Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.144
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(13): 2783-2801.e20, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37267949

RESUMO

Cytosolic innate immune sensors are critical for host defense and form complexes, such as inflammasomes and PANoptosomes, that induce inflammatory cell death. The sensor NLRP12 is associated with infectious and inflammatory diseases, but its activating triggers and roles in cell death and inflammation remain unclear. Here, we discovered that NLRP12 drives inflammasome and PANoptosome activation, cell death, and inflammation in response to heme plus PAMPs or TNF. TLR2/4-mediated signaling through IRF1 induced Nlrp12 expression, which led to inflammasome formation to induce maturation of IL-1ß and IL-18. The inflammasome also served as an integral component of a larger NLRP12-PANoptosome that drove inflammatory cell death through caspase-8/RIPK3. Deletion of Nlrp12 protected mice from acute kidney injury and lethality in a hemolytic model. Overall, we identified NLRP12 as an essential cytosolic sensor for heme plus PAMPs-mediated PANoptosis, inflammation, and pathology, suggesting that NLRP12 and molecules in this pathway are potential drug targets for hemolytic and inflammatory diseases.


Assuntos
Inflamassomos , Moléculas com Motivos Associados a Patógenos , Animais , Camundongos , Inflamassomos/metabolismo , Heme , Inflamação , Piroptose , Peptídeos e Proteínas de Sinalização Intracelular
2.
EMBO Rep ; 25(2): 770-795, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182816

RESUMO

DExD/H-box helicases are crucial regulators of RNA metabolism and antiviral innate immune responses; however, their role in bacteria-induced inflammation remains unclear. Here, we report that DDX5 interacts with METTL3 and METTL14 to form an m6A writing complex, which adds N6-methyladenosine to transcripts of toll-like receptor (TLR) 2 and TLR4, promoting their decay via YTHDF2-mediated RNA degradation, resulting in reduced expression of TLR2/4. Upon bacterial infection, DDX5 is recruited to Hrd1 at the endoplasmic reticulum in an MyD88-dependent manner and is degraded by the ubiquitin-proteasome pathway. This process disrupts the DDX5 m6A writing complex and halts m6A modification as well as degradation of TLR2/4 mRNAs, thereby promoting the expression of TLR2 and TLR4 and downstream NF-κB activation. The role of DDX5 in regulating inflammation is also validated in vivo, as DDX5- and METTL3-KO mice exhibit enhanced expression of inflammatory cytokines. Our findings show that DDX5 acts as a molecular switch to regulate inflammation during bacterial infection and shed light on mechanisms of quiescent inflammation during homeostasis.


Assuntos
Adenina , Infecções Bacterianas , Receptor 2 Toll-Like , Animais , Camundongos , Adenina/análogos & derivados , Inflamação/genética , Metiltransferases/genética , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética
3.
Eur J Immunol ; : e2350897, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38988146

RESUMO

The mammalian body possesses remarkable adaptability to cold exposure, involving intricate adjustments in cellular metabolism, ultimately leading to thermogenesis. However, cold-induced stress can impact immune response, primarily through noradrenaline-mediated pathways. In our study, we utilized a rat model subjected to short-term or long-term mild cold exposure to investigate systemic immune response during the cold acclimation. To provide human relevance, we included a group of regular cold swimmers in our study. Our research revealed complex relationship between cold exposure, neural signaling, immune response, and thermogenic regulation. One-day cold exposure triggered stress response, including cytokine production in white adipose tissue, subsequently activating brown adipose tissue, and inducing thermogenesis. We further studied systemic immune response, including the proportion of leukocytes and cytokines production. Interestingly, γδ T cells emerged as possible regulators in the broader systemic response, suggesting their possible contribution in the dynamic process of cold adaptation. We employed RNA-seq to gain further insights into the mechanisms by which γδ T cells participate in the response to cold. Additionally, we challenged rats exposed to cold with the Toll-like receptor 2 agonist, showing significant modulation of immune response. These findings significantly contribute to understanding of the physiological acclimation that occur in response to cold exposure.

4.
J Med Virol ; 96(2): e29466, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38344929

RESUMO

Talaromyces marneffei (TM) immune evasion is an important factor leading to the high mortality rate of Penicilliosis marneffei. N6 -methyladenosine (m6 A) plays important roles in host immune response to various pathogen infections, yet its role in TM and HIV/TM coinfection remains largely unexplored. Here we reported genome-wide transcriptional m6 A profiles of TM mono-infection and HIV/TM coinfection. Our finding revealed dynamic alterations in global m6 A levels and upregulation of the m6 A reader YTH N6 -methyladenosine RNA binding protein C2 (YTHDC2) in TM-infected macrophages. Knockdown of YTHDC2 in TM-infected cells showed an elevated expression of TLR2 through m6 A-dependence, along with upregulation of TNF-α and IL1-ß. Overall, we characterized the m6 A profiles of the host and fungus before and after TM infection, and demonstrated that YTHDC2 mediates the key m6 A site of TLR2 to exert its function. These findings provide new insights into the underlying mechanisms and novel therapeutic approaches for TM diseases.


Assuntos
Coinfecção , Infecções por HIV , Micoses , Humanos , Receptor 2 Toll-Like/genética , RNA Helicases
5.
Cytokine ; 179: 156611, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38640559

RESUMO

Candida species are a normal human flora in humans' digestive and reproductive systems, oral cavity, skin, and mucosal surfaces. This study aimed to detect the immunological role of Candida infection by using some immunological markers. The results of levels in serum showed high concentrations of IgA (56.20 ± 12 pg/ml,29.55 ± 4.5 pg/ml respectively) and IgG (12.05 ± 3.218 pg/ml, 3.836 ± 1.23 pg/ml respectively) in mice infected with C. albicans and mice treated with Cefoperazone and infected with Candida with significant differences (P value < 0.05). The results showed high serum levels of IL-17(191.5 ± 42.81 pg/ml) and TLR2(7.651 ± 1.5 pg/ml) in group mice infected with C. albicans compared with negative control and group mice treated with Cefoperazone. Also, high levels of IL-17 (91.33 ± 4.816 pg/ml) and TLR2 (2.630 ± 0.5 pg/ml) in group mice treated with Cefoperazone and infected with Candida compared with negative control and group mice treated with Cefoperazone (P value < 0.05). The results of antibodies and immunological markers in the intestine showed high levels of IgA and IgG in mice infected with C.albicans (55.7 ± 4.9 pg/ml, 18.19 ± 0.63 pg/ml respectively).Also,IgA and IgG in mice treated with Cefoperazone and infected with Candida were high level (43.04 ± 2.1 pg/ml, 2.927 ± 0.2 pg/ml respectively) in mice infected with C. albicans with significant differences (P value < 0.05). The results levels of IL-17 and TLR2 were increased in mice infected with C. albicans (191.5 ± 42.81 pg/ml, 7.651 ± 1.5 pg/ml respectively) and mice treated with Cefoperazone and infected with Candida (91.33 ± 4.816 pg/ml,2.630 ± 0.5 pg/ml respectively) with significant differences (P < 0.05). In conclusion, this study demonstrated that cefoperazone treatment and infection by Candida albicans changed the microbiome components in the gut and finally can change host immune responses. It was observed that elevated levels of the antibodies production (IgA and IgG) and immunological markers (IL-17, and TLR2) in serum and the gut.


Assuntos
Candida albicans , Candidíase , Cefoperazona , Interleucina-17 , Receptor 2 Toll-Like , Animais , Candida albicans/imunologia , Candidíase/imunologia , Candidíase/tratamento farmacológico , Camundongos , Receptor 2 Toll-Like/metabolismo , Interleucina-17/metabolismo , Interleucina-17/sangue , Imunoglobulina G/sangue , Imunoglobulina A/sangue , Masculino , Feminino , Camundongos Endogâmicos BALB C
6.
Microb Pathog ; 187: 106518, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160988

RESUMO

In vivo studies identifying a role of TLR2 in septic arthritis models are lacking. TNF-α played as the most important proinflammatory cytokine, and connected directly to the pathogenesis of bacterial arthritis. IL-1ß is another central mediator cytokine in arthritis. It is therefore reasonable to question the role of neutralization of endogenous TNF-α and IL-1ß along with TLR2 and associated downstream signaling as crucial mediators in the S. aureus -induced inflammatory arthritis. In reaction to an injury or a pathogen encounter, innate immune cells serve as the initial line of defense. TLR2 mediated entry of S. aureus into macrophage cells initiates an array of inflammatory cascades. After macrophage cell gets activated at the site inflammation, they generate elevated number of cytokines which includes TNF-α, IL-1ß. This cytokines signals through STAT1/STAT3 mediated pathways. Thus, aim of this study was to discover how This bone damage could be altered by altering the STAT/STAT3/SOCS3 ratio by blocking TLR2, a particular S. aureus binding site, in conjunction with the use of IL-1 and TNF- antibodies for neutralizing endogenous IL-1ß and TNF-α. Additionally, the role of local macrophages in therapy of arthritis was investigated in synovial and Splenic tissue. To comprehend the inflammatory milieu within the system, ROS and other antioxidant enzymes, along with the expression of mTOR in macrophage cells, were also taken into consideration. The detrimental impact of bacterial burden on synovial joints was reduced by simultaneously inhibiting TLR2, TNF-α, and IL-1ß. Lowered IFN-γ decreases its sensitivity to STAT1 and lowered IL-6 reduces STAT3 expressions. Whereas, elevated IL-10 enhances SOSC3 expression, which thereby able to limits STAT1/STAT3 inter-conversion. As a result, NF-κB activity was downregulated.


Assuntos
Artrite Infecciosa , Staphylococcus aureus Resistente à Meticilina , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Receptor 2 Toll-Like/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo , Citocinas/metabolismo , NF-kappa B/metabolismo , Macrófagos/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Fator de Transcrição STAT3/metabolismo
7.
FASEB J ; 37(2): e22740, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36583707

RESUMO

Heart failure (HF) is the leading cause of morbidity and mortality worldwide. Activation of the innate immune system initiates an inflammatory response during cardiac remodeling induced by isoproterenol (ISO). Here, we investigated whether Toll-like receptor-2 (TLR2) mediates ISO-induced inflammation, hypertrophy, and fibrosis. TLR2 was found to be increased in the heart tissues of mouse with HF under ISO challenge. Further, cardiomyocytes and macrophages were identified as the main cellular sources of the increased TLR2 levels in the model under ISO stimulation. The effect of TLR2 deficiency on ISO-induced cardiac remodeling was determined using TLR2 knockout mice and bone marrow transplantation models. In vitro studies involving ISO-treated cultured cardiomyocytes and macrophages showed that TLR2 knockdown significantly decreased ISO-induced cell inflammation and remodeling via MAPKs/NF-κB signaling. Mechanistically, ISO significantly increased the TLR2-MyD88 interaction in the above cells in a TLR1-dependent manner. Finally, DAMPs, such as HSP70 and fibronectin 1 (FN1), were found to be released from the cells under ISO stimulation, which further activated TLR1/2-Myd88 signaling and subsequently activated pro-inflammatory cytokine expression and cardiac remodeling. In summary, our findings suggest that TLR2 may be a target for the alleviation of chronic adrenergic stimulation-associated HF. In addition, this paper points out the possibility of TLR2 as a new target for heart failure under ISO stimulation.


Assuntos
Insuficiência Cardíaca , Receptor 2 Toll-Like , Camundongos , Animais , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Miócitos Cardíacos/metabolismo , Isoproterenol/toxicidade , Receptor 1 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Remodelação Ventricular , Macrófagos/metabolismo , Arritmias Cardíacas/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Camundongos Knockout , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/metabolismo
8.
Brain Behav Immun ; 119: 621-636, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38670239

RESUMO

Rac1 is a key regulator of the cytoskeleton and neuronal plasticity, and is known to play a critical role in psychological and cognitive brain disorders. To elucidate the engram specific Rac1 signaling in fear memory, a doxycycline (Dox)-dependent robust activity marking (RAM) system was used to label dorsal dentate gyrus (DG) engram cells in mice during contextual fear conditioning. Rac1 mRNA and protein levels in DG engram cells were peaked at 24 h (day 1) after fear conditioning and were more abundant in the fear engram cells than in the non-engram cells. Optogenetic activation of Rac1 in a temporal manner in DG engram cells before memory retrieval decreased the freezing level in the fear context. Optogenetic activation of Rac1 increased autophagy protein 7 (ATG7) expression in the DG engram cells and activated DG microglia. Microglia-specific transcriptomics and fluorescence in situ hybridization revealed that overexpression of ATG7 in the fear engram cells upregulated the mRNA of Toll-like receptor TLR2/4 in DG microglia. Knockdown of microglial TLR2/4 rescued fear memory destabilization induced by ATG7 overexpression or Rac1 activation in DG engram cells. These results indicate that Rac1-driven communications between engram cells and microglia contributes to contextual fear memory destabilization, and is mediated by ATG7 and TLR2/4, and suggest a novel mechanistic framework for the cytoskeletal regulator in fear memory interference.


Assuntos
Giro Denteado , Medo , Hipocampo , Memória , Microglia , Optogenética , Proteínas rac1 de Ligação ao GTP , Animais , Medo/fisiologia , Camundongos , Proteínas rac1 de Ligação ao GTP/metabolismo , Memória/fisiologia , Microglia/metabolismo , Hipocampo/metabolismo , Giro Denteado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteína 7 Relacionada à Autofagia/metabolismo , Proteína 7 Relacionada à Autofagia/genética , Neuropeptídeos/metabolismo , Plasticidade Neuronal/fisiologia , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Condicionamento Clássico/fisiologia
9.
Infection ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703289

RESUMO

BACKGROUND AND AIM: A wide range of clinical manifestations and outcomes, including liver injury, have been reported in COVID-19 patients. We investigated the association of three substantial gene polymorphisms (FURIN, IFNL4, and TLR2) with COVID-19 disease susceptibility and severity to help predict prognosis. METHODS: 150 adult COVID-19-assured cases were categorized as follows: 78 patients with a non-severe presentation, 39 patients with severe disease, and 33 critically ill patients. In addition, 74 healthy controls were included. Clinical and laboratory evaluations were carried out, including complete and differential blood counts, D-dimer, lactate dehydrogenase (LDH), C-reactive protein (CRP), procalcitonin, ferritin, interleukin-6 (Il-6), and liver and kidney functions. FURIN (rs6226), IFNL4 (rs12979860), and TLR2 (rs3804099) genotyping allelic discrimination assays were conducted using real-time PCR. RESULTS: The FURIN, IFNL4, and TLR2 genotypes and their alleles differed significantly between COVID-19 patients and controls, as well as between patients with severe or critical illness and those with a non-severe presentation. According to a multivariable regression analysis, FURIN (C/T + T/T) and TLR2 (T/C + C/C) mutants were associated with COVID-19 susceptibility, with odds ratios of 3.293 and 2.839, respectively. FURIN C/C and IFNL4 T/T mutants were significantly linked to severe and critical illnesses. Multivariate regression analysis showed that FURIN (G/C + C/C) genotypes and IFNL4 T/T homozygosity were independent risk factors associated with increased mortality. CONCLUSION: FURIN, IFNL4, and TLR2 gene variants are associated with the risk of COVID-19 occurrence as well as increased severity and poor outcomes in Egyptian patients.

10.
Int J Immunogenet ; 51(4): 242-251, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38706134

RESUMO

Toll-like receptors (TLRs) play an important role in innate immunity. Previous studies have shown that single nucleotide polymorphisms (SNPs) in the genes coding for these innate immune molecules can affect susceptibility to and the outcome of certain diseases. The aim of the present study was to examine the clinical relevance of well-studied TLR1-4 SNPs in individuals who are prone to infections. Four functional SNPs, TLR1 rs5743618 (1805C > A, Ser602Ile), TLR2 rs5743708 (2258G > A, Arg753Gln), TLR3 rs3775291 (1234C > T, Leu412Phe) and TLR4 rs4986790 (896A > G, Asp299Gly), were analysed in 155 patients with recurrent respiratory infections (n = 84), severe infections (n = 15) or common variable immunodeficiency (n = 56), and in 262 healthy controls, using the High Resolution Melting Analysis method. Polymorphisms of TLR2 rs5743708 (odds ratio [OR] 3.16; 95% confidence interval [CI] 1.45-6.83, p = .004, ap = .016) and TLR4 rs4986790 (OR 1.8; 95% CI 1.05-3.12, p = .028, ap = .112) were more frequent in patients with recurrent or severe infections than in controls. Interestingly, seven patients were found to carry both variant genotypes of TLR2 and TLR4, whereas none of the control group carried such genotypes (p  ≤ .0001). Moreover, TLR2 polymorphism was associated with increased risk for acute otitis media episodes (OR, 3.02; 95% CI 1.41-6.47; p = .012). This study indicates that children and adults who are more prone to recurrent or severe respiratory infections carry one or both variant types of TLR2 and TLR4 more often than control subjects. Genetic variations of TLRs help explain why some children are more susceptible to respiratory infections.


Assuntos
Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Receptor 1 Toll-Like , Receptor 2 Toll-Like , Receptor 3 Toll-Like , Receptor 4 Toll-Like , Humanos , Masculino , Feminino , Receptor 4 Toll-Like/genética , Receptor 2 Toll-Like/genética , Receptor 3 Toll-Like/genética , Receptor 1 Toll-Like/genética , Criança , Adulto , Infecções Respiratórias/genética , Pré-Escolar , Adolescente , Recidiva , Pessoa de Meia-Idade , Genótipo , Frequência do Gene , Estudos de Casos e Controles
11.
Immunopharmacol Immunotoxicol ; 46(2): 192-198, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38147028

RESUMO

OBJECTIVE: Endoplasmic reticulum stress (ERS) and Toll-like receptor 2 (TLR2) signaling play an important role in inflammatory bowel disease (IBD); however, the link between TLR2 and ERS in IBD is unclear. This study investigated whether Thapsigargin (TG) -induced ER protein expression levels contributed to TLR2-mediated inflammatory response. METHODS: The THP-1 cells were treated with TLR2 agonist (Pam3CSK4), ERS inducer Thapsigargin (TG) or inhibitor (TUDCA). The mRNA expressions of TLR1-TLR10 were detected by qPCR. The production and secretion of inflammatory factors were detected by PCR and ELISA. Immunohistochemistry was used to detect the expressions of GRP78 and TLR2 in the intestinal mucosa of patients with Crohn's disease (CD). The IBD mouse model was established by TNBS in the modeling group. ERS inhibitor (TUDCA) was used in the treatment group. RESULTS: The expression of TLRs was detected via polymerase chain reaction (PCR) in THP-1 cells treated by ERS agonist Thapsigargin (TG). According to the findings, TG could promote TLR2 and TLR5 expression. Subsequently, in TLR2 agonist Pam3CSK4 induced THP-1 cells, TG could lead to increased expression of the inflammatory factors such as TNF-α, IL-1ß and IL-8, and ERS inhibitor (TUDCA) could block this effect. However, Pam3CSK4 did not significantly impact the GRP78 and CHOP expression. Based upon the immunohistochemical results, TLR2 and GRP78 expression were significantly increased in the intestinal mucosa of patients with Crohn's disease (CD). For in vivo experiments, TUDCA displayed the ability to inhibit intestinal mucosal inflammation and reduce GRP78 and TLR2 proteins. CONCLUSIONS: ERS and TLR2 is upregulated in inflammatory bowel disease, ERS may promote TLR2 pathway-mediated inflammatory response. Moreover, ERS and TLR2 signaling could be novel therapeutic targets for IBD.


Assuntos
Doença de Crohn , Doenças Inflamatórias Intestinais , Ácido Tauroquenodesoxicólico , Camundongos , Animais , Humanos , Receptor 2 Toll-Like/metabolismo , Chaperona BiP do Retículo Endoplasmático , Tapsigargina/farmacologia , Estresse do Retículo Endoplasmático
12.
Encephale ; 50(2): 178-184, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37718198

RESUMO

BACKGROUND AND STUDY AIM: Schizophrenia (SZ) is a multifactorial disorder involving complex interactions between genetic and environmental factors, where immune dysfunction plays a key etiopathogenic role. In order to explore the control of innate immune responses in SZ, we aimed to investigate the potential association between twelve TLR2, TLR4 and TLR9 variants (TLR2: rs4696480T>A, rs3804099T>C, rs3804100T>C; TLR4: rs1927914G>A, rs10759932T>C, rs4986790A>G, rs4986791T>C, rs11536889G>C, rs11536891T>C; TLR9: rs187084A>G, rs352139T>C and rs352140C>T) and SZ susceptibility in a Tunisian population. PATIENTS AND METHODS: This study included 150 patients and 201 healthy controls with no history of psychiatric illness. Genotyping was done using a TaqMan SNP genotyping assay. We also assessed a haplotype analysis for TLR2, TLR4 and TLR9 variants with SZ using Haploview 4.2 Software. RESULTS: We found that the AA genotype of the TLR2 rs4696480T>A variant was significantly associated with an increased risk of SZ (46% vs. 31%, P=4.7×10-3, OR=1.87 and 95% CI [1.18-2.97]). The frequency of the TA genotype was significantly higher in the control group than in SZ patients (27% vs. 43%, P=2.1×10-3) and may be associated with protection against SZ (OR=0.49 and 95% CI [0.30-0.80]). Whereas, the TLR9 rs187084-GG genotype was higher in the control group compared to patients (16% vs. 5%, P=1.6×10-3) and would present protection against SZ (OR=0.28, CI=[0.10-0.68]). The ACT haplotype of the TLR2 and the ACC haplotype of the TLR9 gene were identified as a risk haplotypes for SZ (P=0.04, OR=9.30, 95% CI=[1.11-77.71]; P=3×10-4, OR=6.05, 95% CI=[2.29-15.98], respectively). CONCLUSION: The results indicate that TLR2 and TLR9 genetic diversity may play a role in genetic vulnerability to SZ. However, including more patients and evaluation of TLR2 and TLR9 expression are recommended.


Assuntos
Esquizofrenia , Receptor 2 Toll-Like , Humanos , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Receptor Toll-Like 9/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética , Genótipo , Estudos de Casos e Controles
13.
J Clin Biochem Nutr ; 74(2): 146-153, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38510686

RESUMO

Nucleotide-binding oligomerization domain 2 (NOD2) is an intracellular sensor for muramyl dipeptide (MDP), a degradation product of bacterial cell wall peptidoglycan (PGN). PGN stimulates cell-surface Toll-like receptor 2 (TLR2) independently of NOD2, indicating the presence of crosstalk between extracellular TLR2 and intracellular NOD2 upon exposure to PGN. NOD2-deficient mice were sensitive, while TLR2-deficient mice were resistant to experimental colitis induced by intrarectal administration of PGN. Severe colitis in NOD2-deficient mice was accompanied by increased expression of nuclear factor-kappa B-dependent cytokines and decreased expression of autophagy-related 16-like 1 (ATG16L1). MDP activation of NOD2 enhanced autophagy mediated by TLR2 in human dendritic cells. mRNA expression of TLR2 tended to be higher in the colonic mucosa of patients with active ulcerative colitis compared to that of those in remission. Induction of remission was associated with increased mRNA expression of ATG16L1 in both ulcerative colitis and Crohn's disease patients. Conversely, mRNA expression of receptor-interacting serine/threonine-protein kinase 2 was higher in the inflammatory colonic mucosa of patients with active disease than in the non-inflamed mucosa of patients in remission, in both ulcerative colitis and Crohn's disease. These findings highlight the role of NOD2-TLR2 crosstalk in the immunopathogenesis of colitis.

14.
Saudi Pharm J ; 32(3): 101956, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38318316

RESUMO

Hyperuricemia contributes significantly to gout arthritis pathogenesis, which promotes urate crystal deposition in the joints and activates joint-resident macrophages and circulating monocytes to initiate a state of inflammatory arthritis. In the joint, macrophages have an immune defense role where the presence of urate crystals results in the inflammatory mediators secretion, inflammatory cells recruitment to the joint, and shift macrophage population toward M1 pro-inflammatory phenotypes. Current treatment modalities of gout arthritis have side effects that limit their use in the elderly. A novel treatment that targets macrophage polarization to re-establish homeostasis may initiate a drug discovery program of novel disease-modifying agents for gout. Zerumbone (Zer) is a sesquiterpenoid bioactive compound found in the rhizome of Zingiberaceae family and possesses anti-inflammatory, antioxidant, and anti-proliferative activity. Our study hypothesized that soluble uric acid (sUA) and Pam3CSK4 (TLR2 agonist) reduce the anti-inflammatory function of murine M2 bone marrow-derived macrophages and change the expression of M2 genetic markers toward M1 phenotypes. We observed that priming of M2 macrophages with sUA and Pam3CSK4 significantly decreased M2 specific markers expression, e.g., Arg-1, Ym-1, and Fizz-1, enhanced mRNA expression of IL-1ß, TNF-α, CXCL2, and iNOS and increased oxidative stress in M2 macrophages, as exhibited by a reduction in Nrf2 expression. We also aimed to study the impact of Zer on reducing the pro-inflammatory effect of sUA in TLR2-stimulated M2 macrophages. We noticed that Zer treatment significantly reduced L-1ß and TNF-α production following Pam3CSK4 + sUA treatment on M2 macrophages. Furthermore, Zer reduced the caspase-1 activity without altering cytosolic NLRP3 content in challenged M2 BMDMs. We also observed that Zer significantly enhanced M2-associated marker's expression, e.g., Arg-1, Ym-1, and Fizz-1, and augmented Nrf-2 and other antioxidant proteins, including HMOX1 and srxn1expression following Pam3CSK4 + sUA treatment. We draw the conclusion that Zer is a potentially effective anti-inflammatory treatment for gout arthritis linked to hyperuricemia.

15.
J Infect Dis ; 228(3): 332-342, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-36808423

RESUMO

Staphylococcus aureus (S. aureus) causes a broad range of infections. Toll-like receptor (TLR) 2 senses the S. aureus lipoproteins in S. aureus infections. Aging raises the risk of infection. Our aim was to understand how aging and TLR2 affect the clinical outcomes of S. aureus bacteremia. Four groups of mice (wild type/young, wild type/old, TLR2-/-/young, and TLR2-/-/old) were intravenously infected with S. aureus, and the infection course was followed. Both TLR2 deficiency and aging enhanced the susceptibility to disease. Increased age was the main contributing factor for increased mortality rates and changes in spleen weight, whereas other clinical parameters, such as weight loss and kidney abscess formation, were more TLR2 dependent. Importantly, aging increased mortality rates without relying on TLR2. In vitro, both aging and TLR2 deficiency down-regulated cytokine/chemokine production of immune cells with distinct patterns. In summary, we demonstrate that aging and TLR2 deficiency impair the immune response to S. aureus bacteremia in distinct ways.


Assuntos
Bacteriemia , Infecções Estafilocócicas , Animais , Camundongos , Receptor 2 Toll-Like/genética , Staphylococcus aureus/fisiologia , Citocinas
16.
Am J Respir Cell Mol Biol ; 68(6): 689-701, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36883953

RESUMO

Clinical observations suggest that the source of primary infection accounts for a major determinant of further nosocomial pneumonia in critically ill patients with sepsis. Here we addressed the impact of primary nonpulmonary or pulmonary septic insults on lung immunity using relevant double-hit animal models. C57BL/6J mice were first subjected to polymicrobial peritonitis induced by cecal ligation and puncture (CLP) or bacterial pneumonia induced by intratracheal challenge with Escherichia coli. Seven days later, postseptic mice received ab intratracheal challenge with Pseudomonas aeruginosa. Compared with controls, post-CLP mice became highly susceptible to P. aeruginosa pneumonia, as demonstrated by defective lung bacterial clearance and increased mortality rate. In contrast, all postpneumonia mice survived the P. aeruginosa challenge and even exhibited improved bacterial clearance. Nonpulmonary and pulmonary sepsis differentially modulated the amounts and some important immune functions of alveolar macrophages. Additionally, we observed a Toll-like receptor 2 (TLR2)-dependent increase in regulatory T cells (Tregs) in lungs from post-CLP mice. Antibody-mediated Treg depletion restored the numbers and functions of alveolar macrophages in post-CLP mice. Furthermore, post-CLP TLR2-deficient mice were found resistant to secondary P. aeruginosa pneumonia. In conclusion, polymicrobial peritonitis and bacterial pneumonia conferred susceptibility or resistance to secondary gram-negative pulmonary infection, respectively. Immune patterns in post-CLP lungs argue for a TLR2-dependent cross-talk between Tregs and alveolar macrophages as an important regulatory mechanism in postseptic lung defense.


Assuntos
Peritonite , Pneumonia Bacteriana , Sepse , Animais , Camundongos , Macrófagos Alveolares , Receptor 2 Toll-Like , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Pulmão , Sepse/complicações , Peritonite/complicações
17.
Am J Respir Cell Mol Biol ; 69(6): 614-622, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37603788

RESUMO

Respiratory virus infections initiate and transmit from the upper respiratory tract (URT). Coronaviruses, including OC43, are a major cause of respiratory infection and disease. Failure to mount an effective antiviral immune response in the nasal mucosa increases the risk of severe disease and person-to-person transmission, highlighting the need for URT infection models to support the development of nasal treatments that improve coronavirus antiviral immunity. We aimed to determine if OC43 productively infected the mouse URT and would therefore be a suitable model to assess the efficacy and mechanism of action of nasal-targeting immune-modifying treatments. We administered OC43 via intranasal inoculation to wild-type Balb/c mice and assessed virus airway tropism (by comparing total respiratory tract vs. URT-only virus exposure) and characterized infection-induced immunity by quantifying specific antiviral cytokines and performing gene array assessment of immune genes. We then assessed the effect of immune-modulating therapies, including an immune-stimulating TLR2/6 agonist (INNA-X) and the immune-suppressing corticosteroid fluticasone propionate (FP). OC43 replicated in nasal respiratory epithelial cells, with peak viral RNA observed 2 days after infection. Prophylactic treatment with INNA-X accelerated expression of virus-induced IFN-λ and IFN-stimulated genes. In contrast, intranasal FP treatment increased nasal viral load by 2.4 fold and inhibited virus-induced IFN and IFN-stimulated gene expression. Prior INNA-X treatment reduced the immune-suppressive effect of FP. We demonstrate that the mouse nasal epithelium is permissive to OC43 infection and strengthen the evidence that TLR2 activation is a ß-coronavirus innate immune determinant and therapeutic target.


Assuntos
Infecções Respiratórias , Receptor 2 Toll-Like , Humanos , Animais , Camundongos , Infecções Respiratórias/tratamento farmacológico , Citocinas/metabolismo , Mucosa Nasal/metabolismo , Interferon lambda
18.
Infect Immun ; 91(10): e0016623, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37768067

RESUMO

In this study, we examined the effect of Il9 deletion on macrophages in methicillin-resistant Staphylococcus aureus (MRSA) infection. MRSA-infected mice were employed for the in vivo experiments, and RAW264.7 cells were stimulated with MRSA for the in vitro experiments. Macrophage polarization was determined by flow cytometry and quantitative real-time PCR; macrophage phagocytosis was assessed by flow cytometry and laser scanning confocal microscopy; cell apoptosis was assessed by flow cytometry and western blotting. Il9 deletion markedly elevated macrophage phagocytosis and M2 macrophages in MRSA infection, which was accompanied by elevated expression of Il10 and Arg1 and reduced expression of Inos, tumor necrosis factor-α (Tnfα), and Il6. Il9 deletion also inhibited macrophage apoptosis in MRSA infection, which was manifested by elevated B-cell lymphoma 2 (BCL-2) protein level and reduced protein levels of cleaved cysteine protease 3 (CASPASE-3) and BCL2-Associated X (BAX). Both the in vivo and in vitro experiments further showed the activation of phosphoinositide 3-kinase (PI3K)/AKT (also known as protein kinase B, PKB) signaling pathway in MRSA infection and that the regulation of Il9 expression may be dependent on Toll-like receptor (TLR) 2/PI3K pathway. The above results showed that Il9 deletion exhibited a protective role against MRSA infection by promoting M2 polarization and phagocytosis of macrophages and the regulation of Il9 partly owing to the activation of TLR2/PI3K pathway, proposing a novel therapeutic strategy for MRSA-infected pneumonia.


Assuntos
Interleucina-9 , Staphylococcus aureus Resistente à Meticilina , Fagocitose , Pneumonia Estafilocócica , Animais , Camundongos , Interleucina-9/genética , Interleucina-9/metabolismo , Macrófagos/metabolismo , Staphylococcus aureus Resistente à Meticilina/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Pneumonia Estafilocócica/tratamento farmacológico , Pneumonia Estafilocócica/imunologia
19.
J Cell Physiol ; 238(1): 257-273, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436135

RESUMO

Although neuronal Toll-like receptors (TLRs) (e.g., TLR2, TLR3, and TLR7) have been implicated in itch sensation, the roles of keratinocyte TLRs in chronic itch are elusive. Herein, we evaluated the roles of keratinocyte TLR2 and TLR7 in chronic itch under dry skin and psoriasis conditions, which was induced by either acetone-ether-water treatment or 5% imiquimod cream in mice, respectively. We found that TLR2 and TLR7 signaling were significantly upregulated in dry skin and psoriatic skin in mice. Chronic itch and epidermal hyperplasia induced by dry skin or psoriasis were comparably reduced in TLR2 and TLR7 knockout mice. In the dry skin model, the enhanced messenger RNA (mRNA) expression levels of pruritic CXCL1/2, IL-31, IL-33, ST2, IL-6, IL-17A, TNF-α, and IFN-γ were inhibited in TLR2-/- mice, while CXCL2, IL-31, and IL-6 were inhibited in TLR7-/- mice. In psoriasis model, the enhanced mRNA expression levels of pruritic CXCL1/2, IL-31, IL-33, ST2, IL-6, and TNF-α were inhibited in TLR2-/- mice, while CXCL1/2, IL-31, IL-33, ST2, IL-6, IL-17A, and TNF-α were inhibited in TLR7-/- mice. Incubation with Staphylococcus aureus (S. aureus) peptidoglycan (PGN-SA) (a TLR2 agonist), imiquimod (a TLR7 agonist), and miR142-3p (a putative TLR7 agonist) were sufficient to upregulate the expression of pruritic cytokines or chemokines in cultured keratinocyte HaCaT cells. Finally, pharmacological blockade of C-X-C Motif Chemokine Receptor 1/2 and high mobility group box protein 1 dose-dependently attenuated acute and chronic itch in mice. Together, these results indicate that keratinocyte TLR2 and TLR7 signaling pathways are distinctly involved in the pathogenesis of chronic itch.


Assuntos
Quimiocinas , Citocinas , Prurido , Psoríase , Receptor 2 Toll-Like , Receptor 7 Toll-Like , Animais , Camundongos , Citocinas/metabolismo , Imiquimode/efeitos adversos , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-17 , Interleucina-33 , Interleucina-6 , Queratinócitos/metabolismo , Psoríase/tratamento farmacológico , RNA Mensageiro , Receptor 2 Toll-Like/genética , Receptor 7 Toll-Like/genética , Fator de Necrose Tumoral alfa/efeitos adversos , Modelos Animais de Doenças , Camundongos Knockout , Células HaCaT , Humanos
20.
Immunology ; 169(4): 454-466, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36946150

RESUMO

Vaccines based on tumour-specific antigens are a promising approach for immunotherapy. However, the clinical efficacy of tumour-specific antigens is still challenging. Twelve conjugates with self-assembly properties were designed and synthesized using MAGE-A1 peptide and TLR2 agonist, combined with different covalent bonds. All the developed conjugates formed spherical nanoparticles with a diameter of approximately 150 nm, and enhanced the efficacy of the peptide vaccines with the better targeting of lymph nodes. All the conjugates could well bind to serum albumin and improve the plasma stability of the individual antigenic peptides. In particular, conjugate 6 (N-Ac PamCS-M-6) had a more significant ability to promote dendritic cell maturation, CD8+ T cell activation, and subsequent killing of tumour cells, with an in vivo tumour inhibition rate of 70 ± 2.9%. The interaction between specific response and the different conjugation modes was further explored, thereby providing a fundamental basis for novel immune anti-tumour molecular platforms.


Assuntos
Neoplasias da Mama , Vacinas Anticâncer , Vacinas , Humanos , Feminino , Linfócitos T CD8-Positivos , Receptor 2 Toll-Like/metabolismo , Neoplasias da Mama/terapia , Neoplasias da Mama/metabolismo , Imunoterapia , Antígenos/metabolismo , Peptídeos , Células Dendríticas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa