Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(6): e2313962121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38306480

RESUMO

Ultralight architected materials enabled by advanced manufacturing processes have achieved density-normalized strength and stiffness properties that are inaccessible to bulk materials. However, the majority of this work has focused on static loading and elastic-wave propagation. Fundamental understanding of the mechanical behavior of architected materials under large-deformation dynamic conditions remains limited, due to the complexity of mechanical responses and shortcomings of characterization methods. Here, we present a microscale suspended-plate impact testing framework for three-dimensional micro-architected materials, where supersonic microparticles to velocities of up to 850 m/s are accelerated against a substrate-decoupled architected material to quantify its energy dissipation characteristics. Using ultra-high-speed imaging, we perform in situ quantification of the impact energetics on two types of architected materials as well as their constituent nonarchitected monolithic polymer, indicating a 47% or greater increase in mass-normalized energy dissipation under a given impact condition through use of architecture. Post-mortem characterization, supported by a series of quasi-static experiments and high-fidelity simulations, shed light on two coupled mechanisms of energy dissipation: material compaction and particle-induced fracture. Together, experiments and simulations indicate that architecture-specific resistance to compaction and fracture can explain a difference in dynamic impact response across architectures. We complement our experimental and numerical efforts with dimensional analysis which provides a predictive framework for kinetic-energy absorption as a function of material parameters and impact conditions. We envision that enhanced understanding of energy dissipation mechanisms in architected materials will serve to define design considerations toward the creation of lightweight impact-mitigating materials for protective applications.

2.
Nano Lett ; 24(7): 2250-2256, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38329289

RESUMO

Emergence of complex catalytic machinery via simple building blocks under non-equilibrium conditions can contribute toward the system level understanding of the extant biocatalytic reaction network that fuels metabolism. Herein, we report temporal (dis)assembly of peptide nanostructures in presence of a cofactor dictated by native multistep cascade transformations. The short peptide can form a dynamic covalent bond with the thermodynamically activated substrate and recruit cofactor hemin to access non-equilibrium catalytic nanostructures (positive feedback). The neighboring imidazole and hemin moieties in the assembled state rapidly converted the substrate to product(s) via a two-step cascade reaction (hydrolase-peroxidase like) that subsequently triggered the disassembly of the catalytic nanostructures (negative feedback). The feedback coupled reaction cycle involving intrinsic catalytic prowess of short peptides to realize the advanced trait of two-stage cascade degradation of a thermodynamically activated substrate foreshadows the complex non-equilibrium protometabolic networks that might have preceded the chemical emergence of life.


Assuntos
Hemina , Nanoestruturas , Hemina/química , Nanoestruturas/química , Peptídeos/química , Catálise , Biocatálise
3.
Small ; : e2401622, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682610

RESUMO

Single-network hydrogels are often too fragile to withstand mechanical loading, whereas double-network hydrogels typically exhibit significant hysteresis during cyclic stretching-releasing process due to the presence of a sacrificial network. Consequently, it is a considerable challenge for designing hydrogels that are both low in hysteresis and high in toughness for applications requiring dynamic mechanical loads. Herein, the study introduced a novel "sliding tangle island" strategy for creating tough and low-hysteresis hydrogels, which are prepared through in situ polymerization of highly concentrated acrylamides (AM) to form numerous entanglements within the MXene spacing without any chemical crosslinker. The MXene entangled with long polyacrylamide (PAM) chains to form tangle island that served as a relay station to transmit stress to neighboring molecular chains. This mechanism helps alleviate stress concentration and enhances energy dissipation efficiency, thereby reducing mechanical hysteresis. The resulting hydrogel exhibited exceptional properties, including high stretchability (≈900%), low hysteresis (less than 7%), high toughness (1.34 MJ m-3), and excellent sensing performance to rival the commercial hydrogel electrode. Therefore, this work sheds light on feasible design of energy dissipation structure to reduce the hysteresis of the composite hydrogels.

4.
Photosynth Res ; 160(1): 17-29, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38407779

RESUMO

Phycobilisomes (PBs) play an important role in cyanobacterial photosynthesis. They capture light and transfer excitation energy to the photosynthetic reaction centres. PBs are also central to some photoprotective and photoregulatory mechanisms that help sustain photosynthesis under non-optimal conditions. Amongst the mechanisms involved in excitation energy dissipation that are activated in response to excessive illumination is a recently discovered light-induced mechanism that is intrinsic to PBs and has been the least studied. Here, we used single-molecule spectroscopy and developed robust data analysis methods to explore the role of a terminal emitter subunit, ApcE, in this intrinsic, light-induced mechanism. We isolated the PBs from WT Synechocystis PCC 6803 as well as from the ApcE-C190S mutant of this strain and compared the dynamics of their fluorescence emission. PBs isolated from the mutant (i.e., ApcE-C190S-PBs), despite not binding some of the red-shifted pigments in the complex, showed similar global emission dynamics to WT-PBs. However, a detailed analysis of dynamics in the core revealed that the ApcE-C190S-PBs are less likely than WT-PBs to enter quenched states under illumination but still fully capable of doing so. This result points to an important but not exclusive role of the ApcE pigments in the light-induced intrinsic excitation energy dissipation mechanism in PBs.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Synechocystis , Ficobilissomas/metabolismo , Synechocystis/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Proteínas de Bactérias/metabolismo , Espectrometria de Fluorescência
5.
Nanotechnology ; 35(29)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38593759

RESUMO

Herein, we employ molecular dynamics simulations to decode the friction properties and phonon energy dissipation between black phosphorus layers. The observations reveal the influence of three factors, temperature, velocity, and normal load, on the friction force of monolayer/bilayer black phosphorus. Specifically, friction is negatively correlated with layer thickness and temperature, and positively correlated with velocity and normal load. The change in friction force is further explained in terms of frictional energy dissipation, and supplemented by the height of potential barriers as well as the number of excited phonons. From the phonon spectrum analysis, the phonon number at the contact interface is found to be higher than that at the non-contact interface. This is due to the larger distance of the contact interface atoms deviate from their equilibrium positions, resulting in higher total energy generated by more intense oscillations, and therefore contributes greater to friction.

6.
Nanotechnology ; 35(12)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38100834

RESUMO

Graphene nanoribbon woven fabrics (GNWFs) with excellent mechanical properties are promising for ballistic armor materials. The dynamic response of single-layer and bilayer GNWFs under nano-projectile impact at high-speed (4-5 km s-1) is investigated by molecular dynamics simulations. Results show that the woven structure is determined by the bandwidth and gap spacing, which influences the deformation/fracture and motion coupling effects of the crossed nanoribbons and the ballistic performance of GNWF. Owing to the perturbation of the van der Waals (vdW) interface between nanoribbons, the specific penetration energy of GNWFs reaches 16.02 MJ kg-1, which is much higher than that of single-layer graphene (10.80 MJ kg-1) and bilayer graphene (10.07 MJ kg-1). The peculiarities of woven structure minimize the damage of GNWFs, on the one hand, the reversibility of vdW interactions and the entanglement of nanoribbons provide GNWFs a certain self-healing ability. On the other hand, the porous nanostructure of twist-stacked bilayer GNWFs tends to be uniform and dense with the twist angle, which improves the impact resistance. This study provides more understanding of the ballistic properties of GNWFs and the design of nano-fabrics based on two-dimensional materials.

7.
J Evol Equ ; 24(3): 63, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989137

RESUMO

In this paper, we consider a dynamic model of fracture for viscoelastic materials, in which the constitutive relation, involving the Cauchy stress and the strain tensors, is given in an implicit nonlinear form. We prove the existence of a solution to the associated viscoelastic dynamic system on a prescribed time-dependent cracked domain via a discretization-in-time argument. Moreover, we show that such a solution satisfies an energy-dissipation balance in which the energy used to increase the crack does not appear. As a consequence, in analogy to the linear case this nonlinear model exhibits the so-called viscoelastic paradox.

8.
Entropy (Basel) ; 26(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38539743

RESUMO

Symmetry breaking is a phenomenon that is observed in various contexts, from the early universe to complex organisms, and it is considered a key puzzle in understanding the emergence of life. The importance of this phenomenon is underscored by the prevalence of enantiomeric amino acids and proteins.The presence of enantiomeric amino acids and proteins highlights its critical role. However, the origin of symmetry breaking has yet to be comprehensively explained, particularly from an energetic standpoint. This article explores a novel approach by considering energy dissipation, specifically lost free energy, as a crucial factor in elucidating symmetry breaking. By conducting a comprehensive thermodynamic analysis applicable across scales, ranging from elementary particles to aggregated structures such as crystals, we present experimental evidence establishing a direct link between nonequilibrium free energy and energy dissipation during the formation of the structures. Results emphasize the pivotal role of energy dissipation, not only as an outcome but as the trigger for symmetry breaking. This insight suggests that understanding the origins of complex systems, from cells to living beings and the universe itself, requires a lens focused on nonequilibrium processes.

9.
Entropy (Basel) ; 26(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38539766

RESUMO

It is argued that all physical knowledge ultimately stems from observation and that the simplest possible observation is that an event has happened at a certain space-time location X→=x→,t. Considering historic experiments, which have been groundbreaking in the evolution of our modern ideas of matter on the atomic, nuclear, and elementary particle scales, it is shown that such experiments produce as outputs streams of macroscopically observable events which accumulate in the course of time into spatio-temporal patterns of events whose forms allow decisions to be taken concerning conceivable alternatives of explanation. Working towards elucidating the physical and informational characteristics of those elementary observations, we show that these represent hugely amplified images of the initiating micro-events and that the resulting macro-images have a cognitive value of 1 bit and a physical value of Wobs=Eobsτobs≫h. In this latter equation, Eobs stands for the energy spent in turning the initiating micro-events into macroscopically observable events, τobs for the lifetimes during which the generated events remain macroscopically observable, and h for Planck's constant. The relative value Gobs=Wobs/h finally represents a measure of amplification that was gained in the observation process.

10.
Angew Chem Int Ed Engl ; 63(19): e202401845, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38470270

RESUMO

Vibrations with various frequencies in daily life and industry can cause health hazards and fatigue failure of critical structures, which requires the development of elastomers with high energy dissipation at desired frequencies. Current strategies relying on tuning characteristic relaxation time of polymer chains are mostly qualitative empirical methods, and it is difficult to precisely control damping performances. Here, we report a general strategy for constructing dynamic crosslinked polymer fluid gels that provide controllable ultrahigh energy dissipation. This is realized by dynamic-bond-mediated chain reptation of polymer fluids in a crosslinked network, where the characteristic time of chain reptation is dominated by the presence of well-defined dissociation time of dynamic bonds and almost independent of their molar mass. Using prototypical supramolecular polydimethylsiloxane elastomers, we demonstrate that dynamic crosslinked polymer fluid gels exhibit a controllable ultrahigh damping performance at desired frequencies (10-2~102 Hz), exceeding that of typical state-of-the-art silicone damping materials. Their shock absorption is over 300 % higher than that of commercial silicone rubber under the same impact force.

11.
Angew Chem Int Ed Engl ; 63(28): e202406937, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38656692

RESUMO

Polymers are ideally utilized as damping materials due to the high internal friction of molecular chains, enabling effective suppression of vibrations and noises in various fields. Current strategies rely on broadening the glass transition region or introducing additional relaxation components to enhance the energy dissipation capacity of polymeric damping materials. However, it remains a significant challenge to achieve high damping efficiency through structural control while maintaining dynamic characteristics. In this work, we propose a new strategy to develop hyperbranched vitrimers (HBVs) containing dense pendant chains and loose dynamic crosslinked networks. A novel yet weak dynamic transesterification between the carboxyl and boronic acid ester was confirmed and used to prepare HBVs based on poly (hexyl methacrylate-2-(4-ethenylphenyl)-5,5-dimethyl-1,3,2-dioxaborinane) P(HMA-co-ViCL) copolymers. The A B n ${{AB}_{n}}$ -type of macromonomers, the crosslinking points formed by the dynamic covalent connection via the associative exchange, and the weak yet dynamic exchange reaction are the three keys to developing high-performance HBV damping materials. We found that P(HMA-co-ViCL) 20k-40-60 HBV exhibited ultrahigh energy-dissipation performance over a broad frequency and temperature range, attributed to the synergistic effect of dense pendant chains and weak dynamic covalent crosslinks. This unique design concept will provide a general approach to developing advanced damping materials.

12.
Angew Chem Int Ed Engl ; 63(17): e202400758, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38450854

RESUMO

Designing materials capable of adapting their mechanical properties in response to external stimuli is the key to preventing failure and extending their service life. However, existing mechanically adaptive polymers are hindered by limitations such as inadequate load-bearing capacity, difficulty in achieving reversible changes, high cost, and a lack of multiple responsiveness. Herein, we address these challenges using dynamic coordination bonds. A new type of mechanically adaptive material with both rate- and temperature-responsiveness was developed. Owing to the stimuli-responsiveness of the coordination equilibria, the prepared polymers, PBMBD-Fe and PBMBD-Co, exhibit mechanically adaptive properties, including temperature-sensitive strength modulation and rate-dependent impact hardening. Benefitting from the dynamic nature of the coordination bonds, the polymers exhibited impressive energy dissipation, damping capacity (loss factors of 1.15 and 2.09 at 1.0 Hz), self-healing, and 3D printing abilities, offering durable and customizable impact resistance and protective performance. The development of impact-resistant materials with comprehensive properties has potential applications in the sustainable and intelligent protection fields.

13.
Angew Chem Int Ed Engl ; 63(19): e202402394, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38499462

RESUMO

Loops are prevalent topological structures in cross-linked polymer networks, resulting from the folding of polymer chains back onto themselves. Traditionally, they have been considered as defects that compromise the mechanical properties of the network, leading to extensive efforts in synthesis to prevent their formation. In this study, we introduce the inclusion of cyclic dibenzo-24-crown-8 (DB24C8) moieties within the polymer network strands to form CCNs, and surprisingly, these loops enhance the mechanical performances of the network, leading to tough elastomers. The toughening effect can be attributed to the unique cyclic structure of DB24C8. The relatively small size and the presence of rigid phenyl rings provide the loops with relatively stable conformations, allowing for substantial energy dissipation upon the application of force. Furthermore, the DB24C8 rings possess a broad range of potential conformations, imparting the materials with exceptional elasticity. The synergistic combination of these two features effectively toughens the materials, resulting in a remarkable 66-fold increase in toughness compared to the control sample of covalent networks. Moreover, the mechanical properties, particularly the recovery performance of the network, can be effectively tuned by introducing guests to bind with DB24C8, such as potassium ions and secondary ammonium salts.

14.
Sci Rep ; 14(1): 16726, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030345

RESUMO

This research delves into the transfer and loss of energy in a discrete mass when subjected to forced vibration. Using discrete element method (DEM), we analyzed the dynamic behavior of regular spherical granular assemblies and the energy distribution characteristics under different excitation frequencies and reduced accelerations. Moreover, the energy transfer and dissipation process of granular assemblies under different vibration states are studied using an experimental method. The results show that the granular assemblies will produce collision energy dissipation, thermal energy dissipation, acoustic energy dissipation and other forms of energy dissipation in the forced vibration state and the proportion of different energy dissipation under different excitation is given. The collision and friction of granular assemblies are the key to affecting other forms of energy dissipation. When the excitation increases, the energy dissipation forms are generated inside the granular assemblies, and the proportion of collision energy dissipation of the granular assemblies increases. The acoustic energy above 20 kHz occupies the main part of the acoustic energy dissipation. Thermal energy consumption always exists, which takes a long time to play a role. The granular also have other forms of energy loss, which is hard to be measured, including Rayleigh waves generated by granular collision. In this study, the relationship between the forced vibration state of the granular assemblies and the energy loss distribution is established. Various types of energy transfer and conversion distribution which further enriches the energy dissipation of discrete element calculation of the granular assemblies is discussed and provides a reference for the energy loss analysis of the granular assemblies.

15.
Adv Mater ; 36(15): e2310216, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38237136

RESUMO

The sprayable hydrogel coatings that can establish robust adhesion onto diverse materials and devices hold enormous potential; however, a significant challenge persists due to monomer hydration, which impedes even coverage during spraying and induces inadequate adhesion post-gelation. Herein, a polycation-reinforced (PCR) surface bridging strategy is presented to achieve tough and sprayable hydrogel coatings onto diverse materials. The polycations offer superior wettability and instant electrostatic interactions with plasma-treated substrates, facilitating an effective spraying application. This PCR-based hydrogel coatings demonstrate tough adhesion performance to inert PTFE and silicone, including remarkable shear strength (161 ± 49 kPa for PTFE), interfacial toughness (198 ± 27 J m-2 for PTFE), and notable tolerance to cyclic tension (10 000 cycles, 200% strain, silicone). Meanwhile, this method can be applied to various hydrogel formulations, offering diverse functionalities, including underwater adhesion, lubrication, and drug delivery. Furthermore, the PCR concept enables the conformal construction of durable hydrogel coatings onto sophisticated medical devices like cardiovascular stents. Given its simplicity and adaptability, this approach paves an avenue for incorporating hydrogels onto solid surfaces and potentially promotes untapped applications.


Assuntos
Hidrogéis , Polieletrólitos , Silicones , Politetrafluoretileno , Reação em Cadeia da Polimerase
16.
ACS Nano ; 18(23): 14925-14937, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38808608

RESUMO

Nanomaterials with unique structures and components play a crucial role in nanomedicine. In this study, we discovered that the inhomogeneous Au2S constructed by cation exchange and acid etching could dissipate energy in different forms after absorbing multichromatic light, which could be used to achieve the integrated diagnosis and treatment of tumors, respectively. Folic acid modified Au2S ringed nanoparticles (FA-Au2S RNs) with an assembly-like structure were demonstrated to result in better PA imaging performance and generate more reactive oxygen species (O2·-, ·OH, and 1O2) than folic acid modified Au2S triangular nanoparticles (FA-Au2S TNs). Finite element analyses determined the reason for the high absorbance properties and synergistic enhancement of plasma resonance in the assembly-like structure of Au2S RNs. Both FA-Au2S nanostructures were modified with folic acid and injected into 4T1 tumor-bearing mice via the tail vein. The best PA imaging contrast was obtained under 700 nm laser illumination, and the most effective PDT antitumor activity was achieved under 1064 nm laser illumination. The PA average of the tumor in the FA-Au2S RN group was approximately 2 times higher than that of the FA-Au2S TN group at 24 h of injection. The PA imaging results of intratumorally injected FA-Au2S RNs proved that they were still able to show better PA signal enhancement at 24 h postinjection. Our study demonstrates that FA-Au2S nanomaterials with unique structures and special properties can be reliably produced using strictly controlled chemical synthesis. It further provides a strategy for the construction of highly sensitive PA imaging platforms and efficient PDT antitumor agents that exploit wavelength-dependent energy dissipation mechanisms.


Assuntos
Ácido Fólico , Ouro , Técnicas Fotoacústicas , Fotoquimioterapia , Animais , Ouro/química , Ouro/farmacologia , Camundongos , Ácido Fólico/química , Camundongos Endogâmicos BALB C , Feminino , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Nanopartículas Metálicas/química
17.
J Mech Behav Biomed Mater ; 157: 106660, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39033558

RESUMO

Enhancing friction force in lubricated, compliant contacts is of particular interest due to its wide application in various engineering and biological systems. In this study, we have developed bioinspired surfaces featuring film-terminated ridges, which exhibit a significant increase in lubricated friction force compared to flat samples. We propose that the enhanced sliding friction can be attributed to the energy dissipation at the lubricated interface caused by elastic hysteresis resulting from cyclic terminal film deformation. Furthermore, increasing inter-ridge spacing or reducing terminal film thickness are favorable design criteria for achieving high friction performance. These findings contribute to our understanding of controlling lubricated friction and provide valuable insights into surface design strategies for novel functional devices.


Assuntos
Fricção , Propriedades de Superfície , Lubrificação , Materiais Biomiméticos/química , Teste de Materiais , Lubrificantes/química , Fenômenos Mecânicos
18.
Artigo em Inglês | MEDLINE | ID: mdl-39141264

RESUMO

Industrial solid waste (mine tailings) management has emerged as the key universal ecological challenge as a result of the unceasing creation of rising waste by-products. Employing tailings makes mine fill production economical and assists resolve disposal problems. Foamed cement-based tailings backfill (FCTB) is a mine fill consisting of tailing, cement, water, and foaming agents. It provides certain advantages such as lightweight, good fluidity, and thermal insulation yet is relatively weak in strength. Additionally, FCTB's strength properties can be intensely improved by adding fibers. A total of three diverse fibers: polypropylene (PP), glass (G), and basalt (B) as well as dodecyltrimethylammonium bromide (DTAB) as a foaming agent were used to prepare fiber-reinforced foamed cementitious tailings backfill (FR-FCTB). The mechanical properties, energy evolution, ductility, and microstructure of FR-FCTB were elaborately investigated by uniaxial compression tests (UCS) and SEM. Laboratory findings demonstrate the reinforcing effect of three fibers on FCTB specimens: glass > polypropylene > basalt. FR-FCTB showed the best strength features as a fiber content of 0.3% was adopted in FCTB. At this time, the UCS performance of glass fiber-reinforced FCTBs was 0.85 MPa increased by 18.1%. The addition of fibers can increase the fill's energy storage limit, slow down the discharge of elastic strain energy within the backfill, and enhance the fill's ductility and toughness. The ductility factor evaluates the degree of deterioration of filling in terms of post-peak drop, with all FR-FCTB values being greater than CTB. FR-FCTB's chief hydration product is the C-S-H gel. Fiber's bridging effect significantly rallies crack extension and thus fill's strength features. Lastly, the study's main results are instructive for the industrial application of FR-FCTB used in metallic mines.

19.
PNAS Nexus ; 3(3): pgae101, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38533109

RESUMO

Increasing extreme weather events require a corresponding increase in coastal protection. We show that architected materials, which have macroscopic properties that differ from those of their constituent components, can increase wave energy dissipation by more than an order of magnitude over both natural and existing artificial reefs, while providing a biocompatible environment. We present a search that optimized their design through proper hydrodynamic modeling and experimental testing, validated their performance, and characterized sustainable materials for their construction.

20.
ACS Appl Mater Interfaces ; 16(12): 15416-15425, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38462810

RESUMO

Tailoring the optical properties of metamaterials is crucial for improving the performance of infrared (IR) applications. Generally, IR camouflage materials are required to have low IR-emission properties for the detected bands (3-5 and 8-12 µm), in which IR detection is accomplished. However, the heat residue by suppressed thermal radiation degrades the thermal dissipation capacity and thermal stability of IR camouflage materials. Herein, a multilayer metal-dielectric-metal (MDM) selective emitter with high IR-emission performance in the undetected band for thermal management and low IR-emission performance in the detected band for IR camouflage is introduced. Compared to a conventional selective emitter and a low-emission material (Au film), the multiresonance selective emitter exhibited 125 and 2910% increases in heat dissipation within the undetected band, respectively. In addition, the proposed camouflage material exhibited a substantial reduction in emissive energy within the detected bands of 3-5 and 8-12 µm, with reductions of 72 and 83%, respectively, compared to that of a high-emission surface. The effectiveness of our IR camouflage was demonstrated by IR camera measurements. When the surface temperature was 360 K, the radiance temperatures of the multilayer multipeak selective emitter were 314 and 309 K for the 3-5 and 8-12 µm bands, respectively. Thermal management experiments demonstrated the enhanced thermal stability of the multiresonance selective emitter, especially in conditions of low pressure and high heat flux, when compared to that of the low-emissivity film. This work provides a practical strategy to enhance the thermal emission of a selective emitter, expanding its potential beyond IR camouflage to various energy applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa