Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
FASEB J ; 38(3): e23447, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38329326

RESUMO

We aimed to analyze sex-related differences in galectin-1 (Gal-1), a ß-galactoside-binding lectin, in aortic stenosis (AS) and its association with the inflammatory and fibrocalcific progression of AS. Gal-1 was determined in serum and aortic valves (AVs) from control and AS donors by western blot and immunohistochemistry. Differences were validated by ELISA and qPCR in AS samples. In vitro experiments were conducted in primary cultured valve interstitial cells (VICs). Serum Gal-1 was not different neither between control and AS nor between men and women. There was no association between circulating and valvular Gal-1 levels. The expression of Gal-1 in stenotic AVs was higher in men than women, even after adjusting for confounding factors, and was associated with inflammation, oxidative stress, extracellular matrix remodeling, fibrosis, and osteogenesis. Gal-1 (LGALS1) mRNA was enhanced within fibrocalcific areas of stenotic AVs, especially in men. Secretion of Gal-1 was up-regulated over a time course of 2, 4, and 8 days in men's calcifying VICs, only peaking at day 4 in women's VICs. In vitro, Gal-1 was associated with similar mechanisms to those in our clinical cohort. ß-estradiol significantly up-regulated the activity of an LGALS1 promoter vector and the secretion of Gal-1, only in women's VICs. Supplementation with rGal-1 prevented the effects elicited by calcific challenge including the metabolic shift to glycolysis. In conclusion, Gal-1 is up-regulated in stenotic AVs and VICs from men in association with inflammation, oxidative stress, matrix remodeling, and osteogenesis. Estrogens can regulate Gal-1 expression with potential implications in post-menopause women. Exogenous rGal-1 can diminish calcific phenotypes in both women and men.


Assuntos
Estenose da Valva Aórtica , Calcinose , Galectina 1 , Feminino , Humanos , Masculino , Estenose da Valva Aórtica/metabolismo , Células Cultivadas , Galectina 1/genética , Galectina 1/metabolismo , Inflamação/metabolismo
2.
Scand Cardiovasc J ; 58(1): 2353070, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38757904

RESUMO

Objectives: The role of diabetes mellitus as a risk factor for the development of calcific aortic valve disease has not been fully clarified. Aortic valve interstitial cells (VICs) have been suggested to be crucial for calcification of the valve. Induced calcification in cultured VICs is a good in vitro model for aortic valve calcification. The purpose of this study was to investigate whether increased glucose levels increase experimentally induced calcification in cultured human VICs. Design: VICs were isolated from explanted calcified aortic valves after valve replacement. Osteogenic medium induced calcification of cultured VICs at different glucose levels (5, 15, and 25 mM). Calcium deposits were visualized using Alizarin Red staining and measured spectrophotometrically. Results: The higher the glucose concentration, the lower the level of calcification. High glucose (25 mM) reduced calcification by 52% compared with calcification at a physiological (5 mM) glucose concentration (correlation and regression analysis: r = -0.55, p = .025 with increased concentration of glucose). Conclusions: In vitro hyperglycemia-like conditions attenuated calcification in VICs. High glucose levels may trigger a series of events that secondarily stimulate calcification of VICs in vivo.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Calcinose , Glucose , Hiperglicemia , Humanos , Valva Aórtica/patologia , Valva Aórtica/metabolismo , Valva Aórtica/cirurgia , Calcinose/patologia , Calcinose/metabolismo , Células Cultivadas , Glucose/metabolismo , Hiperglicemia/metabolismo , Estenose da Valva Aórtica/patologia , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/cirurgia , Masculino , Pessoa de Meia-Idade , Idoso , Feminino , Relação Dose-Resposta a Droga , Osteogênese/efeitos dos fármacos
3.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256243

RESUMO

Amyloid deposition within stenotic aortic valves (AVs) also appears frequent in the absence of cardiac amyloidosis, but its clinical and pathophysiological relevance has not been investigated. We will elucidate the rate of isolated AV amyloid deposition and its potential clinical and pathophysiological significance in aortic stenosis (AS). In 130 patients without systemic and/or cardiac amyloidosis, we collected the explanted AVs during cardiac surgery: 57 patients with calcific AS and 73 patients with AV insufficiency (41 with AV sclerosis and 32 without, who were used as controls). Amyloid deposition was found in 21 AS valves (37%), 4 sclerotic AVs (10%), and none of the controls. Patients with and without isolated AV amyloid deposition had similar clinical and echocardiographic characteristics and survival rates. Isolated AV amyloid deposition was associated with higher degrees of AV fibrosis (p = 0.0082) and calcification (p < 0.0001). Immunohistochemistry analysis suggested serum amyloid A1 (SAA1), in addition to transthyretin (TTR), as the protein possibly involved in AV amyloid deposition. Circulating SAA1 levels were within the normal range in all groups, and no difference was observed in AS patients with and without AV amyloid deposition. In vitro, AV interstitial cells (VICs) were stimulated with interleukin (IL)-1ß which induced increased SAA1-mRNA both in the control VICs (+6.4 ± 0.5, p = 0.02) and the AS VICs (+7.6 ± 0.5, p = 0.008). In conclusion, isolated AV amyloid deposition is frequent in the context of AS, but it does not appear to have potential clinical relevance. Conversely, amyloid deposition within AV leaflets, probably promoted by local inflammation, could play a role in AS pathophysiology.


Assuntos
Amiloidose , Estenose da Valva Aórtica , Calcinose , Humanos , Catéteres , Calcificação Fisiológica , Interleucina-1beta
4.
Ann Biomed Eng ; 52(5): 1270-1279, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38374519

RESUMO

Healthy aortic heart valves are essential to the regulation of unidirectional blood flow. Calcific aortic valve disease (CAVD) is an actively progressive disease that involves the disorganization of valve cells and accumulation of calcium deposits on the aortic valve leaflets. CAVD involves disruption of cell environment homeostasis that prior cell culture models have found difficult to portray and model. As it is still poorly understood how tissue stiffening associates with lesion formation, here, we implement a novel 3D culture platform to characterize the relationship between mechanical stress and tissue remodeling and analyze how the application of pro-osteogenic stimulation dysregulates the native ability of valve cells to organize its matrix. Through a temporal study of macroscopic remodeling, we determine that aortic valve interstitial neo-tissues undergo varying stiffness and mechanical stress, demonstrate greater myofibroblastic gene expression, and show greater remodeling activity in the outer surface of the neo-tissue in a banding pattern when cultured in osteogenic growth medium. In human aortic valve interstitial cells cultured in osteogenic growth medium, we observed an increase in stress but significant decreases in myofibroblastic gene expression with the addition of growth factors. In summary, we are able to see the interplay of biochemical and biomechanical stimuli in valvular remodeling by using our platform to model dynamic stiffening of valve interstitial neo-tissues under different biochemical conditions.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica/patologia , Calcinose , Humanos , Células Cultivadas , Estenose da Valva Aórtica/patologia , Osteogênese
5.
Biochem Pharmacol ; 226: 116336, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38844264

RESUMO

The pathological mechanisms underlying the sex-dependent presentation of calcific aortic stenosis (AS) remain poorly understood. We aim to analyse sex-specific responses of valve interstitial cells (VICs) to calcific environments and to identify new pathological and potentially druggable targets. First, VICs from stenotic patients were modelled using pro-calcifying media (HP). Both male and female VICs were inflamed upon calcific HP challenge, although the inflammatory response was higher in female VICs. The osteogenic and calcification responses were higher in male VICs. To identify new players involved in the responses to HP, proteomics analyses were performed on additional calcifying VICs. Neuropilin-1 (NRP-1) was significantly up-regulated in male calcifying VICs and that was confirmed in aortic valves (AVs), especially nearby neovessels and calcifications. Regardless of the sex, NRP-1 expression was correlated to inflammation, angiogenesis and osteogenic markers, but with stronger associations in male AVs. To further evidence the role of NRP-1, in vitro experiments of silencing or supplementation with soluble NRP-1 (sNRP-1) were performed. NRP-1 silencing or addition of sNRP-1 reduced/mended the expression of any sex-specific response triggered by HP. Moreover, NRP-1 regulation contributed to significantly diminish the baseline enhanced expression of pro-inflammatory, pro-angiogenic and pro-osteogenic markers mainly in male VICs. Validation studies were conducted in stenotic AVs. In summary, pharmacologic targeting of NRP-1 could be used to target sex-specific phenotypes in AS as well as to exert protective effects by reducing the basal expression of pathogenic markers only in male VICs.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Calcinose , Neuropilina-1 , Osteogênese , Masculino , Feminino , Neuropilina-1/metabolismo , Neuropilina-1/genética , Humanos , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Calcinose/metabolismo , Calcinose/patologia , Calcinose/genética , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Valva Aórtica/patologia , Valva Aórtica/metabolismo , Caracteres Sexuais , Inflamação/metabolismo , Inflamação/patologia , Idoso , Células Cultivadas , Fenótipo , Pessoa de Meia-Idade , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia
6.
Eur J Pharmacol ; 968: 176423, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38365109

RESUMO

Calcific aortic valve disease (CAVD) is a progressive cardiovascular disorder involving multiple pathogenesis. Effective pharmacological therapies are currently unavailable. Sirtuin6 (SIRT6) has been shown to protect against aortic valve calcification in CAVD. The exact regulatory mechanism of SIRT6 in osteoblastic differentiation remains to be determined, although it inhibits osteogenic differentiation of aortic valve interstitial cells. We demonstrated that SIRT6 was markedly downregulated in calcific human aortic valves. Mechanistically, SIRT6 suppressed osteogenic differentiation in human aortic valve interstitial cells (HAVICs), as confirmed by loss- and gain-of-function experiments. SIRT6 directly interacted with Runx2, decreased Runx2 acetylation levels, and facilitated Runx2 nuclear export to inhibit the osteoblastic phenotype transition of HAVICs. In addition, the AKT signaling pathway acted upstream of SIRT6. Together, these findings elucidate that SIRT6-mediated Runx2 downregulation inhibits aortic valve calcification and provide novel insights into therapeutic strategies for CAVD.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica/patologia , Calcinose , Sirtuínas , Humanos , Valva Aórtica/metabolismo , Regulação para Baixo , Osteogênese/genética , Células Cultivadas , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Sirtuínas/genética , Sirtuínas/metabolismo
7.
Free Radic Biol Med ; 222: 149-164, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38851518

RESUMO

OBJECTIVE: Calcific aortic valve disease (CAVD) predominantly affects the elderly and currently lacks effective medical treatments. Nesfatin-1, a peptide derived from the cleavage of Nucleobindin 2, has been implicated in various calcification processes, both physiological and pathological. This study explores the impact of Nesfatin-1 on the transformation of aortic valve interstitial cells (AVICs) in CAVD. METHODS AND RESULTS: In vitro experiments showed that Nesfatin-1 treatment mitigated the osteogenic differentiation of AVICs. Corresponding in vivo studies demonstrated a deceleration in the progression of CAVD. RNA-sequencing of AVICs treated with and without Nesfatin-1 highlighted an enrichment of the Ferroptosis pathway among the top pathways identified by the Kyoto Encyclopedia of Genes and Genomes analysis. Further examination confirmed increased ferroptosis in both calcified valves and osteoblast-like AVICs, with a reduction in ferroptosis following Nesfatin-1 treatment. Within the Ferroptosis pathway, ZIP8 showed the most notable modulation by Nesfatin-1. Silencing ZIP8 in AVICs increased ferroptosis and osteogenic differentiation, decreased intracellular Mn2+ concentration, and reduced the expression and activity of superoxide dismutase (SOD2). Furthermore, the silencing of SOD2 exacerbated ferroptosis and osteogenic differentiation. Nesfatin-1 treatment was found to elevate the expression of glutathione peroxidase 4 (GPX4) and levels of glutathione (GSH), as confirmed by Western blotting and GSH concentration assays. CONCLUSION: In summary, Nesfatin-1 effectively inhibits the osteogenic differentiation of AVICs by attenuating ferroptosis, primarily through the GSH/GPX4 and ZIP8/SOD2 pathways.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa