Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Chem Biodivers ; : e202401367, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923285

RESUMO

This study explored the composition of essential oil (EO) and the first phytotoxic screening of EO obtained from the stems and leaves of Mentha vagans Boriss (MVEO) via hydro-distillation technique. The EO ingredients were detected through Gas Chromatography-Mass Spectrometry (GC-MS). GC-MS analysis revealed that MVEO contained 49 constituents, constituting 93.95 % of the total oil. Among MVEO constituents, dihydrocarvone was observed as the dominant constituent (24.14 %), followed by D-carvone (16.28 %) and piperitone (18.14 %). The phytotoxic effects of MVEO and its dominant compounds were examined against Amaranthus retroflexus, Lolium perenne, and Poa annua. Significant inhibition was observed by MVEO in comparison with the major constituents and their mixture, suppressing the seedling growth of tested species at the lowest dosage (0.01 mg/mL); in general, seedling growth of all tested species was markedly inhibited when applied concentration of the EO and its constituents reached 0.05 mg/mL. Our results also indicated that constituents other than the dominant compounds of MVEO possessed considerable phytotoxic effects because the EO's activity was stronger than its major constituents and their mixture. Thus, additional studies are required to investigate MVEO and its constituents and commercialize them as environment-friendly bio-herbicides.

2.
J Sci Food Agric ; 102(8): 3297-3307, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34800295

RESUMO

BACKGROUND: Natural dihydrocarvone has been widely used in the food, cosmetics, agrochemicals and pharmaceuticals industries because of its sensory properties and physiological effects. In our previous study, Klebsiella sp. O852 was shown to be capable of converting limonene to trans-dihydrocarvone with high catalytic efficiency. Thus, it was essential to identify and characterize the functional genes involved in limonene biotransformation using genome sequencing and heterologous expression. RESULTS: The 5.49-Mb draft genome sequence of Klebsiella sp. O852 contained 5218 protein-encoding genes. Seven candidate genes participating in the biotransformation of limonene to trans-dihydrocarvone were identified by genome analysis. Heterologous expression of these genes in Escherichia coli BL21(DE3) indicated that 0852_GM005124 and 0852_GM003417 could hydroxylate limonene in the six position to yield carveol, carvone and trans-dihydrocarvone. 0852_GM002332 and 0852_GM001602 could catalyze the oxidation of carveol to carvone and trans-dihydrocarvone. 0852_GM000709, 0852_GM001600 and 0852_GM000954 had high carvone reductase activity toward the hydrogenation of carvone to trans-dihydrocarvone. CONCLUSION: The results obtained in the present study suggest that the seven genes described above were responsible for converting limonene to trans-dihydrocarvone. The present study contributes to providing a foundation for the industrial production of trans-dihydrocarvone in microbial chassis cells using synthetic biology strategies. © 2021 Society of Chemical Industry.


Assuntos
Klebsiella , Terpenos , Biotransformação , Monoterpenos Cicloexânicos , Klebsiella/metabolismo , Limoneno/metabolismo , Monoterpenos/metabolismo , Oxirredução , Terpenos/metabolismo
3.
Molecules ; 26(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922023

RESUMO

Flavors and fragrances have high commercial value in the food, cosmetic, chemical and pharmaceutical industries. It is interesting to investigate the isolation and characterization of new microorganisms with the ability to produce flavor compounds. In this study, a new strain of Klebsiella sp. O852 (accession number CCTCC M2020509) was isolated from decayed navel orange (Citrus sinensis (L.) Osbeck), which was proved to be capable of converting limonene to trans-dihydrocarvone. Besides, the optimization of various reaction parameters to enhance the trans-dihydrocarvone production in shake flask was performed for Klebsiella sp. O852. The results showed that the yield of trans-dihydrocarvone reached up to 1 058 mg/L when Klebsiella sp. O852 was incubated using LB-M medium for 4 h at 36 °C and 150 rpm, and the biotransformation process was monitored for 36 h after adding 1680 mg/L limonene/ethanol (final ethanol concentration of 0.8% (v/v)). The content of trans-dihydrocarvone increased 16 times after optimization. This study provided a basis and reference for producing trans-dihydrocarvone by biotransformation.


Assuntos
Monoterpenos Cicloexânicos/metabolismo , Fermentação , Klebsiella/metabolismo , Biotransformação , Monoterpenos Cicloexânicos/química , Klebsiella/classificação , Klebsiella/efeitos dos fármacos , Klebsiella/isolamento & purificação , Limoneno/metabolismo , Limoneno/farmacologia , Filogenia , Solventes/química , Temperatura
4.
Molecules ; 24(14)2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31336938

RESUMO

(2R,5R)-dihydrocarvone is an industrially applied building block that can be synthesized by site-selective and stereo-selective C=C bond bio-reduction of (R)-carvone. Escherichia coli (E. coli) cells overexpressing an ene reductase from Nostoc sp. PCC7120 (NostocER1) in combination with a cosubstrate regeneration system proved to be very effective biocatalysts for this reaction. However, the industrial applicability of biocatalysts is strongly linked to the catalysts' activity. Since the cell-internal NADH concentrations are around 20-fold higher than the NADPH concentrations, we produced E. coli cells where the NADPH-preferring NostocER1 was exchanged with three different NADH-accepting NostocER1 mutants. These E. coli whole-cell biocatalysts were used in batch operated stirred-tank reactors on a 0.7 l-scale for the reduction of 300 mM (R)-carvone. 287 mM (2R,5R)-dihydrocarvone were formed within 5 h with a diasteromeric excess of 95.4% and a yield of 95.6%. Thus, the whole-cell biocatalysts were strongly improved by using NADH-accepting enzymes, resulting in an up to 2.1-fold increased initial product formation rate leading to a 1.8-fold increased space-time yield when compared to literature.


Assuntos
Monoterpenos Cicloexânicos/metabolismo , Oxirredução , Oxirredutases/metabolismo , Biocatálise , Biotransformação , Escherichia coli/metabolismo
5.
Biotechnol Lett ; 38(9): 1527-34, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27193896

RESUMO

OBJECTIVES: To characterize a novel ene-reductase from Meyerozyma guilliermondii and achieve the ene-reductase-mediated reduction of activated C=C bonds. RESULTS: The gene encoding an ene-reductase was cloned from M. guilliermondii. Sequence homology analysis showed that MgER shared the maximal amino acid sequence identity of 57 % with OYE2.6 from Scheffersomyces stipitis. MgER showed the highest specific activity at 30 °C and pH 7 (100 mM sodium phosphate buffer), and excellent stereoselectivities were achieved for the reduction of (R)-carvone and ketoisophorone. Under the reaction conditions (30 °C and pH 7.0), 150 mM (R)-carvone could be completely converted to (2R,5R)-dihydrocarvone within 22 h employing purified MgER as catalyst, resulting in a yield of 98.9 % and an optical purity of >99 % d.e. CONCLUSION: MgER was characterized as a novel ene-reductase from yeast and showed great potential for the asymmetric reduction of activated C=C bonds of α,ß-unsaturated compounds.


Assuntos
Proteínas Fúngicas/metabolismo , NADPH Desidrogenase/metabolismo , Oxirredutases/metabolismo , Saccharomycetales/enzimologia , Monoterpenos Cicloexânicos , Monoterpenos/metabolismo , Saccharomycetales/metabolismo
6.
J Fungi (Basel) ; 10(9)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39330369

RESUMO

Fruit rots caused by filamentous fungi such as Monilinia fructicola and Monilinia laxa have a strong impact on crop yield and fruit commercialization, especially as they affect a wide variety of stone fruits. The antifungal efficacy of benzylidene-cycloalkanones has been previously described in in vitro assays against M. fructicola; so, this study aims to evaluate the in vivo inhibitory potential of these hybrids on fruits that have been inoculated with M. fructicola, and use molecular docking to visualize the main interactions of these molecules in the active site of the enzyme succinate dehydrogenase (SDH). The results indicate that compound C achieves the highest inhibition of both Monilinia species (15.7-31.4 µg/mL), spore germination in vitro (<10 µg/mL), and has promising results in vivo, without causing phytotoxicity in fruits. The results from molecular docking suggest that hydroxyl groups play a crucial role in enhancing the binding of compound C to SDH and contribute to the formation of hydrogen bonds with amino acid residues on the enzyme active site.

7.
Antibiotics (Basel) ; 10(7)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34356739

RESUMO

The aim of this study was to synthesize a series of novel and known dihydrocarvone-hybrid derivatives (2-9) and to evaluate mycelial growth activity of hybrid molecules against two strains of Monilinia fructicola, as well as their toxicity. Dihydrocarvone-hybrid derivatives have been synthesized under sonication conditions and characterized by FTIR, NMR, and HRMS. Antifungal efficacy against both strains of M. fructicola was determined by half maximal effective concentration (EC50) and toxicity using the brine shrimp lethality test (BSLT). Among the synthesized compounds, 7 and 8 showed the best activity against both strains of M. fructicola with EC50 values of 148.1 and 145.9 µg/mL for strain 1 and 18.1 and 15.7 µg/mL for strain 2, respectively, compared to BC 1000® (commercial organic fungicide) but lower than Mystic® 520 SC. However, these compounds showed low toxicity values, 910 and 890 µg/mL, respectively, compared to Mystic® 520 SC, which was highly toxic. Based on the results, these hybrid compounds could be considered for the development of more active, less toxic, and environmentally friendly antifungal agents against phytopathogenic fungi.

8.
Chem Phys Lipids ; 198: 39-45, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27174212

RESUMO

The cyclic ketones, thujone and dihydrocarvone, are lipophilic components of essential oils extracted from different plants, which have proven insecticidal activity. The GABAA receptor is activated by the neurotransmitter GABA and is the action site of widely used neurotoxic pesticides. Many compounds that regulate GABAA receptor function interact with membrane lipids, causing changes in their physical properties and consequently, in the membrane dynamic characteristics that modulate receptor macromolecules. In the present study, the biophysical effects of thujone (a gabaergic reference compound) and dihydrocarvone (structurally very similar) were explored by using monomolecular films of DPPC as a model membrane system, to gain insight into membrane-drug interaction. The compression isotherms showed that both ketones expand the DPPC isotherms and increase membrane elasticity. They penetrate the monolayer but their permanence depends on the possibility of establishing molecular interactions with the film component, favored by defects present in the membrane at the phase transition. Finally, by using Brewster angle microscopy (BAM) as a complementary technique for direct visualization of the study films, we found that incorporating ketone seems to reduce molecular repulsion among phospholipid headgroups. Our results reinforce the notion that changes in membrane mechanics may be occurring in the presence of the assayed ketones, suggesting that their interaction with the receptor's surrounding membrane may modulate or affect its functionality, possibly as part of the mechanism of the bioactivity described for thujone and DHC.


Assuntos
Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Monoterpenos/farmacologia , 1,2-Dipalmitoilfosfatidilcolina/química , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Adsorção , Monoterpenos Bicíclicos , Membrana Celular/metabolismo , Monoterpenos Cicloexânicos , Monoterpenos/química , Reologia
9.
Fitoterapia ; 103: 9-26, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25776008

RESUMO

Coriander (Coriandrum sativum L.), a member of the Apiaceae family, is among most widely used medicinal plant, possessing nutritional as well as medicinal properties. Thus, the aim of this updated review is to highlight the importance of coriander as a potential source of bioactive constituents and to summarize their biological activities as well as their different applications from data obtained in recent literature, with critical analysis on the gaps and potential for future investigations. A literature review was carried out by searching on the electronic databases including PubMed, Scopus, ScienceDirect, and Google Scholar for studies focusing on the biological and pharmacological activities of coriander seed and herb bioactive constituents. All recent English-language articles published between 2000 and 2014 were searched using the terms 'C. sativum', 'medicinal plant', 'bioactive constituents', and 'biological activities'. Subsequently, coriander seed and herb essential oils have been actively investigated for their chemical composition and biological activities including antimicrobial, antioxidant, hypoglycemic, hypolipidemic, anxiolytic, analgesic, anti-inflammatory, anti-convulsant and anti-cancer activities, among others. Although coriander has been reported to possess a wide range of traditional medicinal uses, no report is available in its effectiveness use in reactive airway diseases such as asthma and bronchiolitis. In brief, the information presented herein will be helpful to create more interest towards this medicinal species by defining novel pharmacological and clinical applications and hence, may be useful in developing new drug formulations in the future or by employing coriander bioactive constituents in combination with conventional drugs to enhance the treatment of diseases such as Alzheimer and cancer.


Assuntos
Coriandrum/química , Compostos Fitoquímicos/análise , Plantas Medicinais/química , Etnofarmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa