Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 368: 122156, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39128348

RESUMO

Saline-alkali soils have poor N storage capacity, high N loss and inadequate nutrient supply potential, which are the main limiting factors for crop yields. Vermicompost can increase organic nutrient content, improve soil structure, and enhance microbial activity and function, and the Ca2+ in flue gas desulfurization (FGD) gypsum can replace Na+ and neutralize alkalinity in saline-alkali soils though chemical improvement. This study aimed to determine if vermicompost and FGD gypsum addition could improve the N storage capacity through decreasing NH3 volatilization and 15N/NO3- leaching from saline-alkali soils. The results indicate that the combined application of vermicompost and FGD gypsum led to the displacement and leaching Na+ in the upper soil layer (0-10 cm), as well as the neutralization of HCO3- by the reaction with Ca2+. This treatment also improved soil organic matter content and macroaggregate structure. Also, these amendments significantly increased the abundance of nifH and amoA genes, while concurrently decreasing the abundance of nirK gene. The structural improvements and the lowering of Na + concentration in and alkalinity decreased cumulative NH3 volatilization, and leaching of 15N and NO3- to the deep soil layer (20-30 cm). FGD gypsum increased the 15N stocks and inorganic N stocks of saline-alkali soil, whereas vermicompost not only increased the 15N and inorganic N stocks, but also increased the total N stocks, the combination of vermicompost and FGD gypsum can not only increase the available N storage capacity, but also enhance the potential for N supply. Therefore, vermicompost and FGD gypsum decrease N loss and increase N storage capacity through structural improvement, and lowering of Na+ concentration and alkalinity, which is crucial for improving the productivity of saline-alkali soil.


Assuntos
Sulfato de Cálcio , Nitrogênio , Solo , Solo/química , Sulfato de Cálcio/química , Nitrogênio/química , Sódio/química , Álcalis/química
2.
J Environ Manage ; 354: 120261, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354608

RESUMO

The future of reactive nitrogen (N) for subtropical lowland rice to be characterised under diverse N-management to develop adequate sustainable practices. It is a challenge to increase the efficiency of N use in lowland rice, as N can be lost in various ways, e.g., through nitrous oxide (N2O) or dinitrogen (N2) emissions, ammonia (NH3) volatilization and nitrate (NO3-) leaching. A field study was carried out in the subsequent wet (2021) and dry (2022) seasons to assess the impacts of different N management strategies on yield, N use efficiency and different N losses in a double-cropped rice system. Seven different N-management practices including application of chemical fertilisers, liquid organic fertiliser, nitrification inhibitors, organic nutrient management and integrated nutrient management (INM) were studied. The application of soil test-based neem-coated urea (NCU) during the wet season resulted in the highest economic yield, while integrated nutrient management showed the highest economic yield during the dry season. Total N losses by volatilization of NH3, N2O loss and leaching were 0.06-4.73, 0.32-2.14 and 0.25-1.93 kg ha-1, corresponding to 0.06-5.84%, 0.11-2.20% and 0.09-1.81% of total applied N, respectively. The total N-uptake in grain and straw was highest in INM (87-89% over control) followed by the soil test-based NCU (77-82% over control). In comparison, recovery efficiency of N was maximum from application of NCU + dicyandiamide during both the seasons. The N footprint of paddy rice ranged 0.46-2.01 kg N-eq. t-1 during both seasons under various N management. Ammonia volatilization was the process responsible for the largest N loss, followed by N2O emissions, and NO3- leaching in these subtropical lowland rice fields. After ranking the different N management practices on a scale of 1-7, soil test-based NCU was considered the best N management approach in the wet year 2021, while INM scored the best in the dry year 2022.


Assuntos
Oryza , Nitrogênio/análise , Agricultura/métodos , Amônia/análise , Solo , Fertilizantes/análise , Óxido Nitroso/análise
3.
Environ Monit Assess ; 196(2): 174, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236448

RESUMO

Domestic sewage tailwater (DSTW) reuse for crop irrigation is considered a promising practice to reduce water demand, mitigate water pollution, and substitute chemical fertilization. The level of the above environmental benefits of this water reuse strategy, especially when applied to paddy wetlands, remains unclear. In this study, soil column experiments were conducted to investigate the nitrogen and phosphorus fate in paddy wetlands subjected to different tailwater irrigation and drainage strategies, specifically, (i) TW1 and TW2 for regular or enhanced irrigation-drainage without N fertilization, (ii) TW3 and TW4 for regular irrigation with base or tillering N fertilizer, (iii) conventional fertilization N210, and (iv) no-fertilization controls N0. The results showed that the total nitrogen (TN), nitrate (NO3-), and total phosphorus (TP) removal rates from the paddies irrigated by DSTW ranged between 51.92 and 59.34%, 68.1 and 83.42%, and 85.69 and 86.98% respectively. Ammonia emissions from the DSTW-irrigated treatments were reduced by 14.6~47.2% compared to those paddies subjected to conventional fertilization (N210), similarly for TN emissions, with the exception of the TW2 treatment. Overall, it is established that the paddy wetland could effectively remove residual N and P from surface water runoffs, while the partial substitution of chemical fertilization by DSTW could be confirmed. The outcome of this study demonstrates that DSTW irrigation is a promising strategy for sustainable rice production with a minimized environmental impact.


Assuntos
Oryza , Esgotos , Áreas Alagadas , Monitoramento Ambiental , Nitrogênio , Fósforo , Água
4.
Microb Ecol ; 85(3): 951-964, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36662284

RESUMO

Arbuscular mycorrhizal fungi (AMF) establish mutualistic relationships with the majority of terrestrial plants, increasing plant uptake of soil nitrogen (N) in exchange for photosynthates. And may influence soil ammonia (NH3) volatilization and nitrous oxide (N2O) emissions directly by improving plant N uptake, and/or indirectly by modifying soil bacterial community composition for the soil C availability increasing. However, the effects of AMF on soil NH3 volatilization and N2O emissions and their underlying mechanisms remain unclear. We carried out two independent experiments using contrasting methods, one with a compartmental box device (in 2016) and the other with growth pot experiment (in 2020) to examine functional relationships between AMF and soil NH3 volatilization and N2O emissions under varying N input. The presence of AMF significantly reduced soil NH3 volatilization and N2O emissions while enhancing plant biomass and plant N acquisition, and reducing soil NH4+ and NO3-, even with high N input. The presence of AMF also significantly reduced the relative abundance within the bacterial orders Sphingomonadales and Rhizobiales. Sphingomonadales correlated significantly and positively with soil NH3 volatilization in 2016 and N2O emissions, whereas Rhizobiales correlated positively with soil N2O emissions. High N input significantly increased soil NH3 volatilization and N2O emissions with increasing relative abundance of Sphingomonadales and Rhizobiales. These findings demonstrate the contribution of AMF in regulating NH3 and N2O emission by improving plant N uptake and altering soil bacterial communities. They also suggest that altering the rhizosphere microbiome might offer additional potential for restoration of N-enriched agroecosystems.


Assuntos
Micorrizas , Solo , Óxido Nitroso , Amônia/análise , Micorrizas/química , Volatilização , Nitrogênio , Fertilizantes/análise , Agricultura
5.
J Environ Manage ; 336: 117676, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36967697

RESUMO

Ammonia (NH3) is an important alkaline reactive nitrogen (Nr) species which is involved in global nitrogen (N) biogeochemical cycling, but which has negative impacts on the environment and human health. In order to better understand and control the NH3 loss potential in soil-upland crop systems in China, an integrated data analysis including 1302 observations from 236 published articles between 1980 and 2021 was conducted. The typical NH3 volatilization rate (AVR) and the main factors influencing AVR in the major Chinese upland crops (maize, wheat, openfield vegetables and greenhouse vegetables and others) were estimated and analyzed. The mean AVR for maize, wheat, openfield vegetables and greenhouse vegetables were 7.8%, 5.3%, 8.4% and 1.8%. The most important influencing factors were fertilizer placement, meteorological conditions (especially temperature and rainfall) and soil properties (especially SOM). Subsurface N application produced a significantly lower AVR compared to surface application. High N recovery efficiency and N agronomic efficiency were generally associated with low AVRs. In conclusion, high N application rates, inefficient application methods and the use of loss-prone N fertilizer types are the main factors responsible for high AVRs in major Chinese croplands.


Assuntos
Amônia , Fertilizantes , Humanos , Amônia/análise , Volatilização , Fertilizantes/análise , Solo/química , Agricultura/métodos , Nitrogênio/análise , Verduras , China , Zea mays , Triticum
6.
J Environ Manage ; 329: 117051, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549060

RESUMO

Nitrogen-rich materials such as poultry litter (PL) contributes to substantial N and C loss in the form of ammonia (NH3) and carbon dioxide (CO2) during composting. Biochar can act as a sorbent of ammonia (NH3) and CO2 emission released during co-composting. Thus, co-composting poultry litter with rice husk biochar as a bulking agent is a good technique to mitigate NH3 volatilization and CO2 emission. A study was conducted to evaluate the effects of composting the mixtures of poultry litter with rice husk biochar at different ratios on NH3 and CO2 emissions. Four mixtures of poultry litter and rice husk biochar at different rate were composted at 0:1, 0.5:1, 1.3:1 and 2.3:1 ratio of rice husk biochar (RHB): poultry litter (PL) on a dry weight basis to achieve a suitable C/N ratio of 15, 20, 25, and 30, respectively. The results show that composting poultry litter with rice husk biochar can accelerate the breakdown of organic matter, thereby shortening the thermophilic phase compared to composting using poultry litter alone. There was a significant reduction in the cumulative NH3 emissions, which accounted for 78.38%, 94.60%, and 97.30%, for each C/N ratio of 20, 25, and 30. The total nitrogen (TN) retained relative was 75.96%, 85.61%, 90.24%, and 87.89% for each C/N ratio of 15, 20, 25, and 30 at the completion of composting. Total carbon dioxide lost was 5.64%, 6.62%, 8.91%, and 14.54%, for each C/N ratio of 15, 20, 21, and 30. In addition, the total carbon (TC) retained were 66.60%, 72.56%, 77.39%, and 85.29% for 15, 20, 25, and 30 C/N ratios and shows significant difference as compared with the initial reading of TC of the compost mixtures. In conclusion, mixing and composting rice husk biochar in poultry litter with C/N ratio of 25 helps in reducing the NH3 volatilization and CO2 emissions, while reducing the overall operational costs of waste disposal by shortening the composting time alongside nitrogen conservation and carbon sequestration. In formulating the compost mixture with rice husk biochar, the contribution of C and N from the biochar can be neglected in the determination of C/N ratio to predict the rate of mineralization in the compost because biochar has characteristic of being quite inert and recalcitrant in nature.


Assuntos
Compostagem , Oryza , Animais , Aves Domésticas , Amônia/análise , Dióxido de Carbono , Volatilização , Esterco , Solo , Carvão Vegetal , Nitrogênio/análise
7.
J Sci Food Agric ; 103(8): 4119-4130, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36576004

RESUMO

BACKGROUND: Nitrogen (N) is the most limiting nutrient in rice production. N loss via denitrification and ammonia (NH3 ) volatilization decreases N utilization efficiency. The effect of periphyton (a widespread soil surface microbial aggregate in paddy soil) on N-cycling processes and rice growth in paddy soils remain unclear. The purpose of this study was to reveal the interactions of periphyton with the overlying water and sediment in paddy soils on denitrification/NH3 emissions and rice yield by combining pot experiments and path analysis modeling. RESULTS: The sediment exerted significant direct and positive effects on denitrification. The periphyton both directly and indirectly enhanced denitrification, mainly by regulating the ammonium (NH4 + )-N content in the sediment. The total contribution of periphyton to denitrification was stronger than that of the overlying water but smaller than that of the sediment. The pH in the overlying water and the NH4 + -N content in the sediment had a strong positive effect on NH3 volatilization. Although the periphyton biomass and chlorophyll a directly prohibited NH3 emissions, this was counterbalanced by the indirect stimulation effects of the periphyton due to its positive alteration of the pH. Moreover, periphyton facilitated rice yield by 10.2% by releasing N. CONCLUSION: Although the periphyton may have driven N loss by regulating the NH4 + -N content in the sediment and the pH in the overlying water, our study also found that the periphyton was considered a temporary N sink and provided a sustained release of N for rice, thus increasing the rice yield. © 2022 Society of Chemical Industry.


Assuntos
Oryza , Perifíton , Amônia/análise , Oryza/química , Volatilização , Clorofila A , Desnitrificação , Fertilizantes/análise , Solo/química , Nitrogênio/análise
8.
Glob Chang Biol ; 28(17): 5121-5141, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35678108

RESUMO

Inhibitors are widely considered an efficient tool for reducing nitrogen (N) loss and improving N use efficiency, but their effectiveness is highly variable across agroecosystems. In this study, we synthesized 182 studies (222 sites) worldwide to evaluate the impacts of inhibitors (urease inhibitors [UI], nitrification inhibitors [NI] and combined inhibitors) on crop yields and gaseous N loss (ammonia [NH3 ] and nitrous oxide [N2 O] emissions) and explored their responses to different management and environmental factors including inhibitor application timing, fertilization regime, cropping system, water management, soil properties and climatic conditions using subgroup meta-analysis, meta-regression and multivariate analyses. The UI were most effective in enhancing crop yields (by 5%) and reducing NH3 volatilization (by 51%), whereas NI were most effective at reducing N2 O emissions (by 49%). The application of UI mitigates NH3 loss and increases crop yields especially in high NH3 -N loss scenarios, whereas NI application would minimize the net N2 O emissions and the resultant environmental impacts especially in low NH3 -N loss scenarios. Alternatively, the combined application of UI and NI enables producers to balance crop production and environmental conservation goals without pollution tradeoffs. The inhibitor efficacy for decreasing gaseous N loss was dependent upon soil and climatic conditions and management practices. Notably, both meta-regression and multivariate analyses suggest that inhibitors provide a greater opportunity for reducing fertilizer N inputs in high-N-surplus systems and presumably favor crop yield enhancement under soil N deficiency situations. The pursuit of an improved understanding of the interactions between plant-soil-climate-management systems and different types of inhibitors should continue to optimize the effectiveness of inhibitors for reducing environmental losses while increasing productivity.


Assuntos
Óxido Nitroso , Solo , Agricultura , Amônia/análise , Fertilizantes/análise , Nitrogênio/análise , Óxido Nitroso/análise
9.
Glob Chang Biol ; 28(14): 4409-4422, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35429205

RESUMO

Ammonia (NH3 ) and nitrous oxide (N2 O) are two important air pollutants that have major impacts on climate change and biodiversity losses. Agriculture represents their largest source and effective mitigation measures of individual gases have been well studied. However, the interactions and trade-offs between NH3 and N2 O emissions remain uncertain. Here, we report the results of a two-year field experiment in a wheat-maize rotation in the North China Plain (NCP), a global hotspot of reactive N emissions. Our analysis is supported by a literature synthesis of global croplands, to understand the interactions between NH3 and N2 O emissions and to develop the most effective approaches to jointly mitigate NH3 and N2 O emissions. Field results indicated that deep placement of urea with nitrification inhibitors (NIs) reduced both emissions of NH3 by 67% to 90% and N2 O by 73% to 100%, respectively, in comparison with surface broadcast urea which is the common farmers' practice. But, deep placement of urea, surface broadcast urea with NIs, and application of urea with urease inhibitors probably led to trade-offs between the two gases, with a mitigation potential of -201% to 101% for NH3 and -112% to 89% for N2 O. The literature synthesis showed that deep placement of urea with NIs had an emission factor of 1.53%-4.02% for NH3 and 0.22%-0.36% for N2 O, which were much lower than other fertilization regimes and the default values recommended by IPCC guidelines. This would translate to a reduction of 3.86-5.47 Tg N yr-1 of NH3 and 0.41-0.50 Tg N yr-1 of N2 O emissions, respectively, when adopting deep placement of urea with NIs (relative to current practice) in global croplands. We conclude that the combination of NIs and deep placement of urea can successfully tackle the trade-offs between NH3 and N2 O emissions, therefore avoiding N pollution swapping in global croplands.


Assuntos
Fertilizantes , Nitrificação , Agricultura/métodos , Amônia/análise , Produtos Agrícolas , Fertilizantes/análise , Gases , Nitrogênio/análise , Óxido Nitroso/análise , Solo , Ureia
10.
Environ Res ; 214(Pt 2): 113997, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35934142

RESUMO

Biogas slurry (BS) and hydrothermal carbonization aqueous products (HAP), which are rich in nitrogen (N) and dissolved organic matter (DOM), can be used as organic fertilizer to substitute inorganic N fertilizer. To evaluate the effects of co-application of BS and HAP on the ammonia (NH3) volatilization and soil DOM content in wheat growth season, we compared six treatments that substituting 50%, 75%, and 100% of urea-N with BS plus HAP at low (L) or high (H) ratio, named BCL50, BCL75, BCL100, BCH50, BCH75, BCH100, respectively. Meanwhile, urea alone treatment was set as the control (CKU). The results showed that both BCL and BCH treatments significantly mitigate the NH3 volatilizations by 9.1%-45.6% in comparison with CKU (P < 0.05), whose effects were correlated with soil NH4+-N content. In addition, the decrease in soil urease activity contributed to the lower NH3 volatilization following application of BS plus HAP. Notably, BS plus HAP applications increased the microbial byproduct- and humic acid-like substances in soil by 9.9%-74.5% and 100.7%-451.9%, respectively. Consequently, BS and HAP amended treatments significantly increased soil humification index and DOM content by 13.7%-41.2% and 38.4%-158.7%, respectively (P < 0.05). This study suggested that BS and HAP could be co-applied into agricultural soil as a potential alternative of inorganic fertilizer N, which can decrease NH3 loss but increase soil fertility.


Assuntos
Fertilizantes , Solo , Agricultura/métodos , Amônia/análise , Biocombustíveis , Fertilizantes/análise , Nitrogênio/análise , Triticum , Ureia , Volatilização
11.
Environ Res ; 212(Pt C): 113402, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35526581

RESUMO

The alternation of dry and wet is an important environmental factor affecting the emission of nitrous oxide from soil. However, the consistent or opposite effects on NH3 and N2O emissions caused by adding exogenous urea in this process have not been fully considered. Here, we controlled the initial (slow drying) and final (adding water) water-filled pore space (WFPS) at 70%, 60%, or 50% through microculture experiment to simulate a process of slow drying-fertilization and rapid wetting of the soil from rice harvest to dryland crop fertilization. Through measuring soil chemical properties and the abundance and composition of related microbial communities during drying process, we studied the pathways of influence of drying and rewetting on the emission of N2O and NH3 after urea application. During the progressive drying process (WFPS decreasing from 70% to 60% and 50%), soil N2O and NH3 emissions decreased by 49.77%-72.13% and 17.89%-42.19%, respectively. After rapid rewetting (WFPS increasing from 60% to 70%, 50%-60% and 70%), N2O emissions showed a slight increase, while NH3 volatilization continued to decrease. Soil NH4+-N and DOC contents both decreased during progressive drying, while the soil NO3--N content was enhanced. The drying process changed the community structure of ureC and amoA-b and reduced their abundance but had no effect on amoA-a, nirK or nirS. Correlation analysis indicated that the reductions in NH4+-N content and the abundances of ureC and amoA-b were the main factors suppressing N2O and NH3 emissions. We believe that drying process limits the related microbial activity and substrate supply during ammonia oxidation process in terms of N2O emissions, while in terms of NH3 volatilization, it reduces the related microbial activity of urea hydrolysis process and increases the ammonium adsorption to the soil.


Assuntos
Fertilizantes , Solo , Agricultura , Amônia/análise , Fertilizantes/análise , Óxido Nitroso , Solo/química , Ureia/química , Ureia/metabolismo , Volatilização , Água/análise
12.
J Environ Manage ; 323: 116249, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36137456

RESUMO

Current political focus on promoting circular economy in the European Union drives great interest in developing and using more biobased fertilizers (BBFs, most often waste or residue-derived). Many studies have been published on environmental emissions, including ammonia (NH3) volatilization from manures, but there have only been a few such studies on BBFs. Ammonia volatilization from agriculture poses a risk to the environment and human health, causing pollution in natural ecosystems when deposited and formation of fine particulate matter (PMx). Furthermore, NH3 volatilization results in removal of plant-available N from agricultural systems, constituting an economic loss for farmers. The aim of this laboratory study was to determine the potential NH3 volatilization from 39 different BBFs commercially available on the European market. In addition, this study aimed to investigate the effect of incorporation, application rate, soil type, and soil moisture content on potential NH3 volatilization in order to derive suggestions for the optimal field application conditions. Results showed a great variation between BBFs in potential NH3 volatilization, both in terms of their temporal pattern of volatilization and amount of NH3 volatilized. The potential NH3 volatilization varied from 0% of applied total N (olive oil compost) to 64% of applied total N (manure and crop digestate) during a 27- or 44-day incubation period. Characteristics of BBFs (pH, NH4+-N, NO3--N, DM, C:N) and their interaction with time could explain 89% of the variation in accumulated potential NH3 volatilization. Incorporation of BBFs into an acidic sandy soil effectively reduced potential NH3 volatilization by 37%-96% compared to surface application of BBFs. Potential NH3 volatilization was not significantly affected by differences in application rate or soil moisture content, but varied between five different soils (with different clay and organic matter content), with the highest NH3 volatilization potential from the acidic sandy soil.


Assuntos
Amônia , Fertilizantes , Agricultura/métodos , Amônia/análise , Argila , Ecossistema , Fertilizantes/análise , Humanos , Esterco , Nitrogênio/análise , Azeite de Oliva , Material Particulado , Solo
13.
J Environ Manage ; 318: 115583, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35753128

RESUMO

The excessive and inappropriate application of nitrogen (N) fertilizer in open vegetable fields is a major anthropogenic source of gaseous N losses including nitrous oxide (N2O) and ammonia (NH3) emissions in China. A 2-yr Chinese cabbage (Brassica pekinensis L.) experiment was carried out to explore the impacts of optimized N management (reduced N application rate, controlled-release urea [CRF] and nitrification inhibitor [NI]) on cabbage yield, soil inorganic N, and N2O and NH3 emissions, and to assess their economic benefits by a cost-benefit analysis. Six treatments including i) no N fertilizer (CK), ii) conventional urea fertilizer at 400 kg N ha-1 based on farmers' practices (CN), iii) conventional urea at 320 kg N ha-1 (RN), iv) conventional urea (320 kg N ha-1) with the addition of NI (RN + NI), v) CRF at 320 kg N ha-1 (CR) and vi) CRF (320 kg N ha-1) with the addition of NI (CR + NI) were implemented in an open Chinese cabbage field. No significant differences were found in the cabbage yields and soil NH4+-N contents under different N fertilization treatments. Only CR + NI treatment had significantly lower soil NO3--N contents than CN by 17.6%-34.6% at the early growing stages of cabbage in both years. Compared with CN, the N2O emissions were significantly decreased by 8.61%, 34.4%, 37.8% and 46.6% under RN, RN + NI, CR and CR + NI, respectively, indicating that CR + NI favors N2O abatement especially when NH3 has been suppressed by other 4 R practices. Meanwhile, the NH3 volatilization was 20.6% higher under RN + NI and 30.8% and 17.3% lower under CR and CR + NI compared to CN, respectively, which implied that CR was the most effective treatment in reducing the NH3 volatilization and total gaseous N loss in high NH3-N loss scenarios. Moreover, the net benefit of RN decreased by $945 USD ha-1 and those of RN + NI, CR and CR + NI treatments increased by $855, $930 and $1004 USD ha-1 compared to CN, respectively. This study recommends CR + NI as the optimal N fertilizer management for the sustainable production of vegetables with the lowest environmental risks and the greatest economic benefits.


Assuntos
Brassica , Nitrogênio , Agricultura , Amônia/análise , Fertilizantes/análise , Gases , Nitrogênio/análise , Óxido Nitroso/análise , Solo , Ureia , Verduras
14.
Environ Res ; 202: 111672, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34265351

RESUMO

Ammonia volatilization from the farmland caused by the application of synthetic nitrogen fertilizer is the most important source of anthropogenic ammonia emissions. Biofertilizer application has been considered as an alternative option for agriculture sustainability and soil improvement. In this study, field trials were carried out to investigate the efficiency of Bacillus amyloliquefaciens (BA) biofertilizer on alleviating ammonia volatilization in alkaline farmland soil and increasing crop yield and nitrogen utilization. Potential response mechanisms were investigated from soil enzyme, nitrogen cycle function genes and microbial community levels. Compared with conventional fertilization, BA biofertilizer application reduced the ammonia volatilization by 68%, increased the crop yield and nitrogen recovery by 19% and 19%, respectively. Soil enzyme activity analysis showed that BA biofertilizer inhibited the urease activity and enhanced the potential ammonia oxidation (PAO). In addition, BA biofertilizer application also increased the bacterial amoA gene abundance, while decreased the ureC gene abundance. BA biofertilizer also significantly altered the community structure and composition, and especially raised the abundance of ammonia oxidation bacteria (AOB), while no changes were observed in abundance of nitrite oxidation bacteria (NOB). Briefly, BA biofertilizer was approved to reduce the transformation of fertilizer nitrogen to NH4+-N, simultaneously accelerating NH4+-N into the nitrification process, thus decreasing the NH4+-N content remained in alkaline soil and consequently alleviating the ammonia volatilization. Thus, these results suggested that the application of BA biofertilizer is a feasible strategy to improve crop yields and reduce agricultural ammonia emissions.


Assuntos
Bacillus amyloliquefaciens , Solo , Agricultura , Amônia/análise , Fazendas , Fertilizantes/análise , Nitrogênio/análise , Microbiologia do Solo , Volatilização
15.
Environ Res ; 194: 110711, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33450237

RESUMO

Humic acid can improve soil nutrients and promote plant growth. Weathered coal and lignite can be used as agricultural resources due to high humic acid content, but their impact on soil NH3 volatilization and CO2 emissions are yet to be determined. In this study, a field experiment was carried out to compare the effects of four types of humic acid isolated from coal (pulverized weathered coal (HC), pulverized lignite (HL), alkalized weathered coal (AC) and alkalized lignite (AL)) on NH3 volatilization, CO2 emissions, pH, the C/N ratio and enzyme activities in soil cultivated with maize. The effect of biotechnology humic acids (BHA) was also examined for comparison. HL, AC, AL and BHA all increased cumulative NH3 losses by 147.7, 278.5, 113.9, and 355.3%, respectively, compared with the control (chemical fertilizer only), and notably, BHA caused an increase of 90.71% compared with the humic acids isolated from coal. A significant increase in cumulative CO2 losses was observed only under AL treatment, by 14.44-24.90% compared with all other treatments. Soil urease activity was positively correlated with cumulative NH3 losses (P < 0.001), while the soil C/N ratio (P < 0.001) and soil sucrase activity (P < 0.05) were positively correlated with cumulative CO2 losses. Since humic acid from pulverized weathered coal caused no increase in NH3 volatilization or CO2 emissions, it is therefore thought to be the most suitable humic acid for field application.


Assuntos
Substâncias Húmicas , Solo , Agricultura , Amônia/análise , Dióxido de Carbono/análise , Carvão Mineral , Fertilizantes/análise , Nitrogênio , Volatilização
16.
J Sci Food Agric ; 101(3): 1091-1099, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32767561

RESUMO

BACKGROUND: 3,4-Dimethylpyrazole phosphate (DMPP) is a nitrification inhibitor which can restrict nitrate (NO3 - ) production. Boric acid is a substance which inhibits urease activity. However, few studies have focused on the inhibitory effect of boric acid on urea hydrolysis and the possible synergistic effect with DMPP. Thus, an incubation trial was conducted to determine the impact of boric acid and DMPP addition on urea-N transformation, and their synergistic effects, in chernozem soil (Che) and red soil (RS). Four treatments were set up in each soil: urea only (U); urea combined with DMPP (UD); urea combined with boric acid (UB); and urea combined with both DMPP and boric acid (UDB). RESULTS: Compared to U, adding DMPP (UD) increased NH3 emissions by 11% and 13% and decreased soil NO3 - -N concentration by 38% and 13% in Che and RS, respectively. Boric acid addition (UB) effectively prolonged the half-life time of urea by 0.8 and 0.4 days, reduced NH3 volatilizations by 11% and 16% and delayed the occurrence of NH3 emission peaks for 3 and 4 days in contrast to U treatment in Che and RS, respectively. UDB treatment mitigated the NH3 volatilizations caused by the addition of DMPP (UD) by 16% and 29% in Che and RS, respectively. Additionally, a better nitrification inhibition rate was found in the UDB treatment compared to other treatments in both soils. CONCLUSIONS: There is potential to develop a new N transformation inhibition strategy with the use of a combination of boric acid and DMPP. © 2020 Society of Chemical Industry.


Assuntos
Ácidos Bóricos/química , Pirazóis/química , Ureia/química , Amônia/química , Fertilizantes/análise , Cinética , Nitratos/química , Nitrificação , Solo/química
17.
Bull Environ Contam Toxicol ; 107(3): 565-573, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34115149

RESUMO

Nitrogen compounds in industrial effluents are considered a serious threat to the environment. The aim of this work is to identify the effect produced by nitrogen-rich wastewater on alkaline soils from industrial land. Two plots were irrigated with wastewater as ammoniacal nitrogen (31 to 53 g N m-2) and urea (167-301 g N m-2) sources named P1 and P2, respectively. Inorganic nitrogen (N) concentrations (N-NH3 + N-NH4, N-NO2, N-NO3), soil pH, and N-NH3 volatilization were monitored during a 2-year period. Variations in the fate of N compounds were distinguished according to the quantity and source of N applied to the soil. A higher N input in the form of urea was related to a greater concentration of nitrates and soil acidification in the topsoil (0-30 cm). Otherwise, ammoniacal N wastewater showed greater relative ammonia losses due to volatilization. Ammonia losses were estimated as 24.2% and 7.43% of the total N applied in P1 and P2, respectively. Besides, in P1 ammoniacal N predominated over nitrate, unlike results obtained in P2. The correct management of nitrogen-rich wastewaters in fertilizer industries could greatly reduce soil and groundwater degradation.


Assuntos
Fertilizantes , Nitrogênio , Agricultura , Amônia/análise , Argentina , Brasil , Fertilizantes/análise , Nitrogênio/análise , Solo , Ureia , Águas Residuárias
18.
Trop Anim Health Prod ; 53(3): 364, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34156586

RESUMO

Feeding-derived amarula cake to growing pigs can overcome a narrow range of ingredients challenges and improve productivity. The objective of the current study was to determine the response in nitrogen (N) balance in slow-growing pigs fed on incremental levels of amarula nut cake (ANC). Thirty clinically healthy male growing Windsnyer (30.7 kg ± 6.57) (mean ± standard deviation) were individually assigned to separate pens in a completely randomized design, with six pigs per dietary treatment. Iso-energetic experimental diets were formulated to contain 0, 50, 100, 150, and 200 g/kg dry matter (DM) of ANC using the summit and dilution technique. Pigs were given 10 days of dietary adaptation and a collection period of 5 consecutive days after 31 days of feeding. Nitrogen intake increased linearly with incremental levels of ANC (P < 0.01). As ANC inclusion increased, the nitrogen (N) absorption, apparent N digestibility, and N retention in pigs increased until it reached a maximum, then started to decrease (P < 0.05). Nitrogen utilization increased at the rate of 0.63 g for each 1 g increase in ANC (P < 0.01). There was a linear decrease (P < 0.01) in total nitrogen excretion through urine and faeces with ANC inclusion. Urinary pH levels decreased quadratically in response to graded levels of ANC (P < 0.01). The relationship between urinary pH and ANC inclusion was Y = 0.0115x2 - 0.3491x + 4.872 (P < 0.01). The nitrogen balance responses were due to ANC inclusion in diets that were balanced for limiting amino acids. It can be concluded that ANC reduces N excretion, potentially minimizing ammonia volatilization, which makes it an alternative protein source for slow-growing pigs.


Assuntos
Anacardiaceae , Ração Animal , Ração Animal/análise , Animais , Dieta/veterinária , Digestão , Masculino , Nitrogênio , Nozes , Suínos
19.
Glob Chang Biol ; 26(3): 1668-1680, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31984585

RESUMO

Fertilized temperate croplands export large amounts of reactive nitrogen (N), which degrades water and air quality and contributes to climate change. Fertilizer use is poised to increase in the tropics, where widespread food insecurity persists and increased agricultural productivity will be needed, but much less is known about the potential consequences of increased tropical N fertilizer application. We conducted a meta-analysis of tropical field studies of nitrate leaching, nitrous oxide emissions, nitric oxide emissions, and ammonia volatilization totaling more than 1,000 observations. We found that the relationship between N inputs and losses differed little between temperate and tropical croplands, although total nitric oxide losses were higher in the tropics. Among the potential drivers we studied, the N input rate controlled all N losses, but soil texture and water inputs also controlled hydrological N losses. Irrigated systems had significantly higher losses of ammonia, and pasture agroecosystems had higher nitric oxide losses. Tripling of fertilizer N inputs to tropical croplands from 50 to 150 kg N ha-1  year-1 would have substantial environmental implications and would lead to increases in nitrate leaching (+30%), nitrous oxide emissions (+30%), nitric oxide (+66%) emissions, and ammonia volatilization (+74%), bringing tropical agricultural nitrate, nitrous oxide, and ammonia losses in line with temperate losses and raising nitric oxide losses above them.


Assuntos
Agricultura , Nitrogênio , Fertilizantes , Óxido Nitroso , Solo
20.
J Environ Sci (China) ; 66: 199-207, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29628087

RESUMO

Ammonia (NH3) volatilization is one of the primary pathways of nitrogen (N) loss from soils after chemical fertilizer is applied, especially from the alkaline soils in Northern China, which results in lower efficiency for chemical fertilizers. Therefore, we conducted an incubation experiment using an alkaline soil from Tianjin (pH8.37-8.43) to evaluate the suppression effect of Trichoderma viride (T. viride) biofertilizer on NH3 volatilization, and compared the differences in microbial community structure among all samples. The results showed that viable T. viride biofertilizer (T) decreased NH3 volatilization by 42.21% compared with conventional fertilizer ((CK), urea), while nonviable T. viride biofertilizer (TS) decreased NH3 volatilization by 32.42%. NH3 volatilization was significantly higher in CK and sweet potato starch wastewater (SPSW) treatments during the peak period. T. viride biofertilizer also improved the transfer of ammonium from soil to sweet sorghum. Plant dry weights increased 91.23% and 61.08% for T and TS, respectively, compared to CK. Moreover, T. viride biofertilizer enhanced nitrification by increasing the abundance of ammonium-oxidizing archaea (AOA) and ammonium-oxidizing bacteria (AOB). The results of high-throughput sequencing indicated that the microbial community structure and composition were significantly changed by the application of T. viride biofertilizer. This study demonstrated the immense potential of T. viride biofertilizer in reducing NH3 volatilization from alkaline soil and simultaneously improving the utilization of fertilizer N by sweet sorghum.


Assuntos
Agricultura/métodos , Poluentes Atmosféricos/análise , Amônia/análise , Fertilizantes , Trichoderma , China , Nitrificação , Solo/química , Microbiologia do Solo , Volatilização
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa