Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.922
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Biochem ; 89: 471-499, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31935115

RESUMO

Mitochondria are essential in most eukaryotes and are involved in numerous biological functions including ATP production, cofactor biosyntheses, apoptosis, lipid synthesis, and steroid metabolism. Work over the past two decades has uncovered the biogenesis of cellular iron-sulfur (Fe/S) proteins as the essential and minimal function of mitochondria. This process is catalyzed by the bacteria-derived iron-sulfur cluster assembly (ISC) machinery and has been dissected into three major steps: de novo synthesis of a [2Fe-2S] cluster on a scaffold protein; Hsp70 chaperone-mediated trafficking of the cluster and insertion into [2Fe-2S] target apoproteins; and catalytic conversion of the [2Fe-2S] into a [4Fe-4S] cluster and subsequent insertion into recipient apoproteins. ISC components of the first two steps are also required for biogenesis of numerous essential cytosolic and nuclear Fe/S proteins, explaining the essentiality of mitochondria. This review summarizes the molecular mechanisms underlying the ISC protein-mediated maturation of mitochondrial Fe/S proteins and the importance for human disease.


Assuntos
Ataxia de Friedreich/genética , Proteínas Ferro-Enxofre/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Chaperonas Moleculares/genética , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Ferredoxinas/química , Ferredoxinas/genética , Ferredoxinas/metabolismo , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patologia , Regulação da Expressão Gênica , Glutarredoxinas/química , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Humanos , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Biossíntese de Proteínas , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Frataxina
2.
Cell ; 181(3): 716-727.e11, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32259488

RESUMO

Human cells are able to sense and adapt to variations in oxygen levels. Historically, much research in this field has focused on hypoxia-inducible factor (HIF) signaling and reactive oxygen species (ROS). Here, we perform genome-wide CRISPR growth screens at 21%, 5%, and 1% oxygen to systematically identify gene knockouts with relative fitness defects in high oxygen (213 genes) or low oxygen (109 genes), most without known connection to HIF or ROS. Knockouts of many mitochondrial pathways thought to be essential, including complex I and enzymes in Fe-S biosynthesis, grow relatively well at low oxygen and thus are buffered by hypoxia. In contrast, in certain cell types, knockout of lipid biosynthetic and peroxisomal genes causes fitness defects only in low oxygen. Our resource nominates genetic diseases whose severity may be modulated by oxygen and links hundreds of genes to oxygen homeostasis.


Assuntos
Metabolismo dos Lipídeos/genética , Mitocôndrias/genética , Oxigênio/metabolismo , Transcriptoma/genética , Hipóxia Celular , Testes Genéticos/métodos , Estudo de Associação Genômica Ampla/métodos , Células HEK293 , Humanos , Hipóxia/metabolismo , Células K562 , Metabolismo dos Lipídeos/fisiologia , Lipídeos/genética , Lipídeos/fisiologia , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
3.
Cell ; 182(1): 85-97.e16, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32579975

RESUMO

Small molecule covalent drugs provide desirable therapeutic properties over noncovalent ones for treating challenging diseases. The potential of covalent protein drugs, however, remains unexplored due to protein's inability to bind targets covalently. We report a proximity-enabled reactive therapeutics (PERx) approach to generate covalent protein drugs. Through genetic code expansion, a latent bioreactive amino acid fluorosulfate-L-tyrosine (FSY) was incorporated into human programmed cell death protein-1 (PD-1). Only when PD-1 interacts with PD-L1 did the FSY react with a proximal histidine of PD-L1 selectively, enabling irreversible binding of PD-1 to only PD-L1 in vitro and in vivo. When administrated in immune-humanized mice, the covalent PD-1(FSY) exhibited strikingly more potent antitumor effect over the noncovalent wild-type PD-1, attaining therapeutic efficacy equivalent or superior to anti-PD-L1 antibody. PERx should provide a general platform technology for converting various interacting proteins into covalent binders, achieving specific covalent protein targeting for biological studies and therapeutic capability unattainable with conventional noncovalent protein drugs.


Assuntos
Preparações Farmacêuticas/metabolismo , Proteínas/uso terapêutico , Sequência de Aminoácidos , Animais , Antineoplásicos/metabolismo , Antígeno B7-H1/química , Antígeno B7-H1/metabolismo , Membrana Celular/metabolismo , Proliferação de Células , Células Dendríticas/metabolismo , Humanos , Cinética , Ligantes , Ativação Linfocitária/imunologia , Camundongos , Monócitos/metabolismo , Fenótipo , Proteínas/química , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Annu Rev Biochem ; 88: 163-190, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31220976

RESUMO

Many DNA-processing enzymes have been shown to contain a [4Fe4S] cluster, a common redox cofactor in biology. Using DNA electrochemistry, we find that binding of the DNA polyanion promotes a negative shift in [4Fe4S] cluster potential, which corresponds thermodynamically to a ∼500-fold increase in DNA-binding affinity for the oxidized [4Fe4S]3+ cluster versus the reduced [4Fe4S]2+ cluster. This redox switch can be activated from a distance using DNA charge transport (DNA CT) chemistry. DNA-processing proteins containing the [4Fe4S] cluster are enumerated, with possible roles for the redox switch highlighted. A model is described where repair proteins may signal one another using DNA-mediated charge transport as a first step in their search for lesions. The redox switch in eukaryotic DNA primases appears to regulate polymerase handoff, and in DNA polymerase δ, the redox switch provides a means to modulate replication in response to oxidative stress. We thus describe redox signaling interactions of DNA-processing [4Fe4S] enzymes, as well as the most interesting potential players to consider in delineating new DNA-mediated redox signaling networks.


Assuntos
DNA Glicosilases/química , DNA Helicases/química , DNA Polimerase Dirigida por DNA/química , DNA/química , Endonucleases/química , Genoma , Proteínas Ferro-Enxofre/química , Animais , Bactérias/genética , Bactérias/metabolismo , DNA/metabolismo , DNA/ultraestrutura , Dano ao DNA , DNA Glicosilases/metabolismo , DNA Glicosilases/ultraestrutura , DNA Helicases/metabolismo , DNA Helicases/ultraestrutura , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/ultraestrutura , Espectroscopia de Ressonância de Spin Eletrônica , Endonucleases/metabolismo , Endonucleases/ultraestrutura , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/ultraestrutura , Oxirredução , Ligação Proteica , Transdução de Sinais , Termodinâmica
5.
Annu Rev Biochem ; 85: 485-514, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27145839

RESUMO

Radical S-adenosylmethionine (SAM) enzymes catalyze an astonishing array of complex and chemically challenging reactions across all domains of life. Of approximately 114,000 of these enzymes, 8 are known to be present in humans: MOCS1, molybdenum cofactor biosynthesis; LIAS, lipoic acid biosynthesis; CDK5RAP1, 2-methylthio-N(6)-isopentenyladenosine biosynthesis; CDKAL1, methylthio-N(6)-threonylcarbamoyladenosine biosynthesis; TYW1, wybutosine biosynthesis; ELP3, 5-methoxycarbonylmethyl uridine; and RSAD1 and viperin, both of unknown function. Aberrations in the genes encoding these proteins result in a variety of diseases. In this review, we summarize the biochemical characterization of these 8 radical S-adenosylmethionine enzymes and, in the context of human health, describe the deleterious effects that result from such genetic mutations.


Assuntos
Diabetes Mellitus Tipo 2/genética , Cardiopatias Congênitas/genética , Erros Inatos do Metabolismo dos Metais/genética , Mutação , Doenças Neurodegenerativas/genética , S-Adenosilmetionina/metabolismo , Carbono-Carbono Liases , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/patologia , Expressão Gênica , Cardiopatias Congênitas/enzimologia , Cardiopatias Congênitas/patologia , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Erros Inatos do Metabolismo dos Metais/enzimologia , Erros Inatos do Metabolismo dos Metais/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Proteínas/genética , Proteínas/metabolismo , Ácido Tióctico/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
6.
Mol Cell ; 81(14): 2887-2900.e5, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34171298

RESUMO

WhiB7 represents a distinct subclass of transcription factors in the WhiB-Like (Wbl) family, a unique group of iron-sulfur (4Fe-4S] cluster-containing proteins exclusive to the phylum of Actinobacteria. In Mycobacterium tuberculosis (Mtb), WhiB7 interacts with domain 4 of the primary sigma factor (σA4) in the RNA polymerase holoenzyme and activates genes involved in multiple drug resistance and redox homeostasis. Here, we report crystal structures of the WhiB7:σA4 complex alone and bound to its target promoter DNA at 1.55-Å and 2.6-Å resolution, respectively. These structures show how WhiB7 regulates gene expression by interacting with both σA4 and the AT-rich sequence upstream of the -35 promoter DNA via its C-terminal DNA-binding motif, the AT-hook. By combining comparative structural analysis of the two high-resolution σA4-bound Wbl structures with molecular and biochemical approaches, we identify the structural basis of the functional divergence between the two distinct subclasses of Wbl proteins in Mtb.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Mycobacterium tuberculosis/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Proteínas Ferro-Enxofre/genética , Mycobacterium tuberculosis/genética , Regiões Promotoras Genéticas/genética , Fator sigma/genética , Fator sigma/metabolismo , Fatores de Transcrição/genética
7.
Trends Biochem Sci ; 49(8): 729-744, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38714376

RESUMO

Protein lipoylation, a crucial post-translational modification (PTM), plays a pivotal role in mitochondrial function and emerges as a key player in cell death through cuproptosis. This novel copper-driven cell death pathway is activated by excessive copper ions binding to lipoylated mitochondrial proteins, disrupting energy production and causing lethal protein aggregation and cell death. The intricate relationship among protein lipoylation, cellular energy metabolism, and cuproptosis offers a promising avenue for regulating essential cellular functions. This review focuses on the mechanisms of lipoylation and its significant impact on cell metabolism and cuproptosis, emphasizing the key genes involved and their implications for human diseases. It offers valuable insights into targeting dysregulated cellular metabolism for therapeutic purposes.


Assuntos
Cobre , Lipoilação , Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Cobre/metabolismo , Animais , Proteínas Mitocondriais/metabolismo , Processamento de Proteína Pós-Traducional , Metabolismo Energético
8.
Trends Biochem Sci ; 49(6): 545-556, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38622038

RESUMO

Thiol oxidation to dioxygenated sulfinic acid is catalyzed by an enzyme family characterized by a cupin fold. These proteins act on free thiol-containing molecules to generate central metabolism precursors and signaling compounds in bacteria, fungi, and animal cells. In plants and animals, they also oxidize exposed N-cysteinyl residues, directing proteins to proteolysis. Enzyme kinetics, X-ray crystallography, and spectroscopy studies prompted the formulation and testing of hypotheses about the mechanism of action and the different substrate specificity of these enzymes. Concomitantly, the physiological role of thiol dioxygenation in prokaryotes and eukaryotes has been studied through genetic and physiological approaches. Further structural characterization is necessary to enable precise and safe manipulation of thiol dioxygenases (TDOs) for therapeutic, industrial, and agricultural applications.


Assuntos
Dioxigenases , Compostos de Sulfidrila , Dioxigenases/metabolismo , Dioxigenases/química , Compostos de Sulfidrila/metabolismo , Compostos de Sulfidrila/química , Animais , Humanos , Oxirredução , Especificidade por Substrato
9.
Mol Cell ; 78(1): 31-41.e5, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32126207

RESUMO

Cellular iron homeostasis is dominated by FBXL5-mediated degradation of iron regulatory protein 2 (IRP2), which is dependent on both iron and oxygen. However, how the physical interaction between FBXL5 and IRP2 is regulated remains elusive. Here, we show that the C-terminal substrate-binding domain of FBXL5 harbors a [2Fe2S] cluster in the oxidized state. A cryoelectron microscopy (cryo-EM) structure of the IRP2-FBXL5-SKP1 complex reveals that the cluster organizes the FBXL5 C-terminal loop responsible for recruiting IRP2. Interestingly, IRP2 binding to FBXL5 hinges on the oxidized state of the [2Fe2S] cluster maintained by ambient oxygen, which could explain hypoxia-induced IRP2 stabilization. Steric incompatibility also allows FBXL5 to physically dislodge IRP2 from iron-responsive element RNA to facilitate its turnover. Taken together, our studies have identified an iron-sulfur cluster within FBXL5, which promotes IRP2 polyubiquitination and degradation in response to both iron and oxygen concentrations.


Assuntos
Proteínas F-Box/química , Proteína 2 Reguladora do Ferro/química , Oxigênio/química , Complexos Ubiquitina-Proteína Ligase/química , Linhagem Celular , Proteínas F-Box/metabolismo , Homeostase , Humanos , Ferro/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , Ligação Proteica , Estabilidade Proteica , Proteínas Quinases Associadas a Fase S/química , Complexos Ubiquitina-Proteína Ligase/metabolismo
10.
Mol Cell ; 80(4): 682-698.e7, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33152268

RESUMO

Knowledge of fundamental differences between breast cancer subtypes has driven therapeutic advances; however, basal-like breast cancer (BLBC) remains clinically intractable. Because BLBC exhibits alterations in DNA repair enzymes and cell-cycle checkpoints, elucidation of factors enabling the genomic instability present in this subtype has the potential to reveal novel anti-cancer strategies. Here, we demonstrate that BLBC is especially sensitive to suppression of iron-sulfur cluster (ISC) biosynthesis and identify DNA polymerase epsilon (POLE) as an ISC-containing protein that underlies this phenotype. In BLBC cells, POLE suppression leads to replication fork stalling, DNA damage, and a senescence-like state or cell death. In contrast, luminal breast cancer and non-transformed mammary cells maintain viability upon POLE suppression but become dependent upon an ATR/CHK1/CDC25A/CDK2 DNA damage response axis. We find that CDK1/2 targets exhibit hyperphosphorylation selectively in BLBC tumors, indicating that CDK2 hyperactivity is a genome integrity vulnerability exploitable by targeting POLE.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Basocelular/patologia , Quinase 2 Dependente de Ciclina/metabolismo , DNA Polimerase II/metabolismo , Instabilidade Genômica , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Animais , Apoptose , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma Basocelular/genética , Carcinoma Basocelular/metabolismo , Ciclo Celular , Proliferação de Células , Quinase 2 Dependente de Ciclina/genética , Dano ao DNA , DNA Polimerase II/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Fosforilação , Proteínas de Ligação a Poli-ADP-Ribose/genética , Transdução de Sinais , Células Tumorais Cultivadas
11.
Mol Cell ; 77(3): 645-655.e7, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31983508

RESUMO

The lysosome is an acidic multi-functional organelle with roles in macromolecular digestion, nutrient sensing, and signaling. However, why cells require acidic lysosomes to proliferate and which nutrients become limiting under lysosomal dysfunction are unclear. To address this, we performed CRISPR-Cas9-based genetic screens and identified cholesterol biosynthesis and iron uptake as essential metabolic pathways when lysosomal pH is altered. While cholesterol synthesis is only necessary, iron is both necessary and sufficient for cell proliferation under lysosomal dysfunction. Remarkably, iron supplementation restores cell proliferation under both pharmacologic and genetic-mediated lysosomal dysfunction. The rescue was independent of metabolic or signaling changes classically associated with increased lysosomal pH, uncoupling lysosomal function from cell proliferation. Finally, our experiments revealed that lysosomal dysfunction dramatically alters mitochondrial metabolism and hypoxia inducible factor (HIF) signaling due to iron depletion. Altogether, these findings identify iron homeostasis as the key function of lysosomal acidity for cell proliferation.


Assuntos
Proliferação de Células/fisiologia , Ferro/metabolismo , Lisossomos/metabolismo , Colesterol/biossíntese , Colesterol/metabolismo , Células HEK293 , Células HeLa , Homeostase , Humanos , Concentração de Íons de Hidrogênio , Células Jurkat , Lisossomos/fisiologia , Mitocôndrias/metabolismo , Transdução de Sinais/genética
12.
EMBO J ; 42(12): e112514, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36946144

RESUMO

Increasing evidence has shown that light exists in a diverse range of deep-sea environments. We unexpectedly found that blue light is necessary to produce excess zero-valent sulfur (ZVS) in Erythrobacter flavus 21-3, a bacterium that has been recently isolated from a deep-sea cold seep. E. flavus 21-3 is able to convert thiosulfate to ZVS using a novel thiosulfate oxidation pathway comprising a thiosulfate dehydrogenase (TsdA) and a thiosulfohydrolase (SoxB). Using proteomic, bacterial two-hybrid and heterologous expression assays, we found that the light-oxygen-voltage histidine kinase LOV-1477 responds to blue light and activates the diguanylate cyclase DGC-2902 to produce c-di-GMP. Subsequently, the PilZ domain-containing protein mPilZ-1753 binds to c-di-GMP and activates TsdA through direct interaction. Finally, Raman spectroscopy and gene knockout results verified that TsdA and two SoxB homologs cooperate to regulate ZVS production. As ZVS is an energy source for E. flavus 21-3, we propose that deep-sea blue light provides E. flavus 21-3 with a selective advantage in the cold seep, suggesting a previously unappreciated relationship between light-sensing pathways and sulfur metabolism in a deep-sea microorganism.


Assuntos
Proteômica , Tiossulfatos , Tiossulfatos/metabolismo , Bactérias/metabolismo , Oxirredução , Enxofre/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
13.
Proc Natl Acad Sci U S A ; 121(14): e2316564121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38527200

RESUMO

Sulfur in nature consists of two abundant stable isotopes, with two more neutrons in the heavy one (34S) than in the light one (32S). The two isotopes show similar physicochemical properties and are usually considered an integral system for chemical research in various fields. In this work, a model study based on a Li-S battery was performed to reveal the variation between the electrochemical properties of the two S isotopes. Provided with the same octatomic ring structure, the cyclo-34S8 molecules form stronger S-S bonds than cyclo-32S8 and are more prone to react with Li. The soluble Li polysulfides generated by the Li-34S conversion reaction show a stronger cation-solvent interaction yet a weaker cation-anion interaction than the 32S-based counterparts, which facilitates quick solvation of polysulfides yet hinders their migration from the cathode to the anode. Consequently, the Li-34S cell shows improved cathode reaction kinetics at the solid-liquid interface and inhibited shuttle of polysulfides through the electrolyte so that it demonstrates better cycling performance than the Li-32S cell. Based on the varied shuttle kinetics of the isotopic-S-based polysulfides, an electrochemical separation method for 34S/32S isotope is proposed, which enables a notably higher separation factor than the conventional separation methods via chemical exchange or distillation and brings opportunities to low-cost manufacture, utilization, and research of heavy chalcogen isotopes.

14.
Proc Natl Acad Sci U S A ; 121(21): e2400740121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743629

RESUMO

The biogenesis of iron-sulfur (Fe/S) proteins entails the synthesis and trafficking of Fe/S clusters, followed by their insertion into target apoproteins. In eukaryotes, the multiple steps of biogenesis are accomplished by complex protein machineries in both mitochondria and cytosol. The underlying biochemical pathways have been elucidated over the past decades, yet the mechanisms of cytosolic [2Fe-2S] protein assembly have remained ill-defined. Similarly, the precise site of glutathione (GSH) requirement in cytosolic and nuclear Fe/S protein biogenesis is unclear, as is the molecular role of the GSH-dependent cytosolic monothiol glutaredoxins (cGrxs). Here, we investigated these questions in human and yeast cells by various in vivo approaches. [2Fe-2S] cluster assembly of cytosolic target apoproteins required the mitochondrial ISC machinery, the mitochondrial transporter Atm1/ABCB7 and GSH, yet occurred independently of both the CIA system and cGrxs. This mechanism was strikingly different from the ISC-, Atm1/ABCB7-, GSH-, and CIA-dependent assembly of cytosolic-nuclear [4Fe-4S] proteins. One notable exception to this cytosolic [2Fe-2S] protein maturation pathway defined here was yeast Apd1 which used the CIA system via binding to the CIA targeting complex through its C-terminal tryptophan. cGrxs, although attributed as [2Fe-2S] cluster chaperones or trafficking proteins, were not essential in vivo for delivering [2Fe-2S] clusters to either CIA components or target apoproteins. Finally, the most critical GSH requirement was assigned to Atm1-dependent export, i.e. a step before GSH-dependent cGrxs function. Our findings extend the general model of eukaryotic Fe/S protein biogenesis by adding the molecular requirements for cytosolic [2Fe-2S] protein maturation.


Assuntos
Citosol , Glutarredoxinas , Glutationa , Proteínas Ferro-Enxofre , Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Citosol/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Glutationa/metabolismo , Mitocôndrias/metabolismo , Glutarredoxinas/metabolismo , Glutarredoxinas/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas Mitocondriais/metabolismo
15.
Proc Natl Acad Sci U S A ; 121(6): e2313650121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38285932

RESUMO

Microbial dissimilatory sulfate reduction (DSR) is a key process in the Earth biogeochemical sulfur cycle. In spite of its importance to the sulfur and carbon cycles, industrial processes, and human health, it is still not clear how reduction of sulfate to sulfide is coupled to energy conservation. A central step in the pathway is the reduction of sulfite by the DsrAB dissimilatory sulfite reductase, which leads to the production of a DsrC-trisulfide. A membrane-bound complex, DsrMKJOP, is present in most organisms that have DsrAB and DsrC, and its involvement in energy conservation has been inferred from sequence analysis, but its precise function was so far not determined. Here, we present studies revealing that the DsrMKJOP complex of the sulfate reducer Archaeoglobus fulgidus works as a menadiol:DsrC-trisulfide oxidoreductase. Our results reveal a close interaction between the DsrC-trisulfide and the DsrMKJOP complex and show that electrons from the quinone pool reduce consecutively the DsrM hemes b, the DsrK noncubane [4Fe-4S]3+/2+ catalytic center, and finally the DsrC-trisulfide with concomitant release of sulfide. These results clarify the role of this widespread respiratory membrane complex and support the suggestion that DsrMKJOP contributes to energy conservation upon reduction of the DsrC-trisulfide in the last step of DSR.


Assuntos
Sulfito de Hidrogênio Redutase , Sulfatos , Humanos , Sulfatos/metabolismo , Anaerobiose , Sulfito de Hidrogênio Redutase/metabolismo , Óxidos de Enxofre , Enxofre/metabolismo , Sulfetos/metabolismo , Respiração , Oxirredução
16.
Proc Natl Acad Sci U S A ; 121(4): e2309102121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38232287

RESUMO

Nonradicals are effective in selectively degrading electron-rich organic contaminants, which unfortunately suffer from unsatisfactory yield and uncontrollable composition due to the competitive generation of radicals. Herein, we precisely construct a local microenvironment of the carbon nitride-supported high-loading (~9 wt.%) Fe single-atom catalyst (Fe SAC) with sulfur via a facile supermolecular self-assembly strategy. Short-distance S coordination boosts the peroxymonosulfate (PMS) activation and selectively generates high-valent iron-oxo species (FeIV=O) along with singlet oxygen (1O2), significantly increasing the 1O2 yield, PMS utilization, and p-chlorophenol reactivity by 6.0, 3.0, and 8.4 times, respectively. The composition of nonradicals is controllable by simply changing the S content. In contrast, long-distance S coordination generates both radicals and nonradicals, and could not promote reactivity. Experimental and theoretical analyses suggest that the short-distance S upshifts the d-band center of the Fe atom, i.e., being close to the Fermi level, which changes the binding mode between the Fe atom and O site of PMS to selectively generate 1O2 and FeIV=O with a high yield. The short-distance S-coordinated Fe SAC exhibits excellent application potential in various water matrices. These findings can guide the rational design of robust SACs toward a selective and controllable generation of nonradicals with high yield and PMS utilization.

17.
Proc Natl Acad Sci U S A ; 121(22): e2310677121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38753503

RESUMO

Seasonal and pandemic-associated influenza strains cause highly contagious viral respiratory infections that can lead to severe illness and excess mortality. Here, we report on the optimization of our small-molecule inhibitor F0045(S) targeting the influenza hemagglutinin (HA) stem with our Sulfur-Fluoride Exchange (SuFEx) click chemistry-based high-throughput medicinal chemistry (HTMC) strategy. A combination of SuFEx- and amide-based lead molecule diversification and structure-guided design led to identification and validation of ultrapotent influenza fusion inhibitors with subnanomolar EC50 cellular antiviral activity against several influenza A group 1 strains. X-ray structures of six of these compounds with HA indicate that the appended moieties occupy additional pockets on the HA surface and increase the binding interaction, where the accumulation of several polar interactions also contributes to the improved affinity. The compounds here represent the most potent HA small-molecule inhibitors to date. Our divergent HTMC platform is therefore a powerful, rapid, and cost-effective approach to develop bioactive chemical probes and drug-like candidates against viral targets.


Assuntos
Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Humanos , Antivirais/farmacologia , Antivirais/química , Química Farmacêutica/métodos , Ensaios de Triagem em Larga Escala/métodos , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Cristalografia por Raios X/métodos , Química Click/métodos , Animais , Vírus da Influenza A/efeitos dos fármacos , Células Madin Darby de Rim Canino , Inibidores de Proteínas Virais de Fusão/farmacologia , Inibidores de Proteínas Virais de Fusão/química , Cães
18.
EMBO J ; 41(20): e111318, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36102610

RESUMO

Post-translational modifications by ubiquitin-like proteins (UBLs) are essential for nearly all cellular processes. Ubiquitin-related modifier 1 (Urm1) is a unique UBL, which plays a key role in tRNA anticodon thiolation as a sulfur carrier protein (SCP) and is linked to the noncanonical E1 enzyme Uba4 (ubiquitin-like protein activator 4). While Urm1 has also been observed to conjugate to target proteins like other UBLs, the molecular mechanism of its attachment remains unknown. Here, we reconstitute the covalent attachment of thiocarboxylated Urm1 to various cellular target proteins in vitro, revealing that, unlike other known UBLs, this process is E2/E3-independent and requires oxidative stress. Furthermore, we present the crystal structures of the peroxiredoxin Ahp1 before and after the covalent attachment of Urm1. Surprisingly, we show that urmylation is accompanied by the transfer of sulfur to cysteine residues in the target proteins, also known as cysteine persulfidation. Our results illustrate the role of the Uba4-Urm1 system as a key evolutionary link between prokaryotic SCPs and the UBL modifications observed in modern eukaryotes.


Assuntos
Ubiquitina , Ubiquitinas , Anticódon , Proteínas de Transporte/metabolismo , Cisteína , Peroxirredoxinas , Enxofre/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo
19.
Mol Cell ; 69(1): 113-125.e6, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29225034

RESUMO

The cytosolic iron-sulfur (Fe-S) cluster assembly (CIA) pathway functions to incorporate inorganic Fe-S cofactors into a variety of proteins, including several DNA repair enzymes. However, the mechanisms regulating the CIA pathway are unknown. We describe here that the MAGE-F1-NSE1 E3 ubiquitin ligase regulates the CIA pathway through ubiquitination and degradation of the CIA-targeting protein MMS19. Overexpression or knockout of MAGE-F1 altered Fe-S incorporation into MMS19-dependent DNA repair enzymes, DNA repair capacity, sensitivity to DNA-damaging agents, and iron homeostasis. Intriguingly, MAGE-F1 has undergone adaptive pseudogenization in select mammalian lineages. In contrast, MAGE-F1 is highly amplified in multiple human cancer types and amplified tumors have increased mutational burden. Thus, flux through the CIA pathway can be regulated by degradation of the substrate-specifying MMS19 protein and its downregulation is a common feature in cancer and is evolutionarily controlled.


Assuntos
Proteínas de Transporte/metabolismo , Reparo do DNA/genética , Ferro/química , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Enxofre/química , Fatores de Transcrição/metabolismo , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Dano ao DNA/genética , Células HEK293 , Células HeLa , Humanos , Proteínas Ferro-Enxofre/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Neoplasias/genética , Ubiquitinação
20.
Mol Cell ; 69(3): 451-464.e6, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29358078

RESUMO

S-nitrosylation, the oxidative modification of Cys residues by nitric oxide (NO) to form S-nitrosothiols (SNOs), modifies all main classes of proteins and provides a fundamental redox-based cellular signaling mechanism. However, in contrast to other post-translational protein modifications, S-nitrosylation is generally considered to be non-enzymatic, involving multiple chemical routes. We report here that endogenous protein S-nitrosylation in the model organism E. coli depends principally upon the enzymatic activity of the hybrid cluster protein Hcp, employing NO produced by nitrate reductase. Anaerobiosis on nitrate induces both Hcp and nitrate reductase, thereby resulting in the S-nitrosylation-dependent assembly of a large interactome including enzymes that generate NO (NO synthase), synthesize SNO-proteins (SNO synthase), and propagate SNO-based signaling (trans-nitrosylases) to regulate cell motility and metabolism. Thus, protein S-nitrosylation by NO in E. coli is essentially enzymatic, and the potential generality of the multiplex enzymatic mechanism that we describe may support a re-conceptualization of NO-based cellular signaling.


Assuntos
Nitrosação/fisiologia , S-Nitrosotióis/metabolismo , Cisteína/metabolismo , Escherichia coli , Proteínas de Escherichia coli , Óxido Nítrico/metabolismo , Oxirredução , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas/metabolismo , Proteólise , Proteômica/métodos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa