Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mar Policy ; 148: 105395, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36404801

RESUMO

An overview of the negative effects of the COVID-19 pandemic on the mariculture industry of the republic of Croatia is provided. An initial online survey was circulated early after the onset of the pandemic and a follow-up field survey was performed a year into the pandemic. The surveyed companies varied in size (micro to medium enterprises), location (north, central and southern coast) and cultured organism (European flat oyster, Mediterranean mussel, European sea bass, Gilthead sea bream and/or Bluefin tuna) and were asked questions on the subject of economic and job losses, aquaculture supply chain processes and implemented or proposed measures for mitigation of negative effects. Results from the online survey showed higher economic loss than job loss, but companies reported increased job loss in the period leading to the field survey. Most companies reported reductions in sales and avenues of procurement, which, in addition to direct stressors, indirectly affected business processes. Micro enterprises fared well due to their part-time nature, low capital investments and running costs, while small to medium enterprises were under the most pressure. Large enterprises were barely affected as they had secure local and/or international distribution chains and dominated the market. Producers most affected were those that relied on the HoReCa market for product placement and/or had difficulty coping with existing stressors. Bivalve producers generally experienced a higher drop in sales than finfish farms and companies with specialized production were not able to adapt to market changes to the degree that more versatile businesses seemed capable of.

2.
Mar Pollut Bull ; 197: 115668, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37922751

RESUMO

Aquaculture productivity in coastal lagoons is endangered by a complex interplay of anthropogenic and environmental factors, amplified by the effects of climate change in these sensitive areas. To reach a more comprehensive assessment of farming sites quality, a quantitative Weight of Evidence approach (QWoE) is applied for the first time to data collected at four Manila clam (R. philippinarum) farming sites in the Venice lagoon (Italy). This included sediment quality, chemical bioaccumulation, and biological responses. Results revealed a greater hazard for sites closer to the open sea. In these areas, the combination of sediment characteristics and a higher frequency of salinity and temperature stress could explain the alterations measured at a transcriptional and biomarker level. The findings demonstrate that a QWoE approach that integrates multiple sources of evidence should also include physicochemical conditions in order to better understand the impacts of human activities and other stressors on clam aquaculture productivity.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Humanos , Poluentes Químicos da Água/análise , Sedimentos Geológicos , Monitoramento Ambiental/métodos , Fazendas , Itália
3.
Front Cell Infect Microbiol ; 12: 867446, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463633

RESUMO

Anthropogenic pollution has a huge impact on the water quality of marine ecosystems. Heavy metals and antibiotics are anthropogenic stressors that have a major effect on the health of the marine organisms. Although heavy metals are also associate with volcanic eruptions, wind erosion or evaporation, most of them come from industrial and urban waste. Such contamination, coupled to the use and subsequent misuse of antimicrobials in aquatic environments, is an important stress factor capable of affecting the marine communities in the ecosystem. Bivalves are important ecological components of the oceanic environments and can bioaccumulate pollutants during their feeding through water filtration, acting as environmental sentinels. However, heavy metals and antibiotics pollution can affect several of their physiologic and immunological processes, including their microbiome. In fact, heavy metals and antibiotics have the potential to select resistance genes in bacteria, including those that are part of the microbiota of bivalves, such as Vibrio spp. Worryingly, antibiotic-resistant phenotypes have been shown to be more tolerant to heavy metals, and vice versa, which probably occurs through co- and cross-resistance pathways. In this regard, a crucial role of heavy metal resistance genes in the spread of mobile element-mediated antibiotic resistance has been suggested. Thus, it might be expected that antibiotic resistance of Vibrio spp. associated with bivalves would be higher in contaminated environments. In this review, we focused on co-occurrence of heavy metal and antibiotic resistance in Vibrio spp. In addition, we explore the Chilean situation with respect to the contaminants described above, focusing on the main bivalves-producing region for human consumption, considering bivalves as potential vehicles of antibiotic resistance genes to humans through the ingestion of contaminated seafood.


Assuntos
Bivalves , Metais Pesados , Microbiota , Agricultura , Animais , Antibacterianos/farmacologia , Bactérias/genética , Chile
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa