Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Crop Prot ; 123: 45-58, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31481821

RESUMO

The first occurrence of wheat blast in 2016 threatened Bangladesh's already precarious food security situation. The Bangladesh Agricultural Research Institute (BARI), together with the International Maize and Wheat Improvement Center (CIMMYT) developed and released the wheat variety BARI Gom 33 that is resistant to wheat blast and other common diseases. The new variety provides a 5-8% yield gain over the available popular varieties, as well as being zinc enriched. This study examines the potential economic benefits of BARI Gom 33 in Bangladesh. First, applying a climate analogue model, this study identified that more than 55% of the total wheat-growing area in Bangladesh (across 45 districts) is vulnerable to wheat blast. Second, applying an ex-ante impact assessment framework, this study shows that with an assumed cumulative adoption starting from 2019-20 and increasing to 30% by 2027-28, the potential economic benefits of the newly developed wheat variety far exceeds its dissemination cost by 2029-30. Even if dissemination of the new wheat variety is limited to only the ten currently blast-affected districts, the yearly average net benefits could amount to USD 0.23-1.6 million. Based on the findings, international funder agencies are urged to support the national system in scaling out the new wheat variety and wheat research in general to ensure overall food security in Bangladesh and South Asia.

2.
Sci Total Environ ; 865: 161263, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36592919

RESUMO

Tropical agroforestry systems support the wellbeing of many smallholder farmers. These systems provide smallholders with crops for consumption and income through their ecological interactions between their tree, soil, and crop components. These interactions, however, could be vulnerable to changes in climate conditions; yet a reliable understanding of how this could happen is not well documented. The aim of this study is to understand how tree-soil-crop interactions and crop yield are affected by changes in climate conditions, which has implications for recognising how these systems could be affected by climate change. We used a space-for-time climate analogue approach, in conjunction with structural equation modelling, to empirically examine how warmer and drier climate conditions affects tree-soil-crop interactions and banana yield in Mt. Kilimanjaro's homegarden agroforest. Overall, the change in climate conditions negatively affected ecological interactions in the homegardens by destabilizing soil nutrient cycles. Banana yield, however, was mainly directly influenced by the climate. Banana yields could initially benefit from the warmer climate before later declining under water stress. Our findings imply that under increasingly warmer and drier climate conditions, homegarden agroforestry may not be a robust long-term farming practice which can protect smallholder's wellbeing unless effective irrigation measures are implemented.


Assuntos
Agricultura , Mudança Climática , Tanzânia , Fazendas , Solo/química , Árvores
3.
Philos Trans R Soc Lond B Biol Sci ; 374(1788): 20190218, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31679485

RESUMO

Understanding the mechanisms of climate that produce novel ecosystems is of joint interest to conservation biologists and palaeoecologists. Here, we define and differentiate transient from accumulated novelty and evaluate four climatic mechanisms proposed to cause species to reshuffle into novel assemblages: high climatic novelty, high spatial rates of change (displacement), high variance among displacement rates for individual climate variables, and divergence among displacement vector bearings. We use climate simulations to quantify climate novelty, displacement and divergence across Europe and eastern North America from the last glacial maximum to the present, and fossil pollen records to quantify vegetation novelty. Transient climate novelty is consistently the strongest predictor of transient vegetation novelty, while displacement rates (mean and variance) are equally important in Europe. However, transient vegetation novelty is lower in Europe and its relationship to climatic predictors is the opposite of expectation. For both continents, accumulated novelty is greater than transient novelty, and climate novelty is the strongest predictor of accumulated ecological novelty. These results suggest that controls on novel ecosystems vary with timescale and among continents, and that the twenty-first century emergence of novelty will be driven by both rapid rates of climate change and the emergence of novel climate states. This article is part of a discussion meeting issue 'The past is a foreign country: how much can the fossil record actually inform conservation?'


Assuntos
Biodiversidade , Mudança Climática , Clima , Dispersão Vegetal , Europa (Continente) , Fósseis , América do Norte , Pólen
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa