Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.720
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(10): 1694-1708.e19, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35447074

RESUMO

Immunotherapy is a promising treatment for triple-negative breast cancer (TNBC), but patients relapse, highlighting the need to understand the mechanisms of resistance. We discovered that in primary breast cancer, tumor cells that resist T cell attack are quiescent. Quiescent cancer cells (QCCs) form clusters with reduced immune infiltration. They also display superior tumorigenic capacity and higher expression of chemotherapy resistance and stemness genes. We adapted single-cell RNA-sequencing with precise spatial resolution to profile infiltrating cells inside and outside the QCC niche. This transcriptomic analysis revealed hypoxia-induced programs and identified more exhausted T cells, tumor-protective fibroblasts, and dysfunctional dendritic cells inside clusters of QCCs. This uncovered differential phenotypes in infiltrating cells based on their intra-tumor location. Thus, QCCs constitute immunotherapy-resistant reservoirs by orchestrating a local hypoxic immune-suppressive milieu that blocks T cell function. Eliminating QCCs holds the promise to counteract immunotherapy resistance and prevent disease recurrence in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Imunossupressores/uso terapêutico , Imunoterapia , Recidiva Local de Neoplasia , Linfócitos T/patologia , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral
2.
Cell ; 180(3): 502-520.e19, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31983537

RESUMO

The tumor microenvironment (TME) is critical for tumor progression. However, the establishment and function of the TME remain obscure because of its complex cellular composition. Using a mouse genetic system called mosaic analysis with double markers (MADMs), we delineated TME evolution at single-cell resolution in sonic hedgehog (SHH)-activated medulloblastomas that originate from unipotent granule neuron progenitors in the brain. First, we found that astrocytes within the TME (TuAstrocytes) were trans-differentiated from tumor granule neuron precursors (GNPs), which normally never differentiate into astrocytes. Second, we identified that TME-derived IGF1 promotes tumor progression. Third, we uncovered that insulin-like growth factor 1 (IGF1) is produced by tumor-associated microglia in response to interleukin-4 (IL-4) stimulation. Finally, we found that IL-4 is secreted by TuAstrocytes. Collectively, our studies reveal an evolutionary process that produces a multi-lateral network within the TME of medulloblastoma: a fraction of tumor cells trans-differentiate into TuAstrocytes, which, in turn, produce IL-4 that stimulates microglia to produce IGF1 to promote tumor progression.


Assuntos
Astrócitos/metabolismo , Carcinogênese/metabolismo , Transdiferenciação Celular , Neoplasias Cerebelares/metabolismo , Meduloblastoma/metabolismo , Comunicação Parácrina , Animais , Linhagem da Célula , Neoplasias Cerebelares/patologia , Modelos Animais de Doenças , Feminino , Proteínas Hedgehog/metabolismo , Xenoenxertos , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Masculino , Meduloblastoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Microambiente Tumoral
3.
Mol Ther ; 32(10): 3522-3538, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39086131

RESUMO

Chimeric antigen receptor (CAR) T cells have shown significant efficacy in hematological diseases. However, CAR T therapy has demonstrated limited efficacy in solid tumors, including glioblastoma (GBM). One of the most important reasons is the immunosuppressive tumor microenvironment (TME), which promotes tumor growth and suppresses immune cells used to eliminate tumor cells. The human transforming growth factor ß (TGF-ß) plays a crucial role in forming the suppressive GBM TME and driving the suppression of the anti-GBM response. To mitigate TGF-ß-mediated suppressive activity, we combined a dominant-negative TGF-ß receptor II (dnTGFßRII) with our previous bicistronic CART-EGFR-IL13Rα2 construct, currently being evaluated in a clinical trial, to generate CART-EGFR-IL13Rα2-dnTGFßRII, a tri-modular construct we are developing for clinical application. We hypothesized that this approach would more effectively subvert resistance mechanisms observed with GBM. Our data suggest that CART-EGFR-IL13Rα2-dnTGFßRII significantly augments T cell proliferation, enhances functional responses, and improves the fitness of bystander cells, particularly by decreasing the TGF-ß concentration in a TGF-ß-rich TME. In addition, in vivo studies validate the safety and efficacy of the dnTGFßRII cooperating with CARs in targeting and eradicating GBM in an NSG mouse model.


Assuntos
Glioblastoma , Imunoterapia Adotiva , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Antígenos Quiméricos , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Glioblastoma/terapia , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/imunologia , Humanos , Animais , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Camundongos , Imunoterapia Adotiva/métodos , Linhagem Celular Tumoral , Microambiente Tumoral/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/genética , Resistencia a Medicamentos Antineoplásicos/genética , Subunidade alfa2 de Receptor de Interleucina-13/metabolismo , Subunidade alfa2 de Receptor de Interleucina-13/genética , Modelos Animais de Doenças , Fator de Crescimento Transformador beta/metabolismo
4.
Genomics ; 116(3): 110799, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38286348

RESUMO

Malignant gliomas, characterized by pronounced heterogeneity, a complex microenvironment, and a propensity for relapse and drug resistaniguree, pose significant challenges in oncology. This study aimed to investigate the prognostic value of Ligand and Receptor related genes (LRRGs) within the glioma microenvironment. An intersection of 71 ligand-related genes (LRGs) and 2628 receptor-related genes (RRGs) yielded a total of 69 LRRGs. Utilizing the least absolute shrinkage and selection operator (LASSO) regression analysis, a prognostic RiskScore model comprising 28 LRRGs was constructed. The model demonstrated robust prognostic value, further validated in the TCGA-GBMLGG dataset. Subsequent analyses included differential gene expression, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment (GSEA), and gene set variation (GSVA) within RiskScore groups. Additionally, evaluations of PPI, mRNA-RBP, mRNA-TF, and mRNA-drug interaction networks were conducted. Four hub genes were identified through differential expression analysis of the 28 LRRGs across various GSE datasets. A multivariate Cox prognostic model was constructed for nomogram analysis, gene mutation analysis, and related expression distribution. This study underscores the role of LRRGs in intercellular communication within the glioma microenvironment and identifies four hub genes crucial for prognostic assessment in clinical glioma patients. These findings offer a potential evaluation framework for glioma patients, enhancing our understanding of the disease and informing future therapeutic strategies.


Assuntos
Glioma , Microambiente Tumoral , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Prognóstico , Transcriptoma , Microambiente Tumoral/genética
5.
J Cell Mol Med ; 28(11): e18408, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837585

RESUMO

We employed single-cell analysis techniques, specifically the inferCNV method, to dissect the complex progression of lung adenocarcinoma (LUAD) from adenocarcinoma in situ (AIS) through minimally invasive adenocarcinoma (MIA) to invasive adenocarcinoma (IAC). This approach enabled the identification of Cluster 6, which was significantly associated with LUAD progression. Our comprehensive analysis included intercellular interaction, transcription factor regulatory networks, trajectory analysis, and gene set variation analysis (GSVA), leading to the development of the lung progression associated signature (LPAS). Interestingly, we discovered that the LPAS not only accurately predicts the prognosis of LUAD patients but also forecasts genomic alterations, distinguishes between 'cold' and 'hot' tumours, and identifies potential candidates suitable for immunotherapy. PSMB1, identified within Cluster 6, was experimentally shown to significantly enhance cancer cell invasion and migration, highlighting the clinical relevance of LPAS in predicting LUAD progression and providing a potential target for therapeutic intervention. Our findings suggest that LPAS offers a novel biomarker for LUAD patient stratification, with significant implications for improving prognostic accuracy and guiding treatment decisions.


Assuntos
Adenocarcinoma de Pulmão , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Genômica , Neoplasias Pulmonares , Análise de Célula Única , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Prognóstico , Análise de Célula Única/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Genômica/métodos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Redes Reguladoras de Genes , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Invasividade Neoplásica
6.
J Cell Mol Med ; 28(6): e18186, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38445803

RESUMO

Clear cell renal cell carcinoma (ccRCC) represents a significant challenge in oncology, primarily due to its resistance to conventional therapies. Understanding the tumour microenvironment (TME) is crucial for developing new treatment strategies. This study focuses on the role of amyloid precursor protein (APP) in tumour-associated macrophages (TAMs) within the ccRCC TME, exploring its potential as a prognostic biomarker. Basing TAM-related genes, the prognostic model was important to constructed. Employing advanced single-cell transcriptomic analysis, this research dissects the TME of ccRCC at an unprecedented cellular resolution. By isolating and examining the gene expression profiles of individual cells, particularly focusing on TAMs, the study investigates the expression levels of APP and their association with the clinical outcomes of ccRCC patients. The analysis reveals a significant correlation between the expression of APP in TAMs and patient prognosis in ccRCC. Patients with higher APP expression in TAMs showed differing clinical outcomes compared to those with lower expression. This finding suggests that APP could serve as a novel prognostic biomarker for ccRCC, providing insights into the disease progression and potential therapeutic targets. This study underscores the importance of single-cell transcriptomics in understanding the complex dynamics of the TME in ccRCC. The correlation between APP expression in TAMs and patient prognosis highlights APP as a potential prognostic biomarker. However, further research is needed to validate these findings and explore the regulatory mechanisms and therapeutic implications of APP in ccRCC.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Precursor de Proteína beta-Amiloide , Biomarcadores , Carcinoma de Células Renais/genética , Perfilação da Expressão Gênica , Neoplasias Renais/genética , Microambiente Tumoral/genética
7.
J Cell Mol Med ; 28(3): e18108, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38279519

RESUMO

Oral squamous cell carcinoma (OSCC) is a prevalent malignancy of the head and neck with rising global incidence. Despite advances in treatment modalities, OSCC prognosis remains diverse due to the complex molecular and cellular heterogeneity within tumours, as well as the heterogeneity in tumour microenvironment (TME). In this study, we utilized single-cell RNA sequencing (scRNA-seq) analysis to explore distinct subpopulations of tumour cells in OSCC tissues and their interaction with components in TME. We identified four major tumour cell subpopulations (C0, C1, C2 and C3) with unique molecular characteristics and functional features. Pathway enrichment analysis revealed that C0 primarily expressed genes involved in extracellular matrix interactions and C1 showed higher proliferation levels, suggesting that the two cell subpopulations exhibited tumour aggressiveness. Conversely, C2 and C3 displayed features associated with keratinization and cornified envelope formation. Accordingly, C0 and C1 subpopulations were associated with shorter overall and disease-free survival times, while C2 and C3 were weakly correlated with longer survival. Genomic analysis showed that C1 demonstrated a positive correlation with tumour mutation burden. Furthermore, C0 exhibited resistant to cisplatin treatment, while C1 showed more sensitive to cisplatin treatment, indicating that C0 might exhibit more aggressive compared to C1. Additionally, C0 had a higher level of communication with fibroblasts and endothelial cells in TME via integrin-MAPK signalling, suggesting that the function of C0 was maintained by that pathway. In summary, this study provided critical insights into the molecular and cellular heterogeneity of OSCC, with potential implications for prognosis prediction and personalized therapeutic approaches.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Cisplatino , Células Endoteliais , Transcriptoma , Microambiente Tumoral
8.
Immunology ; 172(4): 547-565, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38566448

RESUMO

Ferroptosis, a necrotic, iron-dependent controlled cell death mechanism, is distinguished by the development of lipid peroxides to fatal proportions. Malignant tumours, influenced by iron to promote fast development, are vulnerable to ferroptosis. Based upon mounting evidence it has been observed that ferroptosis may be immunogenic and hence may complement immunotherapies. A new approach includes iron oxide-loaded nano-vaccines (IONVs), having supremacy for the traits of the tumour microenvironment (TME) to deliver specific antigens through improving the immunostimulatory capacity by molecular disintegration and reversible covalent bonds that target the tumour cells and induce ferroptosis. Apart from IONVs, another newer approach to induce ferroptosis in tumour cells is through oncolytic virus (OVs). One such oncolytic virus is the Newcastle Disease Virus (NDV), which can only multiply in cancer cells through the p53-SLC7A11-GPX4 pathway that leads to elevated levels of lipid peroxide and intracellular reactive oxygen species leading to the induction of ferroptosis that induce ferritinophagy.


Assuntos
Ferroptose , Imunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Imunoterapia/métodos , Animais , Microambiente Tumoral/imunologia , Espécies Reativas de Oxigênio/metabolismo , Vacinas Anticâncer/imunologia , Vírus Oncolíticos/imunologia , Terapia Viral Oncolítica/métodos
9.
Mol Cancer ; 23(1): 2, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178117

RESUMO

Peripheral T-cell lymphoma (PTCL) is a rare and heterogeneous group of hematological malignancies. Compared to our knowledge of B-cell tumors, our understanding of T-cell leukemia and lymphoma remains less advanced, and a significant number of patients are diagnosed with advanced stages of the disease. Unfortunately, the development of drug resistance in tumors leads to relapsed or refractory peripheral T-Cell Lymphomas (r/r PTCL), resulting in highly unsatisfactory treatment outcomes for these patients. This review provides an overview of potential mechanisms contributing to PTCL treatment resistance, encompassing aspects such as tumor heterogeneity, tumor microenvironment, and abnormal signaling pathways in PTCL development. The existing drugs aimed at overcoming PTCL resistance and their potential resistance mechanisms are also discussed. Furthermore, a summary of ongoing clinical trials related to PTCL is presented, with the aim of aiding clinicians in making informed treatment decisions.


Assuntos
Neoplasias Hematológicas , Linfoma de Células T Periférico , Humanos , Linfoma de Células T Periférico/tratamento farmacológico , Linfoma de Células T Periférico/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resultado do Tratamento , Neoplasias Hematológicas/tratamento farmacológico , Microambiente Tumoral
10.
Mol Cancer ; 23(1): 130, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902779

RESUMO

RNA methylation, a prevalent post-transcriptional modification, has garnered considerable attention in research circles. It exerts regulatory control over diverse biological functions by modulating RNA splicing, translation, transport, and stability. Notably, studies have illuminated the substantial impact of RNA methylation on tumor immunity. The primary types of RNA methylation encompass N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G), and 3-methylcytidine (m3C). Compelling evidence underscores the involvement of RNA methylation in regulating the tumor microenvironment (TME). By affecting RNA translation and stability through the "writers", "erasers" and "readers", RNA methylation exerts influence over the dysregulation of immune cells and immune factors. Consequently, RNA methylation plays a pivotal role in modulating tumor immunity and mediating various biological behaviors, encompassing proliferation, invasion, metastasis, etc. In this review, we discussed the mechanisms and functions of several RNA methylations, providing a comprehensive overview of their biological roles and underlying mechanisms within the tumor microenvironment and among immunocytes. By exploring how these RNA modifications mediate tumor immune evasion, we also examine their potential applications in immunotherapy. This review aims to provide novel insights and strategies for identifying novel targets in RNA methylation and advancing cancer immunotherapy efficacy.


Assuntos
Imunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/metabolismo , Imunoterapia/métodos , Metilação , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Animais , Processamento Pós-Transcricional do RNA , RNA/genética , RNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Metilação de RNA
11.
Mol Cancer ; 23(1): 188, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39243032

RESUMO

Triple negative breast cancer (TNBC) is a particularly lethal breast cancer (BC) subtype driven by cancer stem cells (CSCs) and an immunosuppressive microenvironment. Our study reveals that nucleus accumbens associated protein 1 (NAC1), a member of the BTB/POZ gene family, plays a crucial role in TNBC by maintaining tumor stemness and influencing myeloid-derived suppressor cells (MDSCs). High NAC1 expression correlates with worse TNBC prognosis. NAC1 knockdown reduced CSC markers and tumor cell proliferation, migration, and invasion. Additionally, NAC1 affects oncogenic pathways such as the CD44-JAK1-STAT3 axis and immunosuppressive signals (TGFß, IL-6). Intriguingly, the impact of NAC1 on tumor growth varies with the host immune status, showing diminished tumorigenicity in natural killer (NK) cell-competent mice but increased tumorigenicity in NK cell-deficient ones. This highlights the important role of the host immune system in TNBC progression. In addition, high NAC1 level in MDSCs also supports TNBC stemness. Together, this study implies NAC1 as a promising therapeutic target able to simultaneously eradicate CSCs and mitigate immune evasion.


Assuntos
Proliferação de Células , Células Supressoras Mieloides , Células-Tronco Neoplásicas , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Humanos , Animais , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Feminino , Camundongos , Células Supressoras Mieloides/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral , Prognóstico , Movimento Celular , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/imunologia , Proteínas de Neoplasias
12.
Mol Cancer ; 23(1): 150, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068459

RESUMO

Tumor-associated macrophages (TAMs) are pivotal in cancer progression, influencing tumor growth, angiogenesis, and immune evasion. This review explores the spatial and temporal heterogeneity of TAMs within the tumor microenvironment (TME), highlighting their diverse subtypes, origins, and functions. Advanced technologies such as single-cell sequencing and spatial multi-omics have elucidated the intricate interactions between TAMs and other TME components, revealing the mechanisms behind their recruitment, polarization, and distribution. Key findings demonstrate that TAMs support tumor vascularization, promote epithelial-mesenchymal transition (EMT), and modulate extracellular matrix (ECM) remodeling, etc., thereby enhancing tumor invasiveness and metastasis. Understanding these complex dynamics offers new therapeutic targets for disrupting TAM-mediated pathways and overcoming drug resistance. This review underscores the potential of targeting TAMs to develop innovative cancer therapies, emphasizing the need for further research into their spatial characteristics and functional roles within the TME.


Assuntos
Neoplasias , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Microambiente Tumoral/imunologia , Neoplasias/patologia , Neoplasias/imunologia , Neoplasias/metabolismo , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/patologia , Animais , Transição Epitelial-Mesenquimal , Neovascularização Patológica/patologia
13.
Curr Issues Mol Biol ; 46(7): 7048-7064, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39057061

RESUMO

Diffuse large B cell lymphoma (DLBCL) is a multifaceted condition characterized by significant diversity in its molecular and pathological subtypes and clinical manifestation. Despite the progress made in the treatment of DLBCL through the development of novel drugs, an estimated one-third of patients encounter relapse or acquire refractory disease. The tumor microenvironment (TME) of DLBCL, a complex network consisting of cellular and noncellular components that engage in interactions with the tumor, is a parameter that is gaining increasing attention. The TME comprises both the immune and nonimmune microenvironments. The immune microenvironment comprises natural killer (NK) cells, dendritic cells (DCs), tumor-associated macrophages (TAMs), neutrophils, myeloid-derived suppressor cells (MDSCs), and T and B lymphocytes. The nonimmune microenvironment consists of the extracellular matrix (ECM), cancer-associated fibroblasts (CAFs), mesenchymal stromal cells, and other molecules that are secreted. Despite ongoing research, the exact impact of these components and their interaction on the progression of the disease remains elusive. A comprehensive review of significant discoveries concerning the cellular and noncellular constituents, molecular characteristics, and treatment response and prognosis of the TME in DLBCL, as well as the potential targeting of the TME with novel therapeutic approaches, is provided in this article.

14.
Cancer Sci ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169645

RESUMO

With recent advances in tumor immunotherapy, chimeric antigen receptor T (CAR-T) cell therapy has achieved unprecedented success in several hematologic tumors, significantly improving patient prognosis. However, in solid tumors, the efficacy of CAR-T cell therapy is limited because of high antigen uncertainty and the extremely restrictive tumor microenvironment (TME). This challenge has led to the exploration of new targets, among which fibroblast activation protein (FAP) has gained attention for its relatively stable and specific expression in the TME of various solid tumors, making it a potential new target for CAR-T cell therapy. This study comprehensively analyzed the biological characteristics of FAP and discussed its potential application in CAR-T cell therapy, including the theoretical basis, and preclinical and clinical research progress of targeting FAP with CAR-T cell therapy for solid tumor treatment. The challenges and future optimization directions of this treatment strategy were also explored, providing new perspectives and strategies for CAR-T cell therapy in solid tumors.

15.
BMC Immunol ; 25(1): 29, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38730320

RESUMO

BACKGROUND: Several PD-1 antibodies approved as anti-cancer therapies work by blocking the interaction of PD-1 with its ligand PD-L1, thus restoring anti-cancer T cell activities. These PD-1 antibodies lack inter-species cross-reactivity, necessitating surrogate antibodies for preclinical studies, which may limit the predictability and translatability of the studies. RESULTS: To overcome this limitation, we have developed an inter-species cross-reactive PD-1 antibody, GNUV201, by utilizing an enhanced diversity mouse platform (SHINE MOUSE™). GNUV201 equally binds to human PD-1 and mouse PD-1, equally inhibits the binding of human PD-1/PD-L1 and mouse PD-1/PD-L1, and effectively suppresses tumor growth in syngeneic mouse models. The epitope of GNUV201 mapped to the "FG loop" of hPD-1, distinct from those of Keytruda® ("C'D loop") and Opdivo® (N-term). Notably, the structural feature where the protruding epitope loop fits into GNUV201's binding pocket supports the enhanced binding affinity due to slower dissociation (8.7 times slower than Keytruda®). Furthermore, GNUV201 shows a stronger binding affinity at pH 6.0 (5.6 times strong than at pH 7.4), which mimics the hypoxic and acidic tumor microenvironment (TME). This phenomenon is not observed with marketed antibodies (Keytruda®, Opdivo®), implying that GNUV201 achieves more selective binding to and better occupancy on PD-1 in the TME. CONCLUSIONS: In summary, GNUV201 exhibited enhanced affinity for PD-1 with slow dissociation and preferential binding in TME-mimicking low pH. Human/monkey/mouse inter-species cross-reactivity of GNUV201 could enable more predictable and translatable efficacy and toxicity preclinical studies. These results suggest that GNUV201 could be an ideal antibody candidate for anti-cancer drug development.


Assuntos
Reações Cruzadas , Imunoterapia , Receptor de Morte Celular Programada 1 , Animais , Humanos , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Camundongos , Reações Cruzadas/imunologia , Imunoterapia/métodos , Concentração de Íons de Hidrogênio , Neoplasias/imunologia , Neoplasias/terapia , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Linhagem Celular Tumoral , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Epitopos/imunologia , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Camundongos Endogâmicos C57BL , Feminino
16.
Apoptosis ; 29(1-2): 169-190, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37713112

RESUMO

Cuprotosis, an emerging mode of cell death, has recently caught the attention of researchers worldwide. However, its impact on low-grade glioma (LGG) patients has not been fully explored. To gain a deeper insight into the relationship between cuprotosis and LGG patients' prognosis, we conducted this study in which LGG patients were divided into two clusters based on the expression of 18 cuprotosis-related genes. We found that LGG patients in cluster A had better prognosis than those in cluster B. The two clusters also differed in terms of immune cell infiltration and biological functions. Moreover, we identified differentially expressed genes (DEGs) between the two clusters and developed a cuprotosis-related prognostic signature through the least absolute shrinkage and selection operator (LASSO) analysis in the TCGA training cohort. This signature divided LGG patients into high- and low-risk groups, with the high-risk group having significantly shorter overall survival (OS) time than the low-risk group. Its predictive reliability for prognosis in LGG patients was confirmed by the TCGA internal validation cohort, CGGA325 cohort and CGGA693 cohort. Additionally, a nomogram was used to predict the 1-, 3-, and 5-year OS rates of each patient. The analysis of immune checkpoints and tumor mutation burden (TMB) has revealed that individuals belonging to high-risk groups have a greater chance of benefiting from immunotherapy. Functional experiments confirmed that interfering with the signature gene TNFRSF11B inhibited LGG cell proliferation and migration. Overall, this study shed light on the importance of cuprotosis in LGG patient prognosis. The cuprotosis-related prognostic signature is a reliable predictor for patient outcomes and immunotherapeutic response and can help to develop new therapies for LGG.


Assuntos
Apoptose , Glioma , Humanos , Reprodutibilidade dos Testes , Morte Celular , Glioma/genética , Glioma/terapia , Imunoterapia
17.
Apoptosis ; 29(5-6): 898-919, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38411862

RESUMO

The cytosolic sulfotransferases (SULTs) are phase II conjugating enzymes, which are widely expressed in the liver and mainly mediate the sulfation of numerous xenobiotics and endogenous compounds. However, the role of various SULTs genes has not been reported in hepatocellular carcinoma (HCC). This study aims to analyze the expression and potential functional roles of SULTs genes in HCC and to identify the role of SULT2A1 in HCC stemness as well as the possible mechanism. We found that all of the 12 SULTs genes were differentially expressed in HCC. Moreover, clinicopathological features and survival rates were also investigated. Multivariate regression analysis showed that SULT2A1 and SULT1C2 could be used as independent prognostic factors in HCC. SULT1C4, SULT1E1, and SULT2A1 were significantly associated with immune infiltration. SULT2A1 deficiency in HCC promoted chemotherapy resistance and stemness maintenance. Mechanistically, silencing of SULT2A1 activated the AKT signaling pathway, on the one hand, promoted the expression of downstream stemness gene c-Myc, on the other hand, facilitated the NRF2 expression to reduce the accumulation of ROS, and jointly increased HCC stemness. Moreover, knockdown NR1I3 was involved in the transcriptional regulation of SULT2A1 in stemness maintenance. In addition, SULT2A1 knockdown HCC cells promoted the proliferation and activation of hepatic stellate cells (HSCs), thereby exerting a potential stroma remodeling effect. Our study revealed the expression and role of SULTs genes in HCC and identified the contribution of SULT2A1 to the initiation and progression of HCC.


Assuntos
Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Sulfotransferases , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Sulfotransferases/genética , Técnicas de Silenciamento de Genes , Humanos , Animais , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/patologia , Prognóstico , Linhagem Celular Tumoral
18.
Clin Immunol ; 264: 110256, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762062

RESUMO

In metastatic renal cell carcinoma (mRCC), existing treatments including checkpoint inhibitors are failed to cure and/or prevent recurrence of the disease. Therefore, in-depth understanding of tumor tissue resident memory T cells (TRMs) dysfunction are necessitated to enrich efficacy of immunotherapies and increasing disease free survival in treated patients. In patients, we observed dysregulation of K+, Ca2+, Na2+ and Zn2+ ion channels leads to excess infiltration of their respective ions in tumor TRMs, thus ionic gradients are disturbed and cells became hyperpolarized. Moreover, overloaded intramitochondrial calcium caused mitochondrial depolarization and trigger apoptosis of tumor TRMs. Decreased prevalence of activated tumor TRMs reflected our observations. Furthermore, disruptions in ionic concentrations impaired the functional activities and/or suppressed anti-tumor action of circulating and tumor TRMs in RCC. Collectively, these findings revealed novel mechanism behind dysfunctionality of tumor TRMs. Implicating enrichment of activated TRMs within tumor would be beneficial for better management of RCC patients.


Assuntos
Linfócitos T CD8-Positivos , Carcinoma de Células Renais , Neoplasias Renais , Células T de Memória , Humanos , Carcinoma de Células Renais/imunologia , Neoplasias Renais/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Células T de Memória/imunologia , Memória Imunológica , Masculino , Feminino , Pessoa de Meia-Idade , Canais Iônicos , Idoso
19.
J Gene Med ; 26(9): e3723, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39228142

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) remains a formidable challenge in oncology, with its pathogenesis and progression influenced by myriad factors. Among them, the pervasive organic synthetic compound, bisphenol A (BPA), previously linked with various adverse health effects, has been speculated to play a role. This study endeavors to elucidate the complex interplay between BPA, the immune microenvironment of HCC, and the broader molecular landscape of this malignancy. METHODS: A comprehensive analysis was undertaken using data procured from both The Cancer Genome Atlas and the Comparative Toxicogenomics Database. Rigorous differential expression analyses were executed, supplemented by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. In addition, single-sample gene set enrichment analysis, gene set enrichment analysis and gene set variation analysis were employed to reveal potential molecular links and insights. Immune infiltration patterns were delineated, and a series of in vitro experiments on HCC cells were conducted to directly assess the impact of BPA exposure. RESULTS: Our findings unveiled a diverse array of active immune cells and functions within HCC. Distinct correlations emerged between high-immune-related scores, established markers of the tumor microenvironment and the expression of immune checkpoint genes. A significant discovery was the identification of key genes simultaneously associated with immune-related pathways and BPA exposure. Leveraging these genes, a prognostic model was crafted, offering predictive insights into HCC patient outcomes. Intriguingly, in vitro studies suggested that BPA exposure could promote proliferation in HCC cells. CONCLUSION: This research underscores the multifaceted nature of HCC's immune microenvironment and sheds light on BPA's potential modulatory effects therein. The constructed prognostic model, if validated further, could serve as a robust tool for risk stratification in HCC, potentially guiding therapeutic strategies. Furthermore, the implications of the findings for immunotherapy are profound, suggesting new avenues for enhancing treatment efficacy. As the battle against HCC continues, understanding of environmental modulators like BPA becomes increasingly pivotal.


Assuntos
Compostos Benzidrílicos , Carcinoma Hepatocelular , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Fenóis , Microambiente Tumoral , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Compostos Benzidrílicos/efeitos adversos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Humanos , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Fenóis/efeitos adversos , Fenóis/toxicidade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Biomarcadores Tumorais/genética
20.
Cancer Immunol Immunother ; 73(7): 122, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714539

RESUMO

Neuroblastoma (NB) is the most common and deadliest extracranial solid tumor in children. Targeting tumor-associated macrophages (TAMs) is a strategy for attenuating tumor-promoting states. The crosstalk between cancer cells and TAMs plays a pivotal role in mediating tumor progression in NB. The overexpression of Hexokinase-3 (HK3), a pivotal enzyme in glucose metabolism, has been associated with poor prognosis in NB patients. Furthermore, it correlates with the infiltration of M2-like macrophages within NB tumors, indicating its significant involvement in tumor progression. Therefore, HK3 not only directly regulates the malignant biological behaviors of tumor cells, such as proliferation, migration, and invasion, but also recruits and polarizes M2-like macrophages through the PI3K/AKT-CXCL14 axis in neuroblastoma. The secretion of lactate and histone lactylation alterations within tumor cells accompanies this interaction. Additionally, elevated expression of HK3 in M2-TAMs was found at the same time. Modulating HK3 within M2-TAMs alters the biological behavior of tumor cells, as demonstrated by our in vitro studies. This study highlights the pivotal role of HK3 in the progression of NB malignancy and its intricate regulatory network with M2-TAMs. It establishes HK3 as a promising dual-functional biomarker and therapeutic target in combating neuroblastoma.


Assuntos
Hexoquinase , Neuroblastoma , Macrófagos Associados a Tumor , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Humanos , Hexoquinase/metabolismo , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Proliferação de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Quimiocinas CXC/metabolismo , Animais , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa