Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 649
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38856078

RESUMO

Embryonic development is a complex and dynamic process that unfolds over time and involves the production and diversification of increasing numbers of cells. The impact of developmental time on the formation of the central nervous system is well documented, with evidence showing that time plays a crucial role in establishing the identity of neuronal subtypes. However, the study of how time translates into genetic instructions driving cell fate is limited by the scarcity of suitable experimental tools. We introduce BirthSeq, a new method for isolating and analyzing cells based on their birth date. This innovative technique allows for in vivo labeling of cells, isolation via fluorescence-activated cell sorting, and analysis using high-throughput techniques. We calibrated the BirthSeq method for developmental organs across three vertebrate species (mouse, chick and gecko), and utilized it for single-cell RNA sequencing and novel spatially resolved transcriptomic approaches in mouse and chick, respectively. Overall, BirthSeq provides a versatile tool for studying virtually any tissue in different vertebrate organisms, aiding developmental biology research by targeting cells and their temporal cues.


Assuntos
Análise de Célula Única , Animais , Camundongos , Análise de Célula Única/métodos , Embrião de Galinha , Lagartos/genética , Lagartos/embriologia , Desenvolvimento Embrionário/genética , Transcriptoma/genética , Citometria de Fluxo/métodos , Vertebrados/genética , Separação Celular/métodos , Galinhas , Análise de Sequência de RNA/métodos
2.
Proc Natl Acad Sci U S A ; 121(18): e2312323121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38621117

RESUMO

Zebra finches, a species of songbirds, learn to sing by creating an auditory template through the memorization of model songs (sensory learning phase) and subsequently translating these perceptual memories into motor skills (sensorimotor learning phase). It has been traditionally believed that babbling in juvenile birds initiates the sensorimotor phase while the sensory phase of song learning precedes the onset of babbling. However, our findings challenge this notion by demonstrating that testosterone-induced premature babbling actually triggers the onset of the sensory learning phase instead. We reveal that juvenile birds must engage in babbling and self-listening to acquire the tutor song as the template. Notably, the sensory learning of the template in songbirds requires motor vocal activity, reflecting the observation that prelinguistic babbling in humans plays a crucial role in auditory learning for language acquisition.


Assuntos
Tentilhões , Animais , Humanos , Vocalização Animal , Aprendizagem , Desenvolvimento da Linguagem
3.
Proc Natl Acad Sci U S A ; 121(3): e2313106121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38190521

RESUMO

Tropical mountains are global biodiversity hotspots, owing to a combination of high local species richness and turnover in species composition. Typically, the highest local richness and turnover levels are implicitly assumed to converge in the same mountain regions, resulting in extraordinary species richness at regional to global scales. We investigated this untested assumption using high-resolution distribution data for all 9,788 bird species found in 134 mountain regions worldwide. Contrary to expectations, the mountain regions with the highest local richness differed from those with the highest species turnover. This finding reflects dissimilarities in the regions' climates and habitat compositions. Forest habitats and humid tropical climates characterize the mountain regions with the highest local richness. In contrast, mountain regions with the highest turnover are generally colder with drier climates and have mostly open habitat types. The highest local species richness and turnover levels globally converge in only a few mountain regions with the greatest climate volumes and topographic heterogeneity, resulting in the most prominent global hotspots for avian biodiversity. These results underline that species-richness hotspots in tropical mountains arise from idiosyncratic levels of local species richness and turnover, a pattern that traditional analyses of overall regional species richness do not detect.


Assuntos
Biodiversidade , Florestas , Clima Tropical
4.
Proc Natl Acad Sci U S A ; 121(8): e2306639121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346196

RESUMO

As a fundamental ecological aspect of most organisms, locomotor function significantly constrains morphology. At the same time, the evolution of novel locomotor abilities has produced dramatic morphological transformations, initiating some of the most significant diversifications in life history. Despite significant new fossil evidence, it remains unclear whether volant locomotion had a single or multiple origins in pennaraptoran dinosaurs and the volant abilities of individual taxa are controversial. The evolution of powered flight in modern birds involved exaptation of feathered surfaces extending off the limbs and tail yet most studies concerning flight potential in pennaraptorans do not account for the structure and morphology of the wing feathers themselves. Analysis of the number and shape of remex and rectrix feathers across a large dataset of extant birds indicates that the number of remiges and rectrices and the degree of primary vane asymmetry strongly correlate with locomotor ability revealing important functional constraints. Among these traits, phenotypic flexibility varies reflected by the different rates at which morphological changes evolve, such that some traits reflect the ancestral condition, whereas others reflect current locomotor function. While Mesozoic birds and Microraptor have remex morphologies consistent with extant volant birds, that of anchiornithines deviate significantly providing strong evidence this clade was not volant. The results of these analyses support a single origin of dinosaurian flight and indicate the early stages of feathered wing evolution are not sampled by the currently available fossil record.


Assuntos
Evolução Biológica , Dinossauros , Animais , Filogenia , Voo Animal , Plumas/anatomia & histologia , Locomoção , Dinossauros/anatomia & histologia , Fósseis , Asas de Animais/anatomia & histologia , Aves/anatomia & histologia
5.
Glycobiology ; 34(3)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38127648

RESUMO

Influenza A virus (IAV) pandemics result from interspecies transmission events within the avian reservoir and further into mammals including humans. Receptor incompatibility due to differently expressed glycan structures between species has been suggested to limit zoonotic IAV transmission from the wild bird reservoir as well as between different bird species. Using glycoproteomics, we have studied the repertoires of expressed glycan structures with focus on putative sialic acid-containing glycan receptors for IAV in mallard, chicken and tufted duck; three bird species with different roles in the zoonotic ecology of IAV. The methodology used pinpoints specific glycan structures to specific glycosylation sites of identified glycoproteins and was also used to successfully discriminate α2-3- from α2-6-linked terminal sialic acids by careful analysis of oxonium ions released from glycopeptides in tandem MS/MS (MS2), and MS/MS/MS (MS3). Our analysis clearly demonstrated that all three bird species can produce complex N-glycans including α2-3-linked sialyl Lewis structures, as well as both N- and O- glycans terminated with both α2-3- and α2-6-linked Neu5Ac. We also found the recently identified putative IAV receptor structures, Man-6P N-glycopeptides, in all tissues of the three bird species. Furthermore, we found many similarities in the repertoires of expressed receptors both between the bird species investigated and to previously published data from pigs and humans. Our findings of sialylated glycan structures, previously anticipated to be mammalian specific, in all three bird species may have major implications for our understanding of the role of receptor incompatibility in interspecies transmission of IAV.


Assuntos
Vírus da Influenza A , Humanos , Animais , Suínos , Vírus da Influenza A/metabolismo , Patos/metabolismo , Galinhas/metabolismo , Espectrometria de Massas em Tandem , Glicopeptídeos/metabolismo , Polissacarídeos/metabolismo , Mamíferos/metabolismo
6.
Ecol Lett ; 27(2): e14373, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38344890

RESUMO

Human activities have altered the species composition of assemblages through introductions and extinctions, but it remains unclear how those changes can affect the different facets of biodiversity. Here we assessed the impact of changes in species composition on taxonomic, functional, and phylogenetic diversity across 281 bird assemblages worldwide. To provide a more nuanced understanding of functional diversity, we distinguished morphological from life-history traits. We showed that shifts in species composition could trigger a global decline in avian biodiversity due to the high number of potential extinctions. Moreover, these extinctions were not random but unique in terms of function and phylogeny at the regional level. Our findings demonstrated that non-native species cannot compensate for these losses, as they are both morphologically and phylogenetically close to the native fauna. In the context of the ongoing biodiversity crisis, such alterations in the functional and phylogenetic structure of bird assemblages could heighten ecosystem vulnerability.


Assuntos
Ecossistema , Espécies em Perigo de Extinção , Animais , Humanos , Filogenia , Biodiversidade , Aves
7.
Ecol Lett ; 27(6): e14465, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38934685

RESUMO

A branch of island biogeography has emerged to explain alien species diversity in the light of the biogeographic and anthropogenic context, yet overlooking the functional and phylogenetic facets. Evaluating alien and native birds of 407 oceanic islands worldwide, we built structural equation models to assess the direct and indirect influence of biotic, geographic, and anthropogenic contexts on alien functional diversity (FD) and phylogenetic diversity (PD). We found that alien taxonomic richness was the main predictor of both diversities. Anthropogenic factors, including colonization pressure, associated with classic biogeographical variables also strongly influenced alien FD and PD. Specifically, habitat modification and human connectivity markedly drove alien FD, especially when controlled by taxonomic richness, whereas the human population size, gross domestic product, and native PD were crucial at explaining alien PD. Our findings suggest that humans not only shape taxonomic richness but also other facets of alien diversity in a complex way.


Assuntos
Biodiversidade , Aves , Espécies Introduzidas , Ilhas , Filogenia , Animais , Aves/fisiologia , Filogeografia , Humanos , Ecossistema , Efeitos Antropogênicos
8.
Ecol Lett ; 27(2): e14380, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38348625

RESUMO

Single phenological measures, like the average rate of phenological advancement, may be insufficient to explain how climate change is driving trends in animal populations. Here, we develop a multifactorial concept of spring phenology-including the onset of spring, spring duration, interannual variability, and their temporal changes-as a driver for population dynamics of migratory terrestrial species in seasonal environments. Using this conceptual model, we found that effects of advancing spring phenology on animal populations may be buffered or amplified depending on the duration and interannual variability of spring green-up, and those effects are modified by evolutionary and plastic adaptations of species. Furthermore, we compared our modelling results with empirical data on normalized difference vegetation index-based spring green-up phenology and population trends of 106 European landbird finding similar associations. We conclude how phenological changes are expected to affect migratory bird populations across Europe and identify regions that are particularly prone to suffer population declines.


Assuntos
Migração Animal , Mudança Climática , Animais , Estações do Ano , Europa (Continente) , Aves , Temperatura
9.
Ecol Lett ; 27(5): e14430, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38714364

RESUMO

Wintering birds serve as vital climate sentinels, yet they are often overlooked in studies of avian diversity change. Here, we provide a continental-scale characterization of change in multifaceted wintering avifauna and examine the effects of climate change on these dynamics. We reveal a strong functional reorganization of wintering bird communities marked by a north-south gradient in functional diversity change, along with a superimposed mild east-west gradient in trait composition change. Assemblages in the northern United States saw contractions of the functional space and increases in functional evenness and originality, while the southern United States saw smaller contractions of the functional space and stasis in evenness and originality. Shifts in functional diversity were underlined by significant reshuffling in trait composition, particularly pronounced in the western and northern United States. Finally, we find strong contributions of climate change to this functional reorganization, underscoring the importance of wintering birds in tracking climate change impacts on biodiversity.


Assuntos
Biodiversidade , Aves , Mudança Climática , Estações do Ano , Animais , Aves/fisiologia , Estados Unidos
11.
J Gen Virol ; 105(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38695722

RESUMO

High-pathogenicity avian influenza viruses (HPAIVs) of the goose/Guangdong lineage are enzootically circulating in wild bird populations worldwide. This increases the risk of entry into poultry production and spill-over to mammalian species, including humans. Better understanding of the ecological and epizootiological networks of these viruses is essential to optimize mitigation measures. Based on full genome sequences of 26 HPAIV samples from Iceland, which were collected between spring and autumn 2022, as well as 1 sample from the 2023 summer period, we show that 3 different genotypes of HPAIV H5N1 clade 2.3.4.4b were circulating within the wild bird population in Iceland in 2022. Furthermore, in 2023 we observed a novel introduction of HPAIV H5N5 of the same clade to Iceland. The data support the role of Iceland as an utmost northwestern distribution area in Europe that might act also as a potential bridging point for intercontinental spread of HPAIV across the North Atlantic.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Filogenia , Islândia/epidemiologia , Animais , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Genótipo , Animais Selvagens/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Genoma Viral , Aves/virologia
12.
J Mol Evol ; 92(1): 30-41, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38189925

RESUMO

Long non-coding RNAs (lncRNAs) have begun to receive overdue attention for their regulatory roles in gene expression and other cellular processes. Although most lncRNAs are lowly expressed and tissue-specific, notable exceptions include MALAT1 and its genomic neighbor NEAT1, two highly and ubiquitously expressed oncogenes with roles in transcriptional regulation and RNA splicing. Previous studies have suggested that NEAT1 is found only in mammals, while MALAT1 is present in all gnathostomes (jawed vertebrates) except birds. Here we show that these assertions are incomplete, likely due to the challenges associated with properly identifying these two lncRNAs. Using phylogenetic analysis and structure-aware annotation of publicly available genomic and RNA-seq coverage data, we show that NEAT1 is a common feature of tetrapod genomes except birds and squamates. Conversely, we identify MALAT1 in representative species of all major gnathostome clades, including birds. Our in-depth examination of MALAT1, NEAT1, and their genomic context in a wide range of vertebrate species allows us to reconstruct the series of events that led to the formation of the locus containing these genes in taxa from cartilaginous fish to mammals. This evolutionary history includes the independent loss of NEAT1 in birds and squamates, since NEAT1 is found in the closest living relatives of both clades (crocodilians and tuataras, respectively). These data clarify the origins and relationships of MALAT1 and NEAT1 and highlight an opportunity to study the change and continuity in lncRNA structure and function over deep evolutionary time.


Assuntos
RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/química , RNA Longo não Codificante/metabolismo , Filogenia , Regulação da Expressão Gênica , Evolução Biológica , Mamíferos/genética
13.
Am Nat ; 204(1): 96-104, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38857342

RESUMO

AbstractMany Neotropical beetles present coloration patterns mimicking red-eyed flies, which are presumably evasive mimicry models. However, the role of predators in selecting for evasive mimics in nature remains untested. In a field experiment, we used nontoxic plasticine replicas of a specialized fly-mimicking beetle species, which we placed on the host plants of the beetles. We show that replicas painted with reddish patches simulating the eyes of flesh flies experienced a much lower predation rate than control replicas. We found that beak marks were the most frequent signs of attack on plasticine replicas, underlining the potential selective pressure exerted by birds. Replicas that matched the size of the beetles suffered higher predation than smaller or larger replicas. The predation rate was also higher for beetle replicas exposed during the warm and wet season, when adult beetles occur. Our results support predator-mediated selection of mimic beetles, highlighting that reddish spots resembling flies' eyes comprise an important trait in reducing attack by avian predators.


Assuntos
Mimetismo Biológico , Besouros , Comportamento Predatório , Animais , Besouros/fisiologia , Aves/fisiologia , Dípteros/fisiologia , Pigmentação
14.
Proc Biol Sci ; 291(2016): 20232308, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38320616

RESUMO

Migratory birds possess remarkable accuracy in orientation and navigation, which involves various compass systems including the magnetic compass. Identifying the primary magnetosensor remains a fundamental open question. Cryptochromes (Cry) have been shown to be magnetically sensitive, and Cry4a from a migratory songbird seems to show enhanced magnetic sensitivity in vitro compared to Cry4a from resident species. We investigate Cry and their potential involvement in magnetoreception in a phylogenetic framework, integrating molecular evolutionary analyses with protein dynamics modelling. Our analysis is based on 363 bird genomes and identifies different selection regimes in passerines. We show that Cry4a is characterized by strong positive selection and high variability, typical characteristics of sensor proteins. We identify key sites that are likely to have facilitated the evolution of an optimized sensory protein for night-time orientation in songbirds. Additionally, we show that Cry4 was lost in hummingbirds, parrots and Tyranni (Suboscines), and thus identified a gene deletion, which might facilitate testing the function of Cry4a in birds. In contrast, the other avian Cry (Cry1 and Cry2) were highly conserved across all species, indicating basal, non-sensory functions. Our results support a specialization or functional differentiation of Cry4 in songbirds which could be magnetosensation.


Assuntos
Aves Canoras , Animais , Filogenia , Aves Canoras/fisiologia , Criptocromos/metabolismo , Campos Magnéticos , Migração Animal/fisiologia
15.
Proc Biol Sci ; 291(2021): 20240235, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38654650

RESUMO

Terror birds (Aves, Phorusrhacidae) were large flightless apex predators in South America during the Cenozoic. Here, we estimate a new phylogeny for phorusrhacids using Bayesian inference. We demonstrate phylogenetic evidence for a monophyletic Patagornithinae and find significant support for a distinct crown group associated with the quintessential 'terror bird' characteristics. We use this phylogeny to analyse the evolution of body size and cursoriality. Our results reveal that size overlap was rare between co-occurring subfamilies, supporting the hypothesis that these traits were important for niche partitioning. We observe that gigantism evolved in a single clade, containing Phorusrhacinae and Physornithinae. The members of this lineage were consistently larger than all other phorusrhacids. Phorusrhacinae emerged following the extinction of Physornithinae, suggesting the ecological succession of the apex predator niche. The first known phorusrhacine, Phorusrhacos longissimus, was gigantic but significantly smaller and more cursorial than any physornithine. These traits likely evolved in response to the expansion of open environments. Following the Santacrucian SALMA, phorusrhacines increased in size, further converging on the morphology of Physornithinae. These findings suggest that the evolution and displacement of body size drove terror bird niche partitioning and competitive exclusion controlled phorusrhacid diversity.


Assuntos
Evolução Biológica , Tamanho Corporal , Filogenia , Animais , Passeriformes/fisiologia , Teorema de Bayes , América do Sul , Aves/fisiologia
16.
Proc Biol Sci ; 291(2023): 20240330, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38772417

RESUMO

Identifying reliable bioindicators of population status is a central goal of conservation physiology. Physiological stress measures are often used as metrics of individual health and can assist in managing endangered species if linked to fitness traits. We analysed feather corticosterone, a cumulative physiological stress metric, of individuals from historical, translocated, and source populations of an endangered endemic Hawaiian bird, the Laysan duck (Anas laysanensis). We hypothesized that feather corticosterone would reflect the improved reproduction and survival rates observed in populations translocated to Midway and Kure Atolls from Laysan Island. We also predicted less physiological stress in historical Laysan birds collected before ecological conditions deteriorated and the population bottleneck. All hypotheses were supported: we found lower feather corticosterone in the translocated populations and historical samples than in those from recent Laysan samples. This suggests that current Laysan birds are experiencing greater physiological stress than historical Laysan and recently translocated birds. Our initial analysis suggests that feather corticosterone may be an indicator of population status and could be used as a non-invasive physiological monitoring tool for this species with further validation. Furthermore, these preliminary results, combined with published demographic data, suggest that current Laysan conditions may not be optimal for this species.


Assuntos
Corticosterona , Patos , Espécies em Perigo de Extinção , Plumas , Animais , Corticosterona/análise , Plumas/química , Havaí , Estresse Fisiológico , Conservação dos Recursos Naturais , Feminino , Masculino
17.
Proc Biol Sci ; 291(2021): 20232926, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628117

RESUMO

Seasonal migration is an underappreciated driver of animal diversification. Changes in migratory behaviour may favour the establishment of sedentary founder populations and promote speciation if there is sufficient reproductive isolation between sedentary and migratory populations. From a systematic literature review, we here quantify the role of migratory drop-off-the loss of migratory behaviour-in promoting speciation in birds on islands. We identify at least 157 independent colonization events likely initiated by migratory species that led to speciation, including 44 cases among recently extinct species. By comparing, for all islands, the proportion of island endemic species that derived from migratory drop-off with the proportion of migratory species among potential colonizers, we showed that seasonal migration has a larger effect on island endemic richness than direct dispersal. We also found that the role of migration in island colonization increases with the geographic isolation of islands. Furthermore, the success of speciation events depends in part on species biogeographic and ecological factors, here positively associated with greater range size and larger flock sizes. These results highlight the importance of shifts in migratory behaviour in the speciation process and calls for greater consideration of migratory drop-off in the biogeographic distribution of birds.


Assuntos
Aves , Animais , Filogenia
18.
Proc Biol Sci ; 291(2014): 20231734, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38196369

RESUMO

Brood (social) parasites and their hosts exhibit a wide range of adaptations and counter-adaptations as part of their ongoing coevolutionary arms races. Obligate avian brood parasites are expected to use potential host species with more easily accessible nests, while potential hosts are expected to evade parasitism by building more concealed nests that are difficult for parasites to enter and in which to lay eggs. We used phylogenetically informed comparative analyses, a global database of the world's brood parasites, their host species, and the design of avian host and non-host nests (approx. 6200 bird species) to examine first, whether parasites preferentially target host species that build open nests and, second, whether host species that build enclosed nests are more likely to be targeted by specialist parasites. We found that species building more accessible nests are more likely to serve as hosts, while host species with some of the more inaccessible nests are targeted by more specialist brood parasites. Furthermore, evolutionary-transition analyses demonstrate that host species building enclosed nests frequently evolve to become non-hosts. We conclude that nest architecture and the accessibility of nests for parasitism represent a critical stage of the ongoing coevolutionary arms race between avian brood parasites and their hosts.


Assuntos
Aves , Comportamento de Nidação , Animais , Evolução Biológica , Bases de Dados Factuais , Especificidade de Hospedeiro
19.
Proc Biol Sci ; 291(2017): 20232250, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38378144

RESUMO

In birds, the quadrate connects the mandible and skull, and plays an important role in cranial kinesis. Avian quadrate morphology may therefore be assumed to have been influenced by selective pressures related to feeding ecology, yet large-scale variation in quadrate morphology and its potential relationship with ecology have never been quantitatively investigated. Here, we used geometric morphometrics and phylogenetic comparative methods to quantify morphological variation of the quadrate and its relationship with key ecological features across a wide phylogenetic sample. We found non-significant associations between quadrate shape and feeding ecology across different scales of phylogenetic comparison; indeed, allometry and phylogeny exhibit stronger relationships with quadrate shape than ecological features. We show that similar quadrate shapes are associated with widely varying dietary ecologies (one-to-many mapping), while divergent quadrate shapes are associated with similar dietary ecologies (many-to-one mapping). Moreover, we show that the avian quadrate evolves as an integrated unit and exhibits strong associations with the morphologies of neighbouring bones. Our results collectively illustrate that quadrate shape has evolved jointly with other elements of the avian kinetic system, with the major crown bird lineages exploring alternative quadrate morphologies, highlighting the potential diagnostic value of quadrate morphology in investigations of bird systematics.


Assuntos
Aves , Crânio , Animais , Filogenia , Aves/anatomia & histologia , Crânio/anatomia & histologia , Cabeça , Mandíbula , Evolução Biológica
20.
Proc Biol Sci ; 291(2025): 20240686, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38889785

RESUMO

Maintenance and activation of the immune system incur costs, not only in terms of substrates and energy but also via collateral oxidative damage to host cells or tissues during immune response. So far, associations between immune function and oxidative damage have been primarily investigated at intra-specific scales. Here, we hypothesized that pathogen-driven selection should favour the evolution of effective immunosurveillance mechanisms (e.g. major histocompatibility complex, MHC) and antioxidant defences to mitigate oxidative damage resulting from immune function. Using phylogenetically informed comparative approaches, we provided evidence for the correlated evolution of host oxidative physiology and MHC-based immunosurveillance in birds. Species selected for more robust MHC-based immunosurveillance (higher gene copy numbers and allele diversity) showed stronger antioxidant defences, although selection for MHC diversity still showed a positive evolutionary association with oxidative damage to lipids. Our results indicate that historical pathogen-driven selection for highly duplicated and diverse MHC could have promoted the evolution of efficient antioxidant mechanisms, but these evolutionary solutions may be insufficient to keep oxidative stress at bounds. Although the precise nature of mechanistic links between the MHC and oxidative stress remains unclear, our study suggests that a general evolutionary investment in immune function may require co-adaptations at the level of host oxidative metabolism.


Assuntos
Aves , Complexo Principal de Histocompatibilidade , Estresse Oxidativo , Animais , Complexo Principal de Histocompatibilidade/genética , Aves/fisiologia , Aves/imunologia , Evolução Biológica , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa