/genética , Kluyveromyces , Fosforilação , Proteínas Serina-Treonina Quinases/biossíntese , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/genética , Transdução de Sinais/genética , Especificidade por Substrato
11.
Appl Microbiol Biotechnol ; 100(11): 5017-27, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26846624

RESUMO

Glycerol is a key yeast metabolite in winemaking because it contributes to improve the organoleptic properties of wine. It is also a cellular protective molecule that enhances the tolerance of yeasts to osmotic stress and promotes longevity. Thus, its production increases by genetic manipulation, which is of biotechnological and basic interest. Glycerol is produced by diverting glycolytic glyceraldehyde-3-phosphate through the action of glycerol-3-phosphate dehydrogenase (coded by genes GPD1 and GPD2). Here, we demonstrate that RNA-binding protein Pub1p regulates glycerol production by controlling Gpd1p activity. Its deletion does not alter GPD1 mRNA levels, but protein levels and enzymatic activity increase, which explains the higher intracellular glycerol concentration and greater tolerance to osmotic stress of the pub1∆ mutant. PUB1 deletion also enhances the activity of nicotinamidase, a longevity-promoting enzyme. Both enzymatic activities are partially located in peroxisomes, and we detected peroxisome formation during wine fermentation. The role of Pub1p in life span control depends on nutrient conditions and is related with the TOR pathway, and a major connection between RNA metabolism and the nutrient signaling response is established.


Assuntos
Glicerol-3-Fosfato Desidrogenase (NAD+)/metabolismo , Glicerol/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Vinho/análise , Fermentação , Manipulação de Alimentos , Sucos de Frutas e Vegetais/microbiologia , Regulação Fúngica da Expressão Gênica , Glicerol-3-Fosfato Desidrogenase (NAD+)/genética , Glicerolfosfato Desidrogenase/genética , Glicerolfosfato Desidrogenase/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Pressão Osmótica , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Ligação a Poli(A)/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico , Vitis/microbiologia , Vinho/microbiologia
12.
Biochim Biophys Acta ; 1840(10): 3131-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24973565

RESUMO

BACKGROUND: Sphingolipids (SLs) are not only key components of cellular membranes, but also play an important role as signaling molecules in orchestrating both cell growth and apoptosis. In Saccharomyces cerevisiae, three complex SLs are present and hydrolysis of either of these species is catalyzed by the inositol phosphosphingolipid phospholipase C (Isc1p). Strikingly, mutants deficient in Isc1p display several hallmarks of mitochondrial dysfunction such as the inability to grow on a non-fermentative carbon course, increased oxidative stress and aberrant mitochondrial morphology. SCOPE OF REVIEW: In this review, we focus on the pivotal role of Isc1p in regulating mitochondrial function via SL metabolism, and on Sch9p as a central signal transducer. Sch9p is one of the main effectors of the target of rapamycin complex 1 (TORC1), which is regarded as a crucial signaling axis for the regulation of Isc1p-mediated events. Finally, we describe the retrograde response, a signaling event originating from mitochondria to the nucleus, which results in the induction of nuclear target genes. Intriguingly, the retrograde response also interacts with SL homeostasis. MAJOR CONCLUSIONS: All of the above suggests a pivotal signaling role for SLs in maintaining correct mitochondrial function in budding yeast. GENERAL SIGNIFICANCE: Studies with budding yeast provide insight on SL signaling events that affect mitochondrial function.


Assuntos
Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Esfingolipídeos/metabolismo , Mitocôndrias/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/genética , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
13.
FEMS Yeast Res ; 14(1): 17-32, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24102693

RESUMO

The knowledge on the molecular aspects regulating ageing in eukaryotic organisms has benefitted greatly from studies using the budding yeast Saccharomyces cerevisiae. Indeed, many aspects involved in the control of lifespan appear to be well conserved among species. Of these, the lifespan-extending effects of calorie restriction (CR) and downregulation of nutrient signalling through the target of rapamycin (TOR) pathway are prime examples. Here, we present an overview on the molecular mechanisms by which these interventions mediate lifespan extension in yeast. Several models have been proposed in the literature, which should be seen as complementary, instead of contradictory. Results indicate that CR mediates a large amount of its effect by downregulating signalling through the TORC1-Sch9 branch. In addition, we note that Sch9 is more than solely a downstream effector of TORC1, and documented connections with sphingolipid metabolism may be particularly interesting for future research on ageing mechanisms. As Sch9 comprises the yeast orthologue of the mammalian PKB/Akt and S6K1 kinases, future studies in yeast may continue to serve as an attractive model to elucidate conserved mechanisms involved in ageing and age-related diseases in humans.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/metabolismo , Envelhecimento , Humanos , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , Fatores de Tempo
14.
FEMS Yeast Res ; 14(8): 1147-59, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25238629

RESUMO

There is substantial interest in developing alternative strategies for cancer chemotherapy aiming to increase drug specificity and prevent tumor resistance. Calorie restriction (CR) has been shown to render human cancer cells more susceptible to drugs than normal cells. Indeed, deficiency of nutrient signaling proteins mimics CR, which is sufficient to improve oxidative stress response and life expectancy only in healthy cells. Thus, although CR and reduction of nutrient signaling may play an important role in cellular response to chemotherapy, the full underlying mechanisms are still not completely understood. Here, we investigate the relationship between the nutrient sensor proteins Ras2, Sch9, or Tor1 and the response of calorie-restricted Saccharomyces cerevisiae cells to cisplatin. Using wild-type and nutrient-sensing mutant strains, we show that deletion of any of these proteins mimics CR and is sufficient to increase cell protection. Moreover, we show that glutathione (GSH) is essential for proper CR protection of yeast cells under cisplatin chemotherapy. By measuring the survival rates and GSH levels, we found that cisplatin cytotoxicity leads to a decrease in GSH content reflecting in an increase of oxidative damage. Finally, investigating DNA fragmentation and apoptosis, we conclude that GSH contributes to CR-mediated cell survival.


Assuntos
Cisplatino/toxicidade , Glutationa/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Estresse Fisiológico , Proteínas ras/metabolismo , Apoptose , Fragmentação do DNA , Deleção de Genes , Viabilidade Microbiana/efeitos dos fármacos , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas ras/genética
15.
Cell Rep ; 43(6): 114281, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38805395

RESUMO

Survival from UV-induced DNA lesions relies on nucleotide excision repair (NER) and the Mec1ATR DNA damage response (DDR). We study DDR and NER in aging cells and find that old cells struggle to repair DNA and activate Mec1ATR. We employ pharmacological and genetic approaches to rescue DDR and NER during aging. Conditions activating Snf1AMPK rescue DDR functionality, but not NER, while inhibition of the TORC1-Sch9S6K axis restores NER and enhances DDR by tuning PP2A activity, specifically in aging cells. Age-related repair deficiency depends on Snf1AMPK-mediated phosphorylation of Sch9S6K on Ser160 and Ser163. PP2A activity in old cells is detrimental for DDR and influences NER by modulating Snf1AMPK and Sch9S6K. Hence, the DDR and repair pathways in aging cells are influenced by the metabolic tuning of opposing AMPK and TORC1 networks and by PP2A activity. Specific Sch9S6K phospho-isoforms control DDR and NER efficiency, specifically during aging.


Assuntos
Senescência Celular , Reparo do DNA , Proteínas Serina-Treonina Quinases , Proteínas de Saccharomyces cerevisiae , Dano ao DNA , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosforilação , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
16.
J Fungi (Basel) ; 9(8)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37623558

RESUMO

Yeast cells are equipped with different nutrient signaling pathways that enable them to sense the availability of various nutrients and adjust metabolism and growth accordingly. These pathways are part of an intricate network since most of them are cross-regulated and subject to feedback regulation at different levels. In yeast, a central role is played by Sch9, a protein kinase that functions as a proximal effector of the conserved growth-regulatory TORC1 complex to mediate information on the availability of free amino acids. However, recent studies established that Sch9 is more than a TORC1-effector as its activity is tuned by several other kinases. This allows Sch9 to function as an integrator that aligns different input signals to achieve accuracy in metabolic responses and stress-related molecular adaptations. In this review, we highlight the latest findings on the structure and regulation of Sch9, as well as its role as a nutrient-responsive hub that impacts on growth and longevity of yeast cells. Given that most key players impinging on Sch9 are well-conserved, we also discuss how studies on Sch9 can be instrumental to further elucidate mechanisms underpinning healthy aging in mammalians.

17.
Antioxidants (Basel) ; 12(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38001792

RESUMO

BACKGROUND: With the development of an aging sociality, aging-related diseases, such as Alzheimer's disease, cardiovascular disease, and diabetes, are dramatically increasing. To find small molecules from natural products that can prevent the aging of human beings and the occurrence of these diseases, we used the lifespan assay of yeast as a bioassay system to screen an antiaging substance. Isoquercitrin (IQ), an antiaging substance, was isolated from Apocynum venetum L., an herbal tea commonly consumed in Xinjiang, China. AIM OF THE STUDY: In the present study, we utilized molecular-biology technology to clarify the mechanism of action of IQ. METHODS: The replicative lifespans of K6001 yeasts and the chronological lifespans of YOM36 yeasts were used to screen and confirm the antiaging effect of IQ. Furthermore, the reactive oxygen species (ROS) and malondialdehyde (MDA) assay, the survival assay of yeast under stresses, real-time polymerase chain reaction (RT-PCR) and Western blotting analyses, the replicative-lifespan assay of mutants, such as Δsod1, Δsod2, Δgpx, Δcat, Δskn7, Δuth1, Δatg32, Δatg2, and Δrim15 of K6001, autophagy flux analysis, and a lifespan assay of K6001 yeast after giving a mitophagy inhibitor and activator were performed. RESULTS: IQ extended the replicative lifespans of the K6001 yeasts and the chronological lifespans of the YOM36 yeasts. Furthermore, the reactive nitrogen species (RNS) showed no change during the growth phase but significantly decreased in the stationary phase after treatment with IQ. The survival rates of the yeasts under oxidative- and thermal-stress conditions improved upon IQ treatment, and thermal stress was alleviated by the increasing superoxide dismutase (Sod) activity. Additionally, IQ decreased the ROS and MDA of the yeast while increasing the activity of antioxidant enzymes. However, it could not prolong the replicative lifespans of Δsod1, Δsod2, Δgpx, Δcat, Δskn7, and Δuth1 of K6001. IQ significantly increased autophagy and mitophagy induction, the presence of free green fluorescent protein (GFP) in the cytoplasm, and ubiquitination in the mitochondria of the YOM38 yeasts at the protein level. IQ did not prolong the replicative lifespans of Δatg2 and Δatg32 of K6001. Moreover, IQ treatment led to a decrease in Sch9 at the protein level and an increase in the nuclear translocation of Rim15 and Msn2. CONCLUSIONS: These results indicated that the Sch9/Rim15/Msn signaling pathway, as well as antioxidative stress, anti-thermal stress, and autophagy, were involved in the antiaging effects of IQ in the yeasts.

18.
Microbiol Spectr ; 11(3): e0524922, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37042757

RESUMO

Mitogen-activated protein kinase (MAPK) pathways regulate essential processes in eukaryotes. However, since uncontrolled activation of these cascades has deleterious effects, precise negative regulation of signaling flow through them, mainly executed by protein phosphatases, is crucial. Previous studies showed that the absence of Ptc1 protein phosphatase results in the upregulation of the MAPK of the cell wall integrity (CWI) pathway, Slt2, and numerous functional defects in Saccharomyces cerevisiae, including a failure to undergo cell separation under heat stress. In this study, we demonstrate that multibudded ptc1Δ cells also exhibit impaired mitochondrial inheritance and that excessive Slt2 kinase activity is responsible for their growth deficiency and daughter-specific G1 cell cycle arrest, as well as other physiological alterations, namely, mitochondrial hyperpolarization and reactive oxygen species (ROS) accumulation. We bring to light the fact that sustained Slt2 kinase activity inhibits signaling through the Sch9 branch of the TORC1 pathway in ptc1Δ cells, leading to increased autophagy. After cytokinesis, septin rings asymmetrically disassembled in ptc1Δ multibudded cells, abnormally remaining at the daughter cell side and eventually relocalizing at the daughter cell periphery, where they occasionally colocalized with the autophagic protein Atg9. Finally, we show that the inability of ptc1Δ cells to undergo cell separation is not due to a failure in the regulation of Ace2 and morphogenesis (RAM) pathway, since the transcription factor Ace2 correctly enters the daughter cell nuclei. However, the Ace2-regulated endochitinase Cts1 did not localize to the septum, preventing the proper degradation of this structure. IMPORTANCE This study provides further evidence that the cell cycle is regulated by complex signaling networks whose purpose is to guarantee a robust response to environmental threats. Using the S. cerevisiae eukaryotic model, we show that, under the stress conditions that activate the CWI MAPK pathway, the absence of the protein phosphatase Ptc1 renders Slt2 hyperactive, leading to numerous physiological alterations, including perturbed mitochondrial inheritance, oxidative stress, changes in septin dynamics, increased autophagy, TORC1-Sch9 inhibition, and ultimately cell cycle arrest and the failure of daughter cells to separate, likely due to the absence of key degradative enzymes at the septum. These results imply novel roles for the CWI pathway and unravel new cell cycle-regulatory controls that operate beyond the RAM pathway, arresting buds in G1 without compromising further division rounds in the mother cell.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Septinas/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/farmacologia , Pontos de Checagem do Ciclo Celular
19.
Chin Med ; 18(1): 111, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670345

RESUMO

BACKGROUND: Aging is an important pathogenic factor of age-related diseases and has brought huge health threat and economic burden to the society. Dendrobium nobile Lindl., a valuable herb in China, promotes longevity according to the record of ancient Chinese materia medica. This study aimed to discover the material basis of D. nobile as an anti-aging herb and elucidate its action mechanism. METHODS: K6001 yeast replicative lifespan assay was used to guide the isolation of D. nobile. The chronological lifespan assay of YOM36 yeast was further conducted to confirm the anti-aging activity of dendrobine. The mechanism in which dendrobine exerts anti-aging effect was determined by conducting anti-oxidative stress assay, quantitative real-time PCR, Western blot, measurements of anti-oxidant enzymes activities, determination of nuclear translocation of Rim15 and Msn2, and replicative lifespan assays of Δsod1, Δsod2, Δcat, Δgpx, Δatg2, Δatg32, and Δrim15 yeasts. RESULTS: Under the guidance of K6001 yeast replicative lifespan system, dendrobine with anti-aging effect was isolated from D. nobile. The replicative and chronological lifespans of yeast were extended upon dendrobine treatment. In the study of action mechanism, dendrobine improved the survival rate of yeast under oxidative stress, decreased the levels of reactive oxygen species and malondialdehyde, and enhanced the enzyme activities and gene expression of superoxide dismutase and catalase, but it failed to elongate the replicative lifespans of Δsod1, Δsod2, Δcat, and Δgpx yeast mutants. Meanwhile, dendrobine enhanced autophagy occurrence in yeast but had no effect on the replicative lifespans of Δatg2 and Δatg32 yeast mutants. Moreover, the inhibition of Sch9 phosphorylation and the promotion of nuclear translocation of Rim15 and Msn2 were observed after treatment with denrobine. However, the effect of dendrobine disappeared from the Δrim15 yeast mutant after lifespan extension, oxidative stress reduction, and autophagy enhancement. CONCLUSIONS: Dendrobine exerts anti-aging activity in yeast via the modification of oxidative stress and autophagy through the Sch9/Rim15/Msn2 signaling pathway. Our work provides a scientific basis for the exploitation of D. nobile as an anti-aging herb.

20.
G3 (Bethesda) ; 11(7)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-33901283

RESUMO

Nutrient sensing is important for cell growth, aging, and longevity. In Saccharomyces cerevisiae, Sch9, an AGC-family protein kinase, is a major nutrient sensing kinase homologous to mammalian Akt and S6 kinase. Sch9 integrates environmental cues with cell growth by functioning downstream of TORC1 and in parallel with the Ras/PKA pathway. Mutations in SCH9 lead to reduced cell growth in dextrose medium; however, reports on the ability of sch9Δ mutants to utilize non-fermentable carbon sources are inconsistent. Here, we show that sch9Δ mutant strains cannot grow on non-fermentable carbon sources and rapidly accumulate suppressor mutations, which reverse growth defects of sch9Δ mutants. sch9Δ induces gene expression of three transcription factors required for utilization of non-fermentable carbon sources, Cat8, Adr1, and Hap4, while sch9Δ suppressor mutations, termed sns1 and sns2, strongly decrease the gene expression of those transcription factors. Despite the genetic suppression interactions, both sch9Δ and sns1 (or sns2) homozygous mutants have severe defects in meiosis. By screening mutants defective in sporulation, we identified additional sch9Δ suppressor mutants with mutations in GPB1, GPB2, and MCK1. Using library complementation and genetic analysis, we identified SNS1 and SNS2 to be IRA2 and IRA1, respectively. Furthermore, we discovered that lifespan extension in sch9Δ mutants is dependent on IRA2 and that PKA inactivation greatly increases basal expression of CAT8, ADR1, and HAP4. Our results demonstrate that sch9Δ leads to complete loss of growth on non-fermentable carbon sources and mutations in MCK1 or genes encoding negative regulators of the Ras/PKA pathway reverse sch9Δ mutant phenotypes.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Supressão Genética , Carbono/metabolismo , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa