Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.866
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Neurosci ; 44(3)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38050156

RESUMO

Reading acquisition involves the integration of auditory and visual stimuli. Thus, low-level audiovisual multisensory integration might contribute to disrupted reading in developmental dyslexia. Although dyslexia is more frequently diagnosed in males and emerging evidence indicates that the neural basis of dyslexia might differ between sexes, previous studies examining multisensory integration did not evaluate potential sex differences nor tested its neural correlates. In the current study on 88 adolescents and young adults, we found that only males with dyslexia showed a deficit in multisensory integration of simple nonlinguistic stimuli. At the neural level, both females and males with dyslexia presented smaller differences in response to multisensory compared to those in response to unisensory conditions in the N1 and N2 components (early components of event-related potentials associated with sensory processing) than the control group. Additionally, in a subsample of 80 participants matched for nonverbal IQ, only males with dyslexia exhibited smaller differences in the left hemisphere in response to multisensory compared to those in response to unisensory conditions in the N1 component. Our study indicates that deficits of multisensory integration seem to be more severe in males than females with dyslexia. This provides important insights into sex-modulated cognitive processes that might confer vulnerability to reading difficulties.


Assuntos
Percepção Auditiva , Dislexia , Adolescente , Adulto Jovem , Humanos , Masculino , Feminino , Percepção Auditiva/fisiologia , Tempo de Reação/fisiologia , Percepção Visual/fisiologia , Caracteres Sexuais , Estimulação Acústica
2.
J Neurosci ; 44(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37949654

RESUMO

Sudden and surprising sensory events trigger neural processes that swiftly adjust behavior. To study the phylogenesis and the mechanism of this phenomenon, we trained two male rhesus monkeys to keep a cursor inside a visual target by exerting force on an isometric joystick. We examined the effect of surprising auditory stimuli on exerted force, scalp electroencephalographic (EEG) activity, and local field potentials (LFPs) recorded from the dorsolateral prefrontal cortex. Auditory stimuli elicited (1) a biphasic modulation of isometric force, a transient decrease followed by a corrective tonic increase, and (2) EEG and LFP deflections dominated by two large negative-positive waves (N70 and P130). The EEG potential was symmetrical and maximal at the scalp vertex, highly reminiscent of the human "vertex potential." Electrocortical potentials and force were tightly coupled: the P130 amplitude predicted the magnitude of the corrective force increase, particularly in the LFPs recorded from deep rather than superficial cortical layers. These results disclose a phylogenetically preserved corticomotor mechanism supporting adaptive behavior in response to salient sensory events.Significance Statement Survival in the natural world depends on an animal's capacity to adapt ongoing behavior to abrupt unexpected events. To study the neural mechanisms underlying this capacity, we trained monkeys to apply constant force on a joystick while we recorded their brain activity from the scalp and the prefrontal cortex contralateral to the hand holding the joystick. Unexpected auditory stimuli elicited a biphasic force modulation: a transient reduction followed by a corrective adjustment. The same stimuli also elicited EEG and LFP responses, dominated by a biphasic wave that predicted the magnitude of the behavioral adjustment. These results disclose a phylogenetically preserved corticomotor mechanism supporting adaptive behavior in response to unexpected events.


Assuntos
Eletroencefalografia , Humanos , Animais , Masculino , Macaca mulatta , Eletroencefalografia/métodos
3.
J Neurosci ; 44(20)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38561227

RESUMO

Human frontocentral event-related potentials (FC-ERPs) are ubiquitous neural correlates of cognition and control, but their generating multiscale mechanisms remain mostly unknown. We used the Human Neocortical Neurosolver's biophysical model of a canonical neocortical circuit under exogenous thalamic and cortical drive to simulate the cell and circuit mechanisms underpinning the P2, N2, and P3 features of the FC-ERP observed after Stop-Signals in the Stop-Signal task (SST; N = 234 humans, 137 female). We demonstrate that a sequence of simulated external thalamocortical and corticocortical drives can produce the FC-ERP, similar to what has been shown for primary sensory cortices. We used this model of the FC-ERP to examine likely circuit-mechanisms underlying FC-ERP features that distinguish between successful and failed action-stopping. We also tested their adherence to the predictions of the horse-race model of the SST, with specific hypotheses motivated by theoretical links between the P3 and Stop process. These simulations revealed that a difference in P3 onset between successful and failed Stops is most likely due to a later arrival of thalamocortical drive in failed Stops, rather than, for example, a difference in the effective strength of the input. In contrast, the same model predicted that early thalamocortical drives underpinning the P2 and N2 differed in both strength and timing across stopping accuracy conditions. Overall, this model generates novel testable predictions of the thalamocortical dynamics underlying FC-ERP generation during action-stopping. Moreover, it provides a detailed cellular and circuit-level interpretation that supports links between these macroscale signatures and predictions of the behavioral race model.


Assuntos
Potenciais Evocados , Modelos Neurológicos , Humanos , Feminino , Masculino , Potenciais Evocados/fisiologia , Adulto , Adulto Jovem , Lobo Frontal/fisiologia , Rede Nervosa/fisiologia , Tálamo/fisiologia , Eletroencefalografia , Desempenho Psicomotor/fisiologia
4.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37991273

RESUMO

Prolonged exposure to others' suffering can lead to empathy fatigue, especially when individuals struggle to effectively regulate their empathic capacity. Shifting active attention away from emotional components toward cognitive components of others' suffering is an effective strategy for mitigating empathy fatigue. This research investigated how top-down attentional manipulation modulates empathy fatigue in both auditory (Study 1) and visual (Study 2) modalities. Participants completed two tasks in both studies: (i) the attention to cognitive empathy task (A-C task) and (ii) the attention to emotional empathy task (A-E task). Each task included three blocks (Time Block 1, Time Block 2, and Time Block 3) designed to induce empathy fatigue. Study 1 revealed that the A-C task reduced empathy fatigue and N1 amplitudes than the A-E task in Time Block 3, indicating that attention to cognitive empathy might decrease auditory empathy fatigue. Study 2 indicates that the A-C task caused a longer N2 latency than the A-E task, signifying a decelerated emotional empathic response when attention was on cognitive empathy in the visual modality. Overall, prioritizing cognitive empathy seems to conserve mental resources and reduce empathy fatigue. This research documented the relationship between top-down attention and empathy fatigue and the possible neural mechanism.


Assuntos
Emoções , Empatia , Humanos , Emoções/fisiologia
5.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38850216

RESUMO

Whether attention is a prerequisite of perceptual awareness or an independent and dissociable process remains a matter of debate. Importantly, understanding the relation between attention and awareness is probably not possible without taking into account the fact that both are heterogeneous and multifaceted mechanisms. Therefore, the present study tested the impact on visual awareness of two attentional mechanisms proposed by the Posner model: temporal alerting and spatio-temporal orienting. Specifically, we evaluated the effects of attention on the perceptual level, by measuring objective and subjective awareness of a threshold-level stimulus; and on the neural level, by investigating how attention affects two postulated event-related potential correlates of awareness. We found that alerting and orienting mechanisms additively facilitate perceptual consciousness, with activation of the latter resulting in the most vivid awareness. Furthermore, we found that late positivity is unlikely to constitute a neural correlate of consciousness as its amplitude was modulated by both attentional mechanisms, but early visual awareness negativity was independent of the alerting and orienting mechanisms. In conclusion, our study reveals a nuanced relationship between attention and awareness; moreover, by investigating the effect of the alerting mechanism, this study provides insights into the role of temporal attention in perceptual consciousness.


Assuntos
Atenção , Conscientização , Eletroencefalografia , Potenciais Evocados , Percepção Visual , Humanos , Atenção/fisiologia , Conscientização/fisiologia , Masculino , Feminino , Adulto Jovem , Adulto , Percepção Visual/fisiologia , Potenciais Evocados/fisiologia , Estimulação Luminosa/métodos , Percepção Espacial/fisiologia , Estado de Consciência/fisiologia , Encéfalo/fisiologia
6.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38306653

RESUMO

Understanding the neurobiological correlates of behavioral inhibition in patients with depression who committed violent offenses could contribute to the prediction and prevention of violence. The present study recruited 29 depressed patients with violent offenses (VD group), 27 depressed patients without violent behavior (NVD group), and 28 healthy controls (HC group) to complete a visual Go/NoGo task, during which their responses and electroencephalography were simultaneously recorded using an event-related potentiometer. The results showed that the VD group made more commission errors and responded more slowly relative to the NVD and HC groups. The P3 amplitude of the VD group was reduced in the frontal and central brain regions compared to the HC group and increased in the parietal regions compared to the NVD group. In comparison to Go stimuli, NoGo stimuli induced longer P3 latencies in frontal regions in both the VD and NVD groups; however, this difference was not statistically significant in the HC group. These results provide electrophysical evidence of behavioral inhibition deficits in patients with depression, especially in those with violent behaviors. The reduced P3 amplitude in the frontal-central regions, increased P3 amplitude in the parietal regions, and increased NoGo P3 latency may be potential electrophysiological features that can predict violent behavior in patients with depression.


Assuntos
Depressão , Potenciais Evocados , Humanos , Potenciais Evocados/fisiologia , Tempo de Reação/fisiologia , Eletroencefalografia , Biomarcadores
7.
Cereb Cortex ; 34(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39329359

RESUMO

The human brain detects errors in overt behavior fast and efficiently. However, little is known about how errors are monitored that emerge on a mental level. We investigate whether neural correlates of error monitoring can be found during inner speech and whether the involved neural processes differ between these non-motor responses and behavioral motor responses. Therefore, electroencephalographic data were collected while participants performed two versions of a decision task that only differed between these response modalities. Erroneous responses were identified based on participants' metacognitive judgments. Correlates of error monitoring in event-related potentials were analyzed by applying residue iteration decomposition on stimulus-locked activity. Non-motor responses elicited the same cascade of early error-related negativity and late error positivity as motor responses. An analysis of oscillatory brain activity showed a similar theta response for both error types. A multivariate pattern classifier trained on theta from the motor condition could decode theta from the non-motor condition, demonstrating the similarity of both neural responses. These results show that errors in inner speech are monitored and detected utilizing the same neural processes as behavioral errors, suggesting that goal-directed cognition and behavior are supported by a generic error-monitoring system.


Assuntos
Encéfalo , Eletroencefalografia , Potenciais Evocados , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Potenciais Evocados/fisiologia , Encéfalo/fisiologia , Tomada de Decisões/fisiologia , Pensamento/fisiologia , Ritmo Teta/fisiologia , Julgamento/fisiologia , Desempenho Psicomotor/fisiologia
8.
Cereb Cortex ; 34(10)2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39390709

RESUMO

Impaired episodic memory is the primary feature of early Alzheimer's disease (AD), but not all memories are equally affected. Patients with AD and amnestic Mild Cognitive Impairment (aMCI) remember pictures better than words, to a greater extent than healthy elderly. We investigated neural mechanisms for visual object recognition in 30 patients (14 AD, 16 aMCI) and 36 cognitively unimpaired healthy (19 in the "preclinical" stage of AD). Event-related brain potentials (ERPs) were recorded while participants performed a visual object recognition task. Hippocampal occupancy (integrity), amyloid (florbetapir) PET, and neuropsychological measures of verbal & visual memory, executive function were also collected. A right-frontal ERP recognition effect (500-700 ms post-stimulus) was seen in cognitively unimpaired participants only, and significantly correlated with memory and executive function abilities. A later right-posterior negative ERP effect (700-900 ms) correlated with visual memory abilities across participants with low verbal memory ability, and may reflect a compensatory mechanism. A correlation of this retrieval-related negativity with right hippocampal occupancy (r = 0.55), implicates the hippocampus in the engagement of compensatory perceptual retrieval mechanisms. Our results suggest that early AD patients are impaired in goal-directed retrieval processing, but may engage compensatory perceptual mechanisms which rely on hippocampal function.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Potenciais Evocados , Humanos , Masculino , Feminino , Idoso , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/psicologia , Potenciais Evocados/fisiologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/psicologia , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Eletroencefalografia , Reconhecimento Psicológico/fisiologia , Testes Neuropsicológicos , Idoso de 80 Anos ou mais , Tomografia por Emissão de Pósitrons , Função Executiva/fisiologia , Hipocampo/fisiopatologia , Hipocampo/diagnóstico por imagem , Estimulação Luminosa/métodos , Pessoa de Meia-Idade
9.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38566513

RESUMO

The perception of facial expression plays a crucial role in social communication, and it is known to be influenced by various facial cues. Previous studies have reported both positive and negative biases toward overweight individuals. It is unclear whether facial cues, such as facial weight, bias facial expression perception. Combining psychophysics and event-related potential technology, the current study adopted a cross-adaptation paradigm to examine this issue. The psychophysical results of Experiments 1A and 1B revealed a bidirectional cross-adaptation effect between overweight and angry faces. Adapting to overweight faces decreased the likelihood of perceiving ambiguous emotional expressions as angry compared to adapting to normal-weight faces. Likewise, exposure to angry faces subsequently caused normal-weight faces to appear thinner. These findings were corroborated by bidirectional event-related potential results, showing that adaptation to overweight faces relative to normal-weight faces modulated the event-related potential responses of emotionally ambiguous facial expression (Experiment 2A); vice versa, adaptation to angry faces relative to neutral faces modulated the event-related potential responses of ambiguous faces in facial weight (Experiment 2B). Our study provides direct evidence associating overweight faces with facial expression, suggesting at least partly common neural substrates for the perception of overweight and angry faces.


Assuntos
Expressão Facial , Preconceito de Peso , Humanos , Sobrepeso , Ira/fisiologia , Potenciais Evocados/fisiologia , Emoções/fisiologia
10.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517177

RESUMO

Empathy deficiencies are prevalent among deaf individuals. It has yet to be determined whether they exhibit an ingroup bias in empathic responses. This study employed explicit and implicit empathy tasks (i.e. attention-to-pain-cue [A-P] task and attention-to-nonpain-cue [A-N] task) to explore the temporal dynamics of neural activities when deaf individuals were processing painful/nonpainful stimuli from both ingroup models (deaf people) and outgroup models (hearing people), which aims to not only assist deaf individuals in gaining a deeper understanding of their intergroup empathy traits but also to aid in the advancement of inclusive education. In the A-P task, we found that (i) ingroup priming accelerated the response speed to painful/nonpainful pictures; (ii) the N2 amplitude of painful pictures was significantly more negative than that of nonpainful pictures in outgroup priming trials, whereas the N2 amplitude difference between painful and nonpainful pictures was not significant in ingroup priming trials. For N1 amplitude of the A-N task, we have similar findings. However, this pattern was reversed for P3/late positive component amplitude of the A-P task. These results suggest that the deaf individuals had difficulty in judging whether hearing individuals were in pain. However, their group identification and affective responses could shape the relatively early stage of pain empathy.


Assuntos
Empatia , Dor , Humanos , Dor/psicologia , Atenção , Tempo de Reação , Processos Grupais , Eletroencefalografia , Potenciais Evocados/fisiologia
11.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38306660

RESUMO

Using event-related potentials, this study examined how self-esteem affects neural responses to competence (interpersonal) feedback when the need for relatedness (competence) is thwarted or met. Participants with low and high self-esteem acted as advisors who selected one of two options for a putative advisee. Subsequently, they passively observed the advisee, accepted, or rejected their advice (i.e. interpersonal feedback) and received correct or incorrect outcomes (i.e. competence feedback). When interpersonal feedback was followed by competence feedback, high self-esteem participants showed a smaller P3 following incorrect than correct outcomes, irrespective of whether the advice had been accepted or rejected. However, low self-esteem participants showed this P3 effect only when the advice was rejected, and the P3 difference disappeared when the advice was accepted. When competence feedback was followed by interpersonal feedback, both low self-esteem and high self-esteem individuals showed a larger P2 for rejection than for acceptance and a larger late potential component for incorrect than correct outcomes. These findings suggest that when interpersonal feedback is followed by competence feedback, low self-esteem and high self-esteem individuals have a desire for self-positivity. When competence feedback is followed by interpersonal feedback, they may have motives for self-change. Our findings shed light on the motivational mechanisms for self-esteem and feedback.


Assuntos
Relações Interpessoais , Autoimagem , Humanos , Motivação
12.
Cereb Cortex ; 34(9)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39285718

RESUMO

Individuals engage in upward or downward comparisons with superiors or inferiors, respectively. Social comparison is associated with social anxiety. Utilizing event-related potentials, we investigated how individuals with high social anxiety (HSA) and low social anxiety (LSA) evaluate self- versus other-outcomes in upward and downward comparison contexts. We found significant valence effects of self- or other-outcomes on feedback-related negativity (FRN) and P300 for both groups, with loss inducing larger FRN and smaller P300 than gain. In the early stage, the valence effect of other-outcomes was significant when LSA participants gained money, but not when they lost money, revealing a social comparison effect on FRN. Conversely, this valence effect was significant whether HSA participants gained or lost money. At the late stage, the valence effect of other-outcomes was significant when HSA or LSA participants gained money but not when they lost, revealing social comparison effects on the P300. Notably, only the social comparison effect in the LSA group was further moderated by comparison direction. These findings suggest that LSA participants engaged in social comparison throughout all evaluation stages, whereas HSA participants started at the late stage. Moreover, LSA participants were more sensitive to different comparison directions in the late stage.


Assuntos
Ansiedade , Eletroencefalografia , Potenciais Evocados , Humanos , Masculino , Feminino , Adulto Jovem , Potenciais Evocados/fisiologia , Ansiedade/fisiopatologia , Ansiedade/psicologia , Adulto , Comparação Social , Adolescente , Encéfalo/fisiologia
13.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38044466

RESUMO

Current theories of attention differentiate exogenous from endogenous orienting of visuospatial attention. While both forms of attention orienting engage different functional systems, endogenous and exogenous attention are thought to share resources, as shown by empirical evidence of their functional interactions. The present study aims to uncover the neurobiological basis of how salient events that drive exogenous attention disrupts endogenous attention processes. We hypothesize that interference from exogenous attention over endogenous attention involves alpha-band activity, a neural marker of visuospatial attention. To test this hypothesis, we contrast the effects of endogenous attention across two experimental tasks while we recorded electroencephalography (n = 32, both sexes): a single cueing task where endogenous attention is engaged in isolation, and a double cueing task where endogenous attention is concurrently engaged with exogenous attention. Our results confirm that the concurrent engagement of exogenous attention interferes with endogenous attention processes. We also found that changes in alpha-band activity mediate the relationship between endogenous attention and its effect on task performance, and that the interference of exogenous attention on endogenous attention occurs via the moderation of this indirect effect. Altogether, our results substantiate a model of attention, whereby endogenous and exogenous attentional processes involve the same neurophysiological resources. SIGNIFICANCE STATEMENT: Scientists differentiate top-down from bottom-up visuospatial attention processes. While bottom-up attention is rapidly engaged by emerging demands from the environment, top-down attention in contrast reflects slow voluntary shifts of spatial attention. Several lines of research substantiate the idea that top-down and bottom-up attentional processes involve distinct functional systems. An increasing number of studies, however, argue that both attention systems share brain processing resources. The current study examines how salient visual events that engage bottom-up processes interfere with top-down attentional processes. Using neurophysiological recordings and multivariate pattern classification techniques, the authors show that these patterns of interference occur within the alpha-band of neural activity (8-12 Hz), which implies that bottom-up and top-down attention processes share this narrow-band frequency brain resource. The results further demonstrate that patterns of alpha-band activity explains, in part, the interference between top-down and bottom-up attention at the behavioral level.


Assuntos
Encéfalo , Eletroencefalografia , Masculino , Feminino , Humanos , Encéfalo/fisiologia , Sinais (Psicologia) , Mapeamento Encefálico , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia
14.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38212291

RESUMO

Plasticity from auditory experience shapes the brain's encoding and perception of sound. However, whether such long-term plasticity alters the trajectory of short-term plasticity during speech processing has yet to be investigated. Here, we explored the neural mechanisms and interplay between short- and long-term neuroplasticity for rapid auditory perceptual learning of concurrent speech sounds in young, normal-hearing musicians and nonmusicians. Participants learned to identify double-vowel mixtures during ~ 45 min training sessions recorded simultaneously with high-density electroencephalography (EEG). We analyzed frequency-following responses (FFRs) and event-related potentials (ERPs) to investigate neural correlates of learning at subcortical and cortical levels, respectively. Although both groups showed rapid perceptual learning, musicians showed faster behavioral decisions than nonmusicians overall. Learning-related changes were not apparent in brainstem FFRs. However, plasticity was highly evident in cortex, where ERPs revealed unique hemispheric asymmetries between groups suggestive of different neural strategies (musicians: right hemisphere bias; nonmusicians: left hemisphere). Source reconstruction and the early (150-200 ms) time course of these effects localized learning-induced cortical plasticity to auditory-sensory brain areas. Our findings reinforce the domain-general benefits of musicianship but reveal that successful speech sound learning is driven by a critical interplay between long- and short-term mechanisms of auditory plasticity, which first emerge at a cortical level.


Assuntos
Córtex Auditivo , Percepção da Fala , Humanos , Fala , Percepção da Fala/fisiologia , Córtex Auditivo/fisiologia , Aprendizagem , Eletroencefalografia , Plasticidade Neuronal/fisiologia , Estimulação Acústica
15.
J Neurosci ; 43(26): 4896-4906, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37286353

RESUMO

Does our perception of an object change once we discover what function it serves? We showed human participants (n = 48, 31 females and 17 males) pictures of unfamiliar objects either together with keywords matching their function, leading to semantically informed perception, or together with nonmatching keywords, resulting in uninformed perception. We measured event-related potentials to investigate at which stages in the visual processing hierarchy these two types of object perception differed from one another. We found that semantically informed compared with uninformed perception was associated with larger amplitudes in the N170 component (150-200 ms), reduced amplitudes in the N400 component (400-700 ms), and a late decrease in alpha/beta band power. When the same objects were presented once more without any information, the N400 and event-related power effects persisted, and we also observed enlarged amplitudes in the P1 component (100-150 ms) in response to objects for which semantically informed perception had taken place. Consistent with previous work, this suggests that obtaining semantic information about previously unfamiliar objects alters aspects of their lower-level visual perception (P1 component), higher-level visual perception (N170 component), and semantic processing (N400 component, event-related power). Our study is the first to show that such effects occur instantly after semantic information has been provided for the first time, without requiring extensive learning.SIGNIFICANCE STATEMENT There has been a long-standing debate about whether or not higher-level cognitive capacities, such as semantic knowledge, can influence lower-level perceptual processing in a top-down fashion. Here we could show, for the first time, that information about the function of previously unfamiliar objects immediately influences cortical processing within less than 200 ms. Of note, this influence does not require training or experience with the objects and related semantic information. Therefore, our study is the first to show effects of cognition on perception while ruling out the possibility that prior knowledge merely acts by preactivating or altering stored visual representations. Instead, this knowledge seems to alter perception online, thus providing a compelling case against the impenetrability of perception by cognition.


Assuntos
Potenciais Evocados , Semântica , Humanos , Masculino , Feminino , Potenciais Evocados/fisiologia , Eletroencefalografia/métodos , Percepção Visual/fisiologia , Aprendizagem/fisiologia
16.
Pflugers Arch ; 476(11): 1727-1742, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39158612

RESUMO

Virtual reality (VR) allows to create controlled scenarios in which the quantity of stimuli can be modulated, as happen in real-life, where humans are subjected to various multisensory-often overlapping-stimuli. The present research aimed to study changes in attentional processes within an auditory oddball paradigm during a virtual exploration, while varying the amount of distractors. Twenty healthy volunteers underwent electroencephalography (EEG) during three different experimental conditions: an auditory oddball without VR (No-VR condition), an auditory oddball during VR exploration without distractors (VR-Empty condition), and an auditory oddball during VR exploration with a high level of distractors (VR-Full condition). Event-related potentials (ERPs) were computed averaging epochs of EEGs and analyzing peaks at 100 ms (N100) and 300 ms (P300) latencies. Results showed modulation of N100 amplitude in Fz and of P300 amplitude in Pz. Statistically significant differences in latency were observed only for P300 where the latency results delayed from the No-VR to VR-Full. The scalp topography revealed for P100 no significant differences between frequent and rare stimuli in either the No-VR and VR-Empty conditions. However, significant results were found in N100 in VR-Full condition. For P300, results showed differences between frequent and rare stimuli, in every condition. However, this difference is gradually less widespread from No-VR condition to the VR-Full. The emerging integration of VR with EEG may have important implications for studying brain attentional processing.


Assuntos
Atenção , Eletroencefalografia , Realidade Virtual , Humanos , Atenção/fisiologia , Masculino , Feminino , Adulto , Eletroencefalografia/métodos , Adulto Jovem , Potenciais Evocados/fisiologia , Estimulação Acústica/métodos , Potenciais Evocados P300/fisiologia , Percepção Auditiva/fisiologia
17.
Neuroimage ; 297: 120735, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39002787

RESUMO

INTRODUCTION: The motor system undergoes significant development throughout childhood and adolescence. The contingent negative variation (CNV), a brain response reflecting preparation for upcoming actions, offers valuable insights into these changes. However, previous CNV studies of motor preparation have primarily focused on adults, leaving a gap in our understanding of how cortical activity related to motor planning and execution matures in children and adolescents. METHODS: The study addresses this gap by investigating the maturation of motor preparation, pre-activation, and post-processing in 46 healthy, right-handed children and adolescents aged 5-16 years. To overcome the resolution limitations of previous studies, we combined 64-electrode high-density Electroencephalography (EEG) and advanced analysis techniques, such as event-related potentials (ERPs), mu-rhythm desynchronization as well as source localization approaches. The combined analyses provided an in-depth understanding of cortical activity during motor control. RESULTS: Our data showed that children exhibited prolonged reaction times, increased errors, and a distinct pattern of cortical activation compared to adolescents. The findings suggest that the supplementary motor area (SMA) plays a progressively stronger role in motor planning and response evaluation as children age. Additionally, we observe a decrease in sensory processing and post-movement activity with development, potentially reflecting increased efficiency. Interestingly, adolescent subjects, unlike young adults in previous studies, did not yet show contralateral activation of motor areas during the motor preparation phase (late CNV). CONCLUSION: The progressive increase in SMA activation and distinct cortical activation patterns in younger participants suggest immature motor areas. These immature regions might be a primary cause underlying the age-related increase in motor action control efficiency. Additionally, the study demonstrates a prolonged maturation of cortical motor areas, extending well into early adulthood, challenging the assumption that motor control is fully developed by late adolescence. This research, extending fundamental knowledge of motor control development, offers valuable insights that lay the foundation for understanding and treating motor control difficulties.


Assuntos
Eletroencefalografia , Humanos , Adolescente , Criança , Masculino , Feminino , Eletroencefalografia/métodos , Pré-Escolar , Potenciais Evocados/fisiologia , Córtex Motor/fisiologia , Sinais (Psicologia) , Tempo de Reação/fisiologia , Córtex Cerebral/fisiologia , Variação Contingente Negativa/fisiologia , Desempenho Psicomotor/fisiologia , Atividade Motora/fisiologia
18.
Neuroimage ; 299: 120796, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39153523

RESUMO

PURPOSE: In this study, the objectification of the subjective perception of loudness was investigated using electroencephalography (EEG). In particular, the emergence of objective markers in the domain of the acoustic discomfort threshold was examined. METHODS: A cohort of 27 adults with normal hearing, aged between 18 and 30, participated in the study. The participants were presented with 500 ms long noise stimuli via in-ear headphones. The acoustic signals were presented with sound levels of [55, 65, 75, 85, 95 dB]. After each stimulus, the subjects provided their subjective assessment of the perceived loudness using a colored scale on a touchscreen. EEG signals were recorded, and afterward, event-related potentials (ERPs) locked to sound onset were analyzed. RESULTS: Our findings reveal a linear dependency between the N100 component and both the sound level and the subjective loudness categorization of the sound. Additionally, the data demonstrated a nonlinear relationship between the P300 potential and the sound level as well as for the subjective loudness rating. The P300 potential was elicited exclusively when the stimuli had been subjectively rated as "very loud" or "too loud". CONCLUSION: The findings of the present study suggest the possibility of the identification of the subjective uncomfortable loudness level by objective neural parameters.


Assuntos
Eletroencefalografia , Percepção Sonora , Humanos , Adulto , Masculino , Feminino , Eletroencefalografia/métodos , Adulto Jovem , Percepção Sonora/fisiologia , Adolescente , Potenciais Evocados P300/fisiologia , Estimulação Acústica , Potenciais Evocados Auditivos/fisiologia , Encéfalo/fisiologia , Potenciais Evocados/fisiologia
19.
Neuroimage ; 298: 120805, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39173692

RESUMO

The study of the neural substrates that serve conscious vision is one of the unsolved questions of cognitive neuroscience. So far, consciousness literature has endeavoured to disentangle which brain areas and in what order are involved in giving rise to visual awareness, but the problem of consciousness still remains unsolved. Availing of two different but complementary sources of data (i.e., Fast Optical Imaging and EEG), we sought to unravel the neural dynamics responsible for the emergence of a conscious visual experience. Our results revealed that conscious vision is characterized by a significant increase of activation in extra-striate visual areas, specifically in the Lateral Occipital Complex (LOC), and that, more interestingly, such activity occurred in the temporal window of the ERP component commonly thought to represent the electrophysiological signature of visual awareness, i.e., the Visual Awareness Negativity (VAN). Furthermore, Granger causality analysis, performed to further investigate the flow of activity occurring in the investigated areas, unveiled that neural processes relating to conscious perception mainly originated in LOC and subsequently spread towards visual and motor areas. In general, the results of the present study seem to advocate for an early contribution of LOC in conscious vision, thus suggesting that it could represent a reliable neural correlate of visual awareness. Conversely, striate visual areas, showing awareness-related activity only in later stages of stimulus processing, could be part of the cascade of neural events following awareness emergence.


Assuntos
Estado de Consciência , Eletroencefalografia , Lobo Occipital , Percepção Visual , Humanos , Estado de Consciência/fisiologia , Percepção Visual/fisiologia , Masculino , Feminino , Adulto , Adulto Jovem , Lobo Occipital/fisiologia , Lobo Occipital/diagnóstico por imagem , Córtex Visual Primário/fisiologia , Córtex Visual Primário/diagnóstico por imagem , Mapeamento Encefálico , Potenciais Evocados Visuais/fisiologia , Córtex Visual/fisiologia , Córtex Visual/diagnóstico por imagem , Conscientização/fisiologia
20.
Neuroimage ; 290: 120557, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38423264

RESUMO

BACKGROUND: Time series analysis is critical for understanding brain signals and their relationship to behavior and cognition. Cluster-based permutation tests (CBPT) are commonly used to analyze a variety of electrophysiological signals including EEG, MEG, ECoG, and sEEG data without a priori assumptions about specific temporal effects. However, two major limitations of CBPT include the inability to directly analyze experiments with multiple fixed effects and the inability to account for random effects (e.g. variability across subjects). Here, we propose a flexible multi-step hypothesis testing strategy using CBPT with Linear Mixed Effects Models (LMEs) and Generalized Linear Mixed Effects Models (GLMEs) that can be applied to a wide range of experimental designs and data types. METHODS: We first evaluate the statistical robustness of LMEs and GLMEs using simulated data distributions. Second, we apply a multi-step hypothesis testing strategy to analyze ERPs and broadband power signals extracted from human ECoG recordings collected during a simple image viewing experiment with image category and novelty as fixed effects. Third, we assess the statistical power differences between analyzing signals with CBPT using LMEs compared to CBPT using separate t-tests run on each fixed effect through simulations that emulate broadband power signals. Finally, we apply CBPT using GLMEs to high-gamma burst data to demonstrate the extension of the proposed method to the analysis of nonlinear data. RESULTS: First, we found that LMEs and GLMEs are robust statistical models. In simple simulations LMEs produced highly congruent results with other appropriately applied linear statistical models, but LMEs outperformed many linear statistical models in the analysis of "suboptimal" data and maintained power better than analyzing individual fixed effects with separate t-tests. GLMEs also performed similarly to other nonlinear statistical models. Second, in real world human ECoG data, LMEs performed at least as well as separate t-tests when applied to predefined time windows or when used in conjunction with CBPT. Additionally, fixed effects time courses extracted with CBPT using LMEs from group-level models of pseudo-populations replicated latency effects found in individual category-selective channels. Third, analysis of simulated broadband power signals demonstrated that CBPT using LMEs was superior to CBPT using separate t-tests in identifying time windows with significant fixed effects especially for small effect sizes. Lastly, the analysis of high-gamma burst data using CBPT with GLMEs produced results consistent with CBPT using LMEs applied to broadband power data. CONCLUSIONS: We propose a general approach for statistical analysis of electrophysiological data using CBPT in conjunction with LMEs and GLMEs. We demonstrate that this method is robust for experiments with multiple fixed effects and applicable to the analysis of linear and nonlinear data. Our methodology maximizes the statistical power available in a dataset across multiple experimental variables while accounting for hierarchical random effects and controlling FWER across fixed effects. This approach substantially improves power leading to better reproducibility. Additionally, CBPT using LMEs and GLMEs can be used to analyze individual channels or pseudo-population data for the comparison of functional or anatomical groups of data.


Assuntos
Encéfalo , Projetos de Pesquisa , Humanos , Reprodutibilidade dos Testes , Encéfalo/fisiologia , Modelos Estatísticos , Modelos Lineares
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa