Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Neuroinflammation ; 20(1): 212, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735410

RESUMO

Neuronal iron overload contributes to synaptic damage and neuropsychiatric disorders. However, the molecular mechanisms underlying iron deposition in depression remain largely unexplored. Our study aims to investigate how nuclear factor-erythroid 2 (NF-E2)-related factor 2 (Nrf2) ameliorates hippocampal synaptic dysfunction and reduces brain functional connectivity (FC) associated with excessive iron in depression. We treated mice with chronic unpredictable mild stress (CUMS) with the iron chelator deferoxamine mesylate (DFOM) and a high-iron diet (2.5% carbonyl iron) to examine the role of iron overload in synaptic plasticity. The involvement of Nrf2 in iron metabolism and brain function was assessed using molecular biological techniques and in vivo resting-state functional magnetic resonance imaging (rs-fMRI) through genetic deletion or pharmacologic activation of Nrf2. The results demonstrated a significant correlation between elevated serum iron levels and impaired hippocampal functional connectivity (FC), which contributed to the development of depression-induced CUMS. Iron overload plays a crucial role in CUMS-induced depression and synaptic dysfunction, as evidenced by the therapeutic effects of a high-iron diet and DFOM. The observed iron overload in this study was associated with decreased Nrf2 levels and increased expression of transferrin receptors (TfR). Notably, inhibition of iron accumulation effectively attenuated CUMS-induced synaptic damage mediated by downregulation of brain-derived neurotrophic factor (BDNF). Nrf2-/- mice exhibited compromised FC within the limbic system and the basal ganglia, particularly in the hippocampus, and inhibition of iron accumulation effectively attenuated CUMS-induced synaptic damage mediated by downregulation of brain-derived neurotrophic factor (BDNF). Activation of Nrf2 restored iron homeostasis and reversed vulnerability to depression. Mechanistically, we further identified that Nrf2 deletion promoted iron overload via upregulation of TfR and downregulation of ferritin light chain (FtL), leading to BDNF-mediated synapse damage in the hippocampus. Therefore, our findings unveil a novel role for Nrf2 in regulating iron homeostasis while providing mechanistic insights into poststress susceptibility to depression. Targeting Nrf2-mediated iron metabolism may offer promising strategies for developing more effective antidepressant therapies.


Assuntos
Sobrecarga de Ferro , Ferro , Animais , Camundongos , Fator Neurotrófico Derivado do Encéfalo , Fator 2 Relacionado a NF-E2 , Depressão/etiologia , Hipocampo
2.
J Neuroinflammation ; 19(1): 303, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36527099

RESUMO

BACKGROUND: Considerable evidence indicates that a signaling crosstalk between the brain and periphery plays important roles in neurological disorders, and that both acute and chronic peripheral inflammation can produce brain changes leading to cognitive impairments. Recent clinical and epidemiological studies have revealed an increased risk of cognitive impairment and dementia in individuals with impaired pulmonary function. However, the mechanistic underpinnings of this association remain unknown. Exposure to SiO2 (silica) particles triggers lung inflammation, including infiltration by peripheral immune cells and upregulation of pro-inflammatory cytokines. We here utilized a mouse model of lung silicosis to investigate the crosstalk between lung inflammation and memory. METHODS: Silicosis was induced by intratracheal administration of a single dose of 2.5 mg SiO2/kg in mice. Molecular and behavioral measurements were conducted 24 h and 15 days after silica administration. Lung and hippocampal inflammation were investigated by histological analysis and by determination of pro-inflammatory cytokines. Hippocampal synapse damage, amyloid-ß (Aß) peptide content and phosphorylation of Akt, a proxy of hippocampal insulin signaling, were investigated by Western blotting and ELISA. Memory was assessed using the open field and novel object recognition tests. RESULTS: Administration of silica induced alveolar collapse, lung infiltration by polymorphonuclear (PMN) cells, and increased lung pro-inflammatory cytokines. Lung inflammation was followed by upregulation of hippocampal pro-inflammatory cytokines, synapse damage, accumulation of the Aß peptide, and memory impairment in mice. CONCLUSION: The current study identified a crosstalk between lung and brain inflammatory responses leading to hippocampal synapse damage and memory impairment after exposure to a single low dose of silica in mice.


Assuntos
Pneumonia , Silicose , Animais , Camundongos , Dióxido de Silício/toxicidade , Camundongos Endogâmicos C57BL , Silicose/patologia , Pneumonia/induzido quimicamente , Pneumonia/patologia , Inflamação/induzido quimicamente , Inflamação/patologia , Pulmão/patologia , Sinapses/patologia , Peptídeos beta-Amiloides , Hipocampo/patologia , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/patologia , Citocinas
3.
J Pathol ; 245(1): 85-100, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29435980

RESUMO

Alzheimer's disease (AD) is a devastating neurological disorder that still lacks an effective treatment, and this has stimulated an intense pursuit of disease-modifying therapeutics. Given the increasingly recognized link between AD and defective brain insulin signaling, we investigated the actions of liraglutide, a glucagon-like peptide-1 (GLP-1) analog marketed for treatment of type 2 diabetes, in experimental models of AD. Insulin receptor pathology is an important feature of AD brains that impairs the neuroprotective actions of central insulin signaling. Here, we show that liraglutide prevented the loss of brain insulin receptors and synapses, and reversed memory impairment induced by AD-linked amyloid-ß oligomers (AßOs) in mice. Using hippocampal neuronal cultures, we determined that the mechanism of neuroprotection by liraglutide involves activation of the PKA signaling pathway. Infusion of AßOs into the lateral cerebral ventricle of non-human primates (NHPs) led to marked loss of insulin receptors and synapses in brain regions related to memory. Systemic treatment of NHPs with liraglutide provided partial protection, decreasing AD-related insulin receptor, synaptic, and tau pathology in specific brain regions. Synapse damage and elimination are amongst the earliest known pathological changes and the best correlates of memory impairment in AD. The results illuminate mechanisms of neuroprotection by liraglutide, and indicate that GLP-1 receptor activation may be harnessed to protect brain insulin receptors and synapses in AD. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Liraglutida/farmacologia , Memória/efeitos dos fármacos , Receptor de Insulina/efeitos dos fármacos , Sinapses/patologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Receptor de Insulina/metabolismo , Sinapses/efeitos dos fármacos
4.
Neurobiol Dis ; 94: 73-84, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27317833

RESUMO

Traumatic brain injury (TBI), ranging from mild concussion to severe penetrating wounds, can involve brain regions that contain damaged or lost synapses in the absence of neuronal death. These affected regions significantly contribute to sensory, motor and/or cognitive deficits. Thus, studying the mechanisms responsible for synaptic instability and dysfunction is important for protecting the nervous system from the consequences of progressive TBI. Our controlled cortical impact (CCI) injury produces ~20% loss of synapses and mild changes in synaptic protein levels in the CA3-CA1 hippocampus without neuronal losses. These synaptic changes are associated with functional deficits, indicated by >50% loss in synaptic plasticity and impaired learning behavior. We show that the receptor tyrosine kinase EphB3 participates in CCI injury-induced synaptic damage, where EphB3(-/-) mice show preserved long-term potentiation and hippocampal-dependent learning behavior as compared with wild type (WT) injured mice. Improved synaptic function in the absence of EphB3 results from attenuation in CCI injury-induced synaptic losses and reduced d-serine levels compared with WT injured mice. Together, these findings suggest that EphB3 signaling plays a deleterious role in synaptic stability and plasticity after TBI.


Assuntos
Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Plasticidade Neuronal/fisiologia , Receptor EphB3/metabolismo , Transdução de Sinais , Sinapses/fisiologia , Animais , Transtornos Cognitivos/metabolismo , Modelos Animais de Doenças , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos Knockout , Neurônios/metabolismo , Transdução de Sinais/fisiologia
5.
EBioMedicine ; 94: 104703, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37429081

RESUMO

BACKGROUND: Mental symptoms have been shown to be associated with dementia. As the most common neuropsychiatric disorder, it is unclear whether and why anxiety increases the risk of cognitive progression in elderly. METHODS: The aim of this study was to investigate the longitudinal effects of anxiety on cognitive impairment in non-dementia elderly and to explore the underlying biological processes using multi-omics including microarray-based transcriptomics, mass spectrometry-based proteomics and metabolomics, cerebrospinal fluid (CSF) biochemical markers, and brain diffusion tensor imaging (DTI). The Alzheimer's Disease Neuroimaging Initiative (ADNI), Chinese Longitudinal Healthy Longevity Survey (CLHLS) and Shanghai Mental Health Centre (SMHC) cohorts were included. FINDINGS: Anxiety was found to increase the risk of subsequent cognitive progression in the ADNI, and a similar result was observed in the CLHLS cohort. Enrichment analysis indicated activated axon/synapse pathways and suppressed mitochondrial pathways in anxiety, the former confirmed by deviations in frontolimbic tract morphology and altered levels of axon/synapse markers, and the latter supported by decreased levels of carnitine metabolites. Mediation analysis revealed that anxiety's effect on the longitudinal cognition was mediated by brain tau burden. Correlations of mitochondria-related expressed genes with axon/synapse proteins, carnitine metabolites, and cognitive changes were found. INTERPRETATION: This study provides cross-validated epidemiological and biological evidence that anxiety is a risk factor for cognitive progression in non-dementia elderly, and that axon/synapse damage in the context of energy metabolism imbalance may contribute to this phenomenon. FUNDING: The National Natural Science Foundation of China (82271607, 81971682, and 81830059) for data analysis and data collection.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/diagnóstico , Proteínas tau/líquido cefalorraquidiano , Imagem de Tensor de Difusão , China , Disfunção Cognitiva/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Cognição , Ansiedade , Peptídeos beta-Amiloides , Progressão da Doença
6.
Neurosci Lett ; 570: 126-31, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24080376

RESUMO

The seeds of Nigella sativa are used worldwide to treat various diseases and ailments. Thymoquinone (TQ) that is present in the essential oil of these seeds mediates most of the plant's diverse therapeutic effects. The present study aimed to determine whether TQ protects against α-synuclein (αSN)-induced synaptic toxicity in rat hippocampal and human induced pluripotent stem cell (hiPSC)-derived neurons. Here, we report that αSN decreased the level of synaptophysin, a protein used as an indicator of synaptic density, in cultured hippocampal and hiPSC-derived neurons. However, simultaneous treatment with αSN and TQ protected neurons against αSN-induced synapse damage, as revealed by immunostaining. Moreover, administration of TQ efficiently induced protection in these cells against αSN-induced inhibition of synaptic vesicle recycling in hippocampal and hiPSC-derived neurons as well as against mutated P123H ß-synuclein (ßSN) in hippocampal neurons, as revealed by experiments using the fluorescent dye FM1-43. Using a multielectrode array, we further demonstrated that the treatment of hiPSC-derived neurons with αSN induced a reduction in spontaneous firing activity, and cotreatment with αSN and TQ partially reversed this loss. These results suggest that TQ protects cultured rat primary hippocampal and hiPSC-derived neurons against αSN-induced synaptic toxicity and could be a promising therapeutic agent for patients with Parkinson's disease and dementia with Lewy bodies.


Assuntos
Benzoquinonas/farmacologia , Hipocampo/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Sinapses/efeitos dos fármacos , alfa-Sinucleína/metabolismo , Potenciais de Ação , Animais , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Mutação , Neurônios/citologia , Neurônios/fisiologia , Cultura Primária de Células , Ratos Wistar , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Sinaptofisina/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa