RESUMO
Aedes albopictus is the primary vector of dengue fever and dengue hemorrhagic fever in China. Although there are previous studies on the application of adulticides to control this species, the application methods have either been back-pack or vehicle-mounted systems. However, many sites are too large to be effectively treated with back-pack sprayers, and the lack of roads restricts the use of vehicle-mounted sprayers. This paper provides the first study of using unmanned aerial vehicles to conduct cold mist sprays on Ae. albopictus habitats. A spray containing 4% permethrin and 1% tetramethylfluthrin was applied at an effective application rate of 9.0 mg/m(2). This method reduced Ae. albopictus populations by more than 90%. The results indicate this novel spray system is a powerful method to achieve a rapid decline of mosquito population in Ae. albopictus habitats in China.
Assuntos
Aedes/efeitos dos fármacos , Aeronaves , Ciclopropanos/farmacologia , Inseticidas/farmacologia , Permetrina/farmacologia , Animais , China , Ciclopropanos/administração & dosagem , Inseticidas/administração & dosagem , Permetrina/administração & dosagemRESUMO
BACKGROUND: Maize is one of the world's most important crops, so its stable production and supply is crucial for food security and socioeconomic development. The cotton bollworm, Helicoverpa armigera (Hübner), is one of the major pests in maize. We evaluated the control effect of a bio-bait, an adult attractant, combined with insecticide, a 'toxicant-infused bait', on H. armigera populations in maize fields, as well as the impact on crop yield and quality through large-scale field applications in Hebei Province, China over a period spanning 2019 to 2021. RESULT: The number of male and female H. armigera adults killed by strip application ranged from 1 to 37 and 4 to 36 per strip, respectively, of which female moths were 53%. Following the application of toxicant-infused bait, we observed a significant reduction in the populations of eggs and larvae, with the average adjusted decrease range from 58% to 63% for eggs and from 34% to 62% for larvae. The application of toxicant-infused bait also resulted in a notable reduction in the proportion of damaged maize plants, with an adjusted decline rate ranging from 59% to 69%. Concurrently, we observed an increase in yield by 4% to 8%. The concentration of aflatoxin in harvested maize grains was significantly reduced from an initial level of 1.24 to 0.1 ug/kg. CONCLUSION: By applying toxicant-infused bait, there was a significant reduction in the population of H. armigera adults and their offspring, resulting in an improved yield and quality of maize. Toxicant-infused bait has great application potential in the integrated pest management of H. armigera. © 2023 Society of Chemical Industry.