Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 335
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 538, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867179

RESUMO

BACKGROUND: The combination of compost and biochar (CB) plays an important role in soil restoration and mitigation strategies against drought stress in plants. In the current study, the impact of CB was determined on the characteristics of saline calcareous soil and the productivity of fenugreek (Trigonella foenum-graecum L.) plants. The field trials examined CB rates (CB0, CB10 and CB20 corresponding to 0, 10, and 20 t ha‒1, respectively) under deficit irrigation [DI0%, DI20%, and DI40% receiving 100, 80, and 60% crop evapotranspiration (ETc), respectively] conditions on growth, seed yield (SY), quality, and water productivity (WP) of fenugreek grown in saline calcareous soils. RESULTS: In general, DI negatively affected the morpho-physio-biochemical responses in plants cultivated in saline calcareous soils. However, amendments of CB10 or CB20 improved soil structure under DI conditions. This was evidenced by the decreased pH, electrical conductivity of soil extract (ECe), and bulk density but increased organic matter, macronutrient (N, P, and K) availability, water retention, and total porosity; thus, maintaining better water and nutritional status. These soil modifications improved chlorophyll, tissue water contents, cell membrane stability, photosystem II photochemical efficiency, photosynthetic performance, and nutritional homeostasis of drought-stressed plants. This was also supported by increased osmolytes, non-enzymatic, and enzymatic activities under DI conditions. Regardless of DI regimes, SY was significantly (P ≤ 0.05) improved by 40.0 and 102.5% when plants were treated with CB10 and CB20, respectively, as similarly observed for seed alkaloids (87.0, and 39.1%), trigonelline content (43.8, and 16.7%) and WP (40.9, and 104.5%) over unamended control plants. CONCLUSIONS: Overall, the application of organic amendments of CB can be a promising sustainable solution for improving saline calcareous soil properties, mitigating the negative effects of DI stress, and enhancing crop productivity in arid and semi-arid agro-climates.


Assuntos
Carvão Vegetal , Compostagem , Sementes , Solo , Trigonella , Trigonella/metabolismo , Trigonella/fisiologia , Trigonella/crescimento & desenvolvimento , Solo/química , Sementes/crescimento & desenvolvimento , Compostagem/métodos , Desidratação , Água/metabolismo , Salinidade
2.
Environ Res ; 241: 117577, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37923109

RESUMO

The prevalence of toxic element thallium (Tl) in soils is of increasing concern as a hidden hazard in agricultural systems and food chains. In the present work, pure biochar (as a comparison) and jacobsite (MnFe2O4)-biochar composite (MFBC) were evaluated for their immobilization effects in Tl-polluted agricultural soils (Tl: ∼10 mg/kg). Overall, MFBC exhibited an efficient effect on Tl immobilization, and the effect was strengthened with the increase of amendment ratio. After being amended by MFBC for 15 and 30 days, the labile fraction of Tl in soil decreased from 1.55 to 0.97 mg/kg, and from 1.51 to 0.88 mg/kg, respectively. In addition, pH (3.05) of the highly acidic soil increased to a maximum of 3.97 after the immobilization process. Since the weak acid extractable and oxidizable Tl were the preponderantly mitigated fractions and displayed a negative correlation with pH, it can be inferred that pH may serve as one of the most critical factors in regulating the Tl immobilization process in MFBC-amended acidic soils. This study indicated a great potential of jacobsite-biochar amendment in stabilization and immobilization of Tl in highly acidic and Tl-polluted agricultural soils; and it would bring considerable environmental benefit to these Tl-contaminated sites whose occurrence has significantly increased in recent decades near the pyrite or other sulfide ore mining and smelting area elsewhere.


Assuntos
Poluentes do Solo , Tálio , Tálio/análise , Solo , Sulfetos , Poluentes do Solo/análise
3.
Environ Res ; 259: 119531, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38960358

RESUMO

Rise in climate change-induced drought occurrences have amplified pollution of metal(loid)s, deteriorated soil quality, and deterred growth of crops. Rice straw-derived biochars (RSB) and cow manure-enriched biochars (CEB) were used in the investigation (at doses of 0%, 2.5%, 5%, and 7.5%) to ameliorate the negative impacts of drought, improve soil fertility, minimize arsenic pollution, replace agro-chemical application, and maximize crop yields. Even in soils exposed to severe droughts, 3 months of RSB and CEB amendment (at 7.5% dose) revealed decreased bulk density (13.7% and 8.9%), and increased cation exchange capacity (6.0% and 6.3%), anion exchange capacity (56.3% and 28.0%), porosity (12.3% and 7.9%), water holding capacity (37.5% and 12.5%), soil respiration (17.8% and 21.8%), and nutrient contents (especially N and P). Additionally, RSB and CEB decreased mobile (30.3% and 35.7%), bio-available (54.7% and 45.3%), and leachable (55.0% and 56.5%) fractions of arsenic. Further, pot experiments with Bengal gram and coriander plants showed enhanced growth (62-188% biomass and 90-277% length) and reduced arsenic accumulation (49-54%) in above ground parts of the plants. Therefore, biochar application was found to improve physico-chemical properties of soil, minimize arsenic contamination, and augment crop growth even in drought-stressed soils. The investigation suggests utilisation of cow manure for eco-friendly fabrication of nutrient-rich CEB, which could eventually promote sustainable agriculture and circular economy. With the increasing need for sustainable agricultural practices, the use of biochar could provide a long-term solution to enhance soil quality, mitigate the effects of climate change, and ensure food security for future generations. Future research should focus on optimizing biochar application across various soil types and climatic conditions, as well as assessing its long-term effectiveness.


Assuntos
Arsênio , Carvão Vegetal , Secas , Poluentes do Solo , Solo , Carvão Vegetal/química , Arsênio/análise , Solo/química , Poluentes do Solo/análise , Esterco/análise , Oryza/crescimento & desenvolvimento , Desenvolvimento Vegetal/efeitos dos fármacos , Bovinos
4.
Int J Phytoremediation ; : 1-9, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277799

RESUMO

The effectiveness of phytoremediation in Cd-contaminated soils is crucial for enhancing nutrient availability and plant tolerance to Cd. We simulated soil contamination with varying textures and fertilization conditions. Two experiments were conducted: one without liming and fertilization and another with soil fertilization for grasses. The soil types used were Oxisol and Entisol, and the grasses tested were Megathyrsus maximus and Urochloa brizantha at three Cd levels: 0 mg kg-1 (Control), 2 mg kg-1 (Low), and 12 mg kg-1 (High). Soil amendments and fertilization did not significantly change Cd availability. Soil chemical attributes were unaffected by Cd contamination but were influenced by fertilization, which kept the pH below optimal levels. Cd availability was higher in more contaminated soils, with Entisol showing greater concentrations than Oxisol. Dry matter production of the grasses decreased with higher contamination, with U. brizantha being more productive than M. maximus in fertilized soils. Cd accumulation was higher in highly contaminated soils, particularly for U. brizantha. The bioconcentration factor was higher in Entisol, while the translocation factor exceeded 1.0 only for M. maximus in low-contamination Oxisol. Fertilization can mitigate Cd contamination effects, with U. brizantha showing greater tolerance and accumulation capacity in fertilized soils.


Grasses, often seen just as cover crops or forages, can play a vital role in mitigating heavy metal pollution, especially Cd. By comparing the growth, Cd accumulation, and tolerance of different grass species in fertilized versus unfertilized soils, we identify optimal strategies to maximize the effectiveness of phytoremediation without compromising soil health and ecological balance. The findings of the study reveal that the response of grasses to fertilization in contaminated soils varies significantly, directly influencing their capacity to phytoremediate Cd. This discovery suggests that customizing fertilizer use, based on the grass species and specific soil conditions, could be crucial for optimizing the removal of Cd from the environment.

5.
J Environ Manage ; 355: 120538, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452623

RESUMO

Prolonged wastewater irrigation in agriculture has led to the accumulation of heavy metals in soil, endangering both the soil quality and food safety, thereby posing a potential threat to human health through the consumption of contaminated crops. The present study aimed to enhance the yield of mustard (Brassica juncea L. cv. Varuna and NRCHB 101) plants and stabilize heavy metals (Cd, Cr, Ni, Cu, and Zn) in wastewater-irrigated soil using rice husk ash (RHA), rice mill by-product, collected from Chandauli region of Eastern Uttar Pradesh, India. Results demonstrated significant improvements in growth, biomass, physiology, and yield of mustard plant with increasing RHA application in wastewater irrigated soil (p ≤ 0.05). Heavy metal accumulation in different parts of mustard plants decreased as RHA application rate increased. Applying RHA at 2% in soil proved to be most effective in reducing Cd, Cr, Ni, Cu, and Zn accumulation in seeds by 29%, 29.6%, 23.1%, 21.3% and 20.1%, respectively in Varuna and 30.1%, 21.4%, 11.1%, 12.1%, and 28.5%, respectively in NRCHB 101cultivars. The present findings showed that RHA amendment in wastewater irrigated soil had reduced bioaccumulation of Cd, Cr, Ni, Cu, and Zn and consequently their toxicity in cultivated mustard plants. A novel application of RHA is unveiled in this research, offering a promising solution to promote sustainable agriculture and to reduce heavy metal associated health risks within the soil-mustard system.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Humanos , Solo , Mostardeira , Águas Residuárias , Ecossistema , Cádmio , Metais Pesados/análise , Poluentes do Solo/análise , Monitoramento Ambiental
6.
Bull Environ Contam Toxicol ; 112(5): 68, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722367

RESUMO

An investigation of the impact of adding plant-based organic compost to clay soil from a Moringa oleifera farm focusing on the metal content, bioavailability, and accumulation of nutrients in M. oleifera leaves was conducted. Clay soil was mixed with 15%, 30%, 45% and 60% plant-based organic compost (by volume) in 20 cm wide, 2 L pots. Moringa oleifera plants were planted in four replicates of each treatment and control group. Results revealed that the addition of compost significantly (P < 0.05) altered the concentration of metals in the soil. Correspondingly, accumulation of nutrients in M. oleifera leaves increased with the addition of compost to the soil, except for cobalt and chromium. Trace elements had minimal bioavailability in the amended soils, and their presence in the leaves was lower than the permissible trace metal levels in food. The 30% combination had the highest concentration of calcium (45 042.5 mg/kg), magnesium (17430.0 mg/kg) and phosphorous (8802. 5 mg/kg) in M. oleifera leaves. The study concluded the addition of compost improved bioavailability of nutrients in the soil and their concentration in M. oleifera leaves. The target hazard quotients for heavy metals was less than one, indicating that M. oleifera leaf biomass harvested from soil amended with plant-based compost is safe for human consumption. These results serve as guidelines for recommended organic certification requiremets where plant-based compost is often used in the fast-growing herbal industry.


Assuntos
Argila , Compostagem , Metais Pesados , Moringa oleifera , Folhas de Planta , Poluentes do Solo , Solo , Moringa oleifera/química , Poluentes do Solo/análise , Folhas de Planta/química , Humanos , Argila/química , Medição de Risco , Solo/química , Metais Pesados/análise , Biomassa
7.
Environ Res ; 218: 114769, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36463989

RESUMO

The use of modified biochar for the remediation of heavy metal (HM) has received much attention. However, the immobilization mechanism of biochar to multiple HMs and the interaction of different forms of HMs with microorganisms are still unclear. K2HPO4-modified biochar (PBC) was produced and used in a 90-days immobilization experiment with soil collected from a typic lead-zinc (Pb-Zn) mining soil. Incubation experiments showed that PBC enhanced the transformation of Cd, Pb, Zn and Cu from exchangeable (Ex-) and/or carbonate-bound forms (Car-) to organic matter-bound (Or-) and/or residual forms (Re-). After scanning electron microscopy-energy dispersive X-ray spectrometer (SEM-EDS), X-ray diffractometry (XRD), fourier transform infrared (FTIR), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) analysis, the mechanisms of HM immobilization by PBC were proposed as precipitation (PO43-, HPO42-, OH- and CO32-), electrostatic attraction, complexation (-COOH, -OH and R-O-H) and the indirect roles of soil parameter variations (pH, moisture and microbial community). Microbial community analysis through high-throughput sequencing showed that PBC reduced bacterial and fungal abundance. However, addition of PBC increased the relative proportions of Proteobacteria by 15.04%-42.99%, Actinobacteria by 4.74%-22.04%, Firmicutes by 0.76%-23.35%, Bacteroidota by 0.16%-12.34%, Mortierellomycota by 4.00%-9.66% and Chytridiomycota by 0.10%-13.7%. Ex-Cd/Pb/Zn, Car-Cd/Zn and Re-Cd/Pb/As were significantly positively (0.001

Assuntos
Metais Pesados , Poluentes do Solo , Zinco , Cádmio/análise , Chumbo , Fósforo , Solo/química , Poluentes do Solo/análise , Metais Pesados/análise , Bactérias/genética , Bacteroidetes
8.
Environ Res ; 227: 115731, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36958380

RESUMO

One of the most consumed pharmaceutical subgroups across the world is nonsteroidal anti-inflammatory drugs (NSAIDs). However, the dissemination of these compounds to the natural environments through agronomic practices is a serious global problem. The hypothesis of this study is to reveal the transition of selected NSAIDs, paracetamol (PAR), diclofenac (DCF), ibuprofen (IBU), and naproxen (NAP) together with six main metabolites, detected in raw/treated wastewater (RWW/TWW) and sewage sludge generated in an urban wastewater treatment plant (WWTP) to soils and agricultural crops (corn, barley, sunflower, and sugar beet) through two widely applied agronomic practices, irrigation with TWW and application of sewage sludge as soil amendment. In other words, the cycles of 10 NSAIDs have been evaluated by simultaneously monitoring their concentrations in RWW/TWW, sewage sludge, soils, and crops. It was determined that the parent compounds and detected metabolites were treated at quite higher removal efficiencies (93.4 - >99.9%) in the studied WWTP, while DCF was eliminated poorly (7.9-52.2%). However, although it changes seasonally for some compounds, it was determined that the concentrations of almost all investigated NSAIDs increased at the determined irrigation points in the discharge channel (DC) where agricultural irrigations were performed. Apart from that, DCF, NAP, and 2-hydroxyibuprofen (2-OH-IBU) were always detected in sewage sludge seasonally up to about 20.5, 11.3, and 3.7 ng/g, respectively. While 2-OH-IBU was determined as the dominant metabolite in RWW, TWW, and sewage sludge, the metabolite of 1-hydroxyibuprofen (1-OH-IBU) was determined as the dominant compound in soils. Although 1-OH-IBU was not detected in TWW and sewage sludge in any season, detecting this metabolite as a common compound in all investigated soils (up to 60.1 ng/kg) reveals that this compound is the primary transformation product of IBU in soils. It was observed that at least one of the metabolites of IBU (1-OH-IBU and/or 2-OH-IBU) was detected in all plants grown (up to 0.75 ng/g), especially during the periods when both agricultural practices were applied. In addition, the detection of 1-OH-IBU with increasing concentrations from root to shoots in corn grown as a result of both agronomic practices shows that this compound has a high translocation potential in the corn plant. Apart from this, it was determined that PAR was detected in corn (up to 43.3 ng/kg) and barley (up to 16.8 ng/kg) within the scope of irrigation with TWW, and NAP was detected in sugar beet (up to 11.2 ng/kg) through sewage sludge application.


Assuntos
Esgotos , Solo , Produtos Agrícolas , Anti-Inflamatórios não Esteroides , Águas Residuárias , Diclofenaco , Naproxeno , Acetaminofen , Verduras , Açúcares
9.
Plant Dis ; 107(8): 2384-2394, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36627810

RESUMO

Management of plant-parasitic nematodes uses host plant resistance, crop rotation, cultural methods, and nematicide applications. Host plant resistance is tedious to develop, and crop rotation and cultural methods are challenging to use. Environmental and human health concerns render sole reliance on chemical nematode suppression nonsustainable. Previously, digestate from anaerobically fermented maize silage suppressed Heterodera schachtii in Beta vulgaris crops. Here, seven digestates were investigated for nematode suppressive potential: liquid dairy manure digestate (LDMD), liquid dairy manure digestate with ammonia removed (LDMDA-), food waste digestate (FWD), liquid food waste digestate with ammonia removed (LFWDA-), liquid food waste digestate (LFWD), food waste hydrolysate from the Renewable Energy Anaerobic Digester (HREAD), and food waste hydrolysate from the South Area Transfer Station in Sacramento (HSATS). In a red radish (Raphanus sativus) bioassay with H. schachtii, digestates were amended at rates of 0.02, 0.11, 0.57, and 2.86 ml per 100 cm3 of soil. At a rate of 2.86 ml, all amendments except LDMDA- and LFWDA- significantly reduced juvenile root penetration compared with the infested control. In a greenhouse watermelon (Citrullus lanatus) bioassay with Meloidogyne incognita, amendments FWD, LFWD, HREAD, and HSATS as well as LDMD (less effectively) at 2.86 and 5.76 ml per 100 cm3 of soil significantly reduced egg masses per root system compared with the nontreated, nematode-infested control. In a microplot experiment with M. incognita and red radish, in the treatment amended with LFWD at 2.37 ml per 100 cm3 of soil, marketable yields were improved by approximately 50% over the nontreated control and were comparable with those in the treatment with the nematicide Reklemel. In a second microplot experiment with M. incognita and watermelon, treatments that contained LFWD at rates of 3.55 ml per 100 cm3 of soil had transient numerical effects of initial nematode suppression that were not maintained throughout the 3-month growth period. The results of these studies demonstrated that digestates FWD and LFWD consistently expressed some nematode-suppressive capacity.


Assuntos
Brassicaceae , Eliminação de Resíduos , Tylenchida , Tylenchoidea , Animais , Humanos , Esterco , Amônia/farmacologia , Solo/parasitologia , Antinematódeos/farmacologia , Produtos Agrícolas/parasitologia
10.
J Environ Manage ; 348: 119133, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839201

RESUMO

The development of alginate-based composites in agriculture to combat nutrient loss and drought for sustainable development has drawn increasing attention in the scientific community. Existing studies are however scattered, and the retention and slow-release mechanisms of alginate-based composites are not well understood. This paper systematically reviews the current literature on the preparation, characterization, and agricultural applications of various alginate-based composites. The synthesis methods of alginate-based composites are firstly summarized, followed by a review of available analytical techniques to characterize alginate-based composites for the attainment of their desired performance. Secondly, the performance and controlling factors for agricultural applications of alginate-based composites are discussed, including aquasorb, slow-release fertilizer, soil amendment, microbial inoculants, and controlled release of pesticides for pest management. Finally, suggestions and future perspectives are proposed to expand the applications of alginate-based composites for sustainable agriculture.


Assuntos
Inoculantes Agrícolas , Praguicidas , Solo , Alginatos , Agricultura/métodos , Fertilizantes/análise
11.
J Environ Manage ; 332: 117410, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36731419

RESUMO

The mother earth is a source of natural resources that, in conjunction with anthropogenic activities, generates a wide spectrum of different biowastes. These biomaterials can be used as low-cost raw feedstock to produce bioenergy, value-added products, and other commodities. However, the improper management and disposal of these biowastes can generate relevant environmental impacts. Consequently, it is imperative to explore alternative technologies for the valorization and exploitation of these wastes to obtain benefits for the society. This review covers different aspects related to valorization of biowastes and their applications in water pollution, soil fertility and green energy generation. The classification and characteristics of different biowastes (biosolids, animal wastes and effluents, plant biomass, wood and green wastes) including their main generation sources are discussed. Different technologies (e.g., pyrolysis, hydrothermal carbonization, anaerobic digestion, gasification, biodrying) for the transformation and valorization of these residues are also analyzed. The application of biowastes in soil fertility, environmental pollution and energy production are described and illustrative examples are provided. Finally, the challenges related to implement low-cost and sustainable biowaste management strategies are highlighted. It was concluded that reliable simulation studies are required to optimize all the logistic stages of management chain of these residues considering the constraints generated from the economic, environmental and social aspects of the biowaste generation sources and their locations. The recollection and sorting of biowastes are key parameters to minimize the costs associated to their management and valorization. Also, the concepts of Industry 4.0 can contribute to achieve a successful commercial production of the value-added products obtained from the biowaste valorization. Overall, this review provides a general outlook of biowaste management and its valorization in the current context of circular economy.


Assuntos
Solo , Tecnologia , Animais , Solo/química
12.
J Environ Manage ; 330: 117137, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36584462

RESUMO

Sufficient crop yield while maintaining soil health and sustainable agricultural development is a global objective, serving a special challenge to certain climate-sensitive plateau areas. Despite conducting trails on a variety of soil amendments in plateau areas, systematic research is lacking regarding the influences of organic and inorganic amendments on soil quality, particularly soil microbiome. To our knowledge, this was the first study that compared the effects of inorganic, organic, and mixed amendments on typical plateau crop hulless barley (Hordeum vulgare L. var. Nudum, also known as "Qingke" in Chinese) over the course of tillering, jointing, and ripening. Microbial communities and their responses to amendments, soil properties and Tibetan hulless barley growth, yield were investigated. Results indicated that mixed organic and inorganic amendments promoted the abundance of rhizosphere microorganisms, enhancing the rhizosphere root-microbes interactions and resistance to pathogenic bacteria and environmental stresses. The rhizosphere abundant and significantly different genera Arthrobacter, Rhodanobacter, Sphingomona, Nocardioides and so on demonstrated their unique adaptation to the plateau environment based on the results of metagenomic binning. The abundance of 23 genes about plant growth and environmental adaptations in the mixed amendment soil were significantly higher than other treatments. Findings from this study suggest that the mixed organic/inorganic amendments can help establish a healthy microbiome and increase soil quality while achieving sufficient hulless barley yields in Tibet and presumably other similar geographic areas of high altitude.


Assuntos
Hordeum , Solo , Tibet , Hordeum/genética , Fazendas , Interações Microbianas , Microbiologia do Solo
13.
J Environ Manage ; 342: 118191, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37210821

RESUMO

This paper aimed to highlight the succession of biochar addition for soil amendment and contaminants remediation during composting process. Biochar incorporated into the compost mixture promotes composting performance and enhances contaminants reduction. Co-composting with biochar for soil biota has been demonstrated via modified soil biological community abundance and diversity. On the other hand, adverse alterations to soil properties were noted, which had a negative impact on the communication of microbe-to-plant interactions within the rhizosphere. As a result, these changes influenced the competition between soilborne pathogens and beneficial soil microorganisms. Co-composting with biochar promoted the heavy metals (HMs) remediation efficiency in contaminated soils by around 66-95%. Notably, applying biochar during composting could improve nutrient retention and mitigate leaching. The adsorption of nutrients such as nitrogen and phosphorus compounds by biochar can be applied to manage environmental contamination and presents an excellent opportunity to enhance soil quality. Additionally, the various specific functional groups and large specific surface areas of biochar allow for excellent adsorption of persistent pollutants (e.g., pesticides, polychlorinated biphenyls (PCBs)) and emerging organic pollutants, such as microplastic, phthalate acid esters (PAEs) during co-composting. Finally, future perspectives, research gaps, and recommendations for further studies are highlighted, and potential opportunities are discussed.


Assuntos
Compostagem , Poluentes Ambientais , Poluentes do Solo , Solo , Plásticos , Poluentes do Solo/análise , Carvão Vegetal
14.
Environ Geochem Health ; 45(7): 5109-5125, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37071265

RESUMO

Cadmium pollution in farmland has become a global environmental problem, threatening ecological security and human health. Biochar is effective in remediation of soil pollution. However, high concentrations of biochar can inhibit plant growth, and low concentrations of biochar have limited mitigation effect on cadmium toxicity. Therefore, the combination of low-concentration biochar and other amendments is a promising approach to alleviate cadmium toxicity in plants and improve the safety of edible parts. In this study, muskmelon was selected as the research object, and different concentrations of α-Fe2O3 nanoparticles were used alone or combined with biochar to explore the effects of different treatments on muskmelon plants in cadmium-contaminated soil. The results showed that the combined application of 250 mg/kg α-Fe2O3 nanoparticles and biochar had a good effect on the repair of cadmium toxicity in muskmelon plants. Compared with cadmium treatment, its application increased plant height by 32.53%, cadmium transport factor from root to stem decreased by 32.95%, chlorophyll content of muskmelon plants increased by 14.27%, and cadmium content in muskmelon flesh decreased by 18.83%. Moreover, after plant harvest, soil available cadmium content in 250 mg/kg α-Fe2O3 nanoparticles and biochar combined treatment decreased by 31.18% compared with cadmium treatment. The results of this study provide an effective reference for the composite application of different exogenous amendments and a feasible idea for soil heavy metal remediation and mitigation of cadmium pollution in farmland.


Assuntos
Nanopartículas , Poluentes do Solo , Humanos , Cádmio/toxicidade , Cádmio/análise , Frutas/química , Carvão Vegetal/farmacologia , Solo , Nanopartículas/toxicidade , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
15.
J Environ Sci Health B ; 58(9): 583-593, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37614009

RESUMO

In this work, vermicompost was prepared with maize stover and cattle dung in ratios of 60:40 (VC1), 50:50 (VC2) and 40:60 (VC3), and the physicochemical properties of the vermicompost were related to the ratio of the raw materials used. The effect of the vermicomposts on the adsorption kinetics, adsorption isotherms and desorption of atrazine were investigated in unamended soil (S) and soil amended with 4% (w/w) of VC1(S-VC1), VC2(S-VC2) and VC3(S-VC3). The total organic carbon (TOC) content of VC1, VC2 and VC3 was 38.46, 37.33 and 34.47%, the HA content was 43.50, 42.22 and 39.28 g/kg, and the HA/FA ratios was 1.47, 0.44 and 0.83, respectively. The adsorption of atrazine on the soil, on the vermicompost and on soils amended with vermicompost followed a pseudo-second-order kinetic model. The Freundlich equation better fitted the adsorption isotherm of atrazine. The vermicomposts enhanced atrazine adsorption and decreased atrazine desorption. Correlation analysis showed that the TOC and HA were significantly positively correlated with Kf, which indicated that TOC and HA of the vermicomposts contributed significantly to the adsorption and desorption of atrazine. This study demonstrated that vermicomposts have great potential in the bioremediation of atrazine pollution and that their role is related to the raw materials used to prepare them.


Assuntos
Atrazina , Animais , Bovinos , Adsorção , Poluição Ambiental , Fezes , Solo
16.
J Environ Sci (China) ; 127: 349-360, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522067

RESUMO

The by-product of wet flue gas desulfurization, desulfurized steel slag (DS), had chemical characteristics like natural gypsum that can be used to improve saline-sodic soil. However, contamination risk of heavy metals for cycling utilization of DS in agriculture was concerned mostly. Both pot and field experiments were conducted for evaluating the potential pollution risk of DS as the amendment of saline-sodic soil. Results showed that application of DS decreased the contents of Cd, Cu, Zn, and Pb, while significantly increasing chromium (Cr) content in DS-amended soils. The field experiment demonstrated that the migration of heavy metals (Cd, Zn, Cu, and Pb) in the soil profile was negligible. The application of DS at the dosage of 22.5-225 tons/ha significantly increased the Cr content in alfalfa (Medicago sativa L.) but lower than the national standard for feed in China (GB 13078-2017). DS altered the chemical fraction of heavy metals (Zn, Cu, and Pb), transferred exchangeable, reducible into oxidizable and residual forms in DS-amended soil. Application of DS combined with fulvic acid (FA) could effectively reduce the movement of heavy metals in soil and the accumulation of Cr in alfalfa. Based on our results, DS was a safe and feasible material for agricultural use and presented relatively little pollution risk of heavy metals. However, the results also showed that DS to a certain extent had a potential environmental risk of Cr if larger dosages of DS were used.


Assuntos
Metais Pesados , Poluentes do Solo , Solo/química , Resíduos Sólidos , Poluentes do Solo/análise , Aço , Cádmio , Chumbo , Metais Pesados/análise , Monitoramento Ambiental , Resíduos Industriais/análise , China , Medição de Risco
17.
J Appl Microbiol ; 132(3): 2342-2354, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34637586

RESUMO

AIMS: This study investigated Salmonella concentrations following combinations of horticultural practices including anaerobic soil disinfestation (ASD), soil amendment type and irrigation regimen. METHODS AND RESULTS: Sandy-loam soil was inoculated with a five-serovar Salmonella cocktail (5.5 ± 0.2 log CFU per gram) and subjected to one of six treatments: (i) no soil amendment, ASD (ASD control), (ii) no soil amendment, no-ASD (non-ASD control) and (iii-vi) soil amended with pelletized poultry litter, rye, rapeseed or hairy vetch with ASD. The effect of irrigation regimen was determined by collecting samples 3 and 7 days after irrigation. Twenty-five-gram soil samples were collected pre-ASD, post-soil saturation (i.e. ASD-process), and at 14 time-points post-ASD, and Salmonella levels enumerated. Log-linear models examined the effect of amendment type and irrigation regimen on Salmonella die-off during and post-ASD. During ASD, Salmonella concentrations significantly decreased in all treatments (range: -0.2 to -2.7 log CFU per gram), albeit the smallest decrease (-0.2 log CFU per gram observed in the pelletized poultry litter) was of negligible magnitude. Salmonella die-off rates varied by amendment with an average post-ASD rate of -0.05 log CFU per gram day (CI = -0.05, -0.04). Salmonella concentrations remained highest over the 42 days post-ASD in pelletized poultry litter, followed by rapeseed, and hairy vetch treatments. Findings suggested ASD was not able to eliminate Salmonella in soil, and certain soil amendments facilitated enhanced Salmonella survival. Salmonella serovar distribution differed by treatment with pelletized poultry litter supporting S. Newport survival, compared with other serovars. Irrigation appeared to assist Salmonella survival with concentrations being 0.14 log CFU per gram (CI = 0.05, 0.23) greater 3 days, compared with 7 days post-irrigation. CONCLUSIONS: ASD does not eliminate Salmonella in soil, and may in fact, depending on the soil amendment used, facilitate Salmonella survival. SIGNIFICANCE AND IMPACT OF THE STUDY: Synergistic and antagonistic effects on food safety hazards of implementing horticultural practices should be considered.


Assuntos
Microbiologia do Solo , Solo , Irrigação Agrícola , Agricultura/métodos , Anaerobiose , Salmonella
18.
Environ Res ; 214(Pt 2): 113909, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35850292

RESUMO

In a desperate attempt to find organic alternatives to synthetic fertilizers, agricultural scientists are increasingly using biochar as a soil amendment. Using chemical fertilizers results in enormous financial burdens and chronic health problems for plants and soils. Global concerns have also increased over the prolonged consumption of foods grown with artificial fertilizers and growth promotors. This adversely affects the environment and the welfare of humans, animals, and other living organisms. This way, organic biofertilizers have established a sustainable farming system. In such a context, biochar is gaining much attention among scientists as it may improve the overall performance of plants; in particular, crops have been optimistically cultivated with the addition of various sources. Field experiments have been conducted with multiple plant-based biochars and animal manure-based biochar. Plants receive different essential nutrients from biochar due to their physicochemical properties. Despite extensive research on biochar's effects on plant growth, yield, and development, it is still unknown how biochar promotes such benefits. Plant performance is affected by many factors in response to biochar amendment, but biochar's effect on nutrient uptake is not widely investigated. We attempted this review by examining how biochar affects nutrient uptake in various crop plants based on its amendment, nutrient composition, and physicochemical and biological properties. A greater understanding and optimization of biochar-plant nutrient interactions will be possible due to this study.


Assuntos
Carvão Vegetal , Fertilizantes , Animais , Carvão Vegetal/química , Produtos Agrícolas , Fertilizantes/análise , Humanos , Nutrientes , Solo/química
19.
Environ Res ; 214(Pt 2): 113832, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35810814

RESUMO

Soil ecosystem imparts a fundamental role in the growth and survival of the living creatures. The interaction between living and non-living constituents of the environment is important for the regulation of life in the ecosystem. Biochar is a carbon rich product present in the soil that is responsible for various applications in diversified fields. In this review, we focused on the collaboration between the soil, biochar and microbial community present in the soil and consequences of it in the ecosystem. Herein, it primarily discusses on the different approaches of the production and characterization of biochar. Furthermore, this review also discusses about the optimistic interaction of biochar with soil microbes and their role in plant growth. Eventually, it reveals the various physio-chemical properties of biochar, including its specific surface area, porous nature, ion exchange capacity, and pH, which aid in the modification of the soil environment. Furthermore, it elaborately discloses the impact of the biochar addition in the soil focusing mainly on its interaction with microbial communities such as bacteria and fungi. The physicochemical properties of biochar significantly interact with microbes and improve the beneficial microbes growth and increase soil nutrients, which resulting reasonable plant growth. The main focus remains on the role of biochar-soil microbiota in remediation of pollutants, soil amendment and inhibition of pathogenicity among plants by promoting resistance potential. It highlights the fact that adding biochar to soil modulates the soil microbial community by increasing soil fertility, paving the way for its use in farming, and pollutant removal.


Assuntos
Microbiota , Poluentes do Solo , Carvão Vegetal/química , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise
20.
Environ Res ; 215(Pt 1): 114259, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36100098

RESUMO

The accumulation of cadmium (Cd) in grains and edible parts of crops poses a risk to human health. Because rice is the staple food of more than half of the world population, reducing Cd uptake by rice is critical for food safety. HydroPotash (HYP), an innovative potassium fertilizer produced with a hydrothermal process, has the characteristics of immobilizing heavy metals and potential use for remediating Cd-contaminated soils. The objective of this study was to evaluate the HYP as a soil amendment to immobilize Cd in acidic soils and to reduce the accumulation of Cd in rice tissues. The experiment was performed in a greenhouse with a Cecil sandy loam soil (pH 5.3 and spiked with 3 mg Cd kg-1) under either flooding conditions (water level at 4 cm above the soil surface) or at field capacity. Two hydrothermal materials (HYP-1 and HYP-2) were compared with K-feldspar + Ca(OH)2 (the raw material used for producing HYP), Ca(OH)2, zeolite, and a control (without amendment). After 30 days of soil incubation, HydroPotashs, the raw material, and Ca(OH)2 increased both soil solution pH and electrical conductivity. These materials also decreased soluble Cd concentration (up to 99.7%) compared with the control (p < 0.05). After 145 days, regardless of the materials applied, plant growth was favored (up to 35.8%) under the flooded regime. HydroPotash-1 was more effective for increasing dry biomass compared with other amendments under both water regimes. HydroPotashs reduced extractable Cd in soil, Cd content in plant biomass at tillering and maturing stage, and were efficient in minimizing Cd accumulation in rice grains.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Zeolitas , Silicatos de Alumínio , Cádmio/análise , Fertilizantes , Humanos , Oryza/química , Potássio/farmacologia , Compostos de Potássio , Solo/química , Poluentes do Solo/análise , Água , Zeolitas/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa