Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.298
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(14): 3506-3530, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996486

RESUMO

Fibrotic interstitial lung diseases (fILDs) have poor survival rates and lack effective therapies. Despite evidence for immune mechanisms in lung fibrosis, immunotherapies have been unsuccessful for major types of fILD. Here, we review immunological mechanisms in lung fibrosis that have the potential to impact clinical practice. We first examine innate immunity, which is broadly involved across fILD subtypes. We illustrate how innate immunity in fILD involves a complex interplay of multiple cell subpopulations and molecular pathways. We then review the growing evidence for adaptive immunity in lung fibrosis to provoke a re-examination of its role in clinical fILD. We close with future directions to address key knowledge gaps in fILD pathobiology: (1) longitudinal studies emphasizing early-stage clinical disease, (2) immune mechanisms of acute exacerbations, and (3) next-generation immunophenotyping integrating spatial, genetic, and single-cell approaches. Advances in these areas are essential for the future of precision medicine and immunotherapy in fILD.


Assuntos
Imunidade Inata , Doenças Pulmonares Intersticiais , Humanos , Doenças Pulmonares Intersticiais/imunologia , Doenças Pulmonares Intersticiais/patologia , Animais , Imunidade Adaptativa , Imunoterapia , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/patologia , Pulmão/patologia , Pulmão/imunologia
2.
Cell ; 186(25): 5606-5619.e24, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065081

RESUMO

Patient-derived organoids (PDOs) can model personalized therapy responses; however, current screening technologies cannot reveal drug response mechanisms or how tumor microenvironment cells alter therapeutic performance. To address this, we developed a highly multiplexed mass cytometry platform to measure post-translational modification (PTM) signaling, DNA damage, cell-cycle activity, and apoptosis in >2,500 colorectal cancer (CRC) PDOs and cancer-associated fibroblasts (CAFs) in response to clinical therapies at single-cell resolution. To compare patient- and microenvironment-specific drug responses in thousands of single-cell datasets, we developed "Trellis"-a highly scalable, tree-based treatment effect analysis method. Trellis single-cell screening revealed that on-target cell-cycle blockage and DNA-damage drug effects are common, even in chemorefractory PDOs. However, drug-induced apoptosis is rarer, patient-specific, and aligns with cancer cell PTM signaling. We find that CAFs can regulate PDO plasticity-shifting proliferative colonic stem cells (proCSCs) to slow-cycling revival colonic stem cells (revCSCs) to protect cancer cells from chemotherapy.


Assuntos
Fibroblastos Associados a Câncer , Humanos , Apoptose , Organoides , Transdução de Sinais , Análise de Célula Única , Avaliação Pré-Clínica de Medicamentos , Algoritmos , Células-Tronco
3.
Cell ; 185(10): 1694-1708.e19, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35447074

RESUMO

Immunotherapy is a promising treatment for triple-negative breast cancer (TNBC), but patients relapse, highlighting the need to understand the mechanisms of resistance. We discovered that in primary breast cancer, tumor cells that resist T cell attack are quiescent. Quiescent cancer cells (QCCs) form clusters with reduced immune infiltration. They also display superior tumorigenic capacity and higher expression of chemotherapy resistance and stemness genes. We adapted single-cell RNA-sequencing with precise spatial resolution to profile infiltrating cells inside and outside the QCC niche. This transcriptomic analysis revealed hypoxia-induced programs and identified more exhausted T cells, tumor-protective fibroblasts, and dysfunctional dendritic cells inside clusters of QCCs. This uncovered differential phenotypes in infiltrating cells based on their intra-tumor location. Thus, QCCs constitute immunotherapy-resistant reservoirs by orchestrating a local hypoxic immune-suppressive milieu that blocks T cell function. Eliminating QCCs holds the promise to counteract immunotherapy resistance and prevent disease recurrence in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Imunossupressores/uso terapêutico , Imunoterapia , Recidiva Local de Neoplasia , Linfócitos T/patologia , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral
4.
Cell ; 184(22): 5577-5592.e18, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34644529

RESUMO

Intratumoral heterogeneity is a critical frontier in understanding how the tumor microenvironment (TME) propels malignant progression. Here, we deconvolute the human pancreatic TME through large-scale integration of histology-guided regional multiOMICs with clinical data and patient-derived preclinical models. We discover "subTMEs," histologically definable tissue states anchored in fibroblast plasticity, with regional relationships to tumor immunity, subtypes, differentiation, and treatment response. "Reactive" subTMEs rich in complex but functionally coordinated fibroblast communities were immune hot and inhabited by aggressive tumor cell phenotypes. The matrix-rich "deserted" subTMEs harbored fewer activated fibroblasts and tumor-suppressive features yet were markedly chemoprotective and enriched upon chemotherapy. SubTMEs originated in fibroblast differentiation trajectories, and transitory states were notable both in single-cell transcriptomics and in situ. The intratumoral co-occurrence of subTMEs produced patient-specific phenotypic and computationally predictable heterogeneity tightly linked to malignant biology. Therefore, heterogeneity within the plentiful, notorious pancreatic TME is not random but marks fundamental tissue organizational units.


Assuntos
Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Adenocarcinoma/genética , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Diferenciação Celular , Proliferação de Células , Epitélio/patologia , Matriz Extracelular/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Fenótipo , Células Estromais/patologia , Análise de Sobrevida , Microambiente Tumoral/imunologia
5.
Cell ; 184(18): 4753-4771.e27, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34388391

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by notorious resistance to current therapies attributed to inherent tumor heterogeneity and highly desmoplastic and immunosuppressive tumor microenvironment (TME). Unique proline isomerase Pin1 regulates multiple cancer pathways, but its role in the TME and cancer immunotherapy is unknown. Here, we find that Pin1 is overexpressed both in cancer cells and cancer-associated fibroblasts (CAFs) and correlates with poor survival in PDAC patients. Targeting Pin1 using clinically available drugs induces complete elimination or sustained remissions of aggressive PDAC by synergizing with anti-PD-1 and gemcitabine in diverse model systems. Mechanistically, Pin1 drives the desmoplastic and immunosuppressive TME by acting on CAFs and induces lysosomal degradation of the PD-1 ligand PD-L1 and the gemcitabine transporter ENT1 in cancer cells, besides activating multiple cancer pathways. Thus, Pin1 inhibition simultaneously blocks multiple cancer pathways, disrupts the desmoplastic and immunosuppressive TME, and upregulates PD-L1 and ENT1, rendering PDAC eradicable by immunochemotherapy.


Assuntos
Imunoterapia , Terapia de Alvo Molecular , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Aloenxertos/imunologia , Motivos de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Antígeno B7-H1/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Sinergismo Farmacológico , Endocitose/efeitos dos fármacos , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Humanos , Terapia de Imunossupressão , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Oncogenes , Organoides/efeitos dos fármacos , Organoides/patologia , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
6.
Cell ; 183(5): 1219-1233.e18, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33242418

RESUMO

Cancer therapies kill tumors either directly or indirectly by evoking immune responses and have been combined with varying levels of success. Here, we describe a paradigm to control cancer growth that is based on both direct tumor killing and the triggering of protective immunity. Genetic ablation of serine protease inhibitor SerpinB9 (Sb9) results in the death of tumor cells in a granzyme B (GrB)-dependent manner. Sb9-deficient mice exhibited protective T cell-based host immunity to tumors in association with a decline in GrB-expressing immunosuppressive cells within the tumor microenvironment (TME). Maximal protection against tumor development was observed when the tumor and host were deficient in Sb9. The therapeutic utility of Sb9 inhibition was demonstrated by the control of tumor growth, resulting in increased survival times in mice. Our studies describe a molecular target that permits a combination of tumor ablation, interference within the TME, and immunotherapy in one potential modality.


Assuntos
Citotoxicidade Imunológica , Imunoterapia , Proteínas de Membrana/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Serpinas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , Progressão da Doença , Feminino , Deleção de Genes , Granzimas/metabolismo , Imunidade/efeitos dos fármacos , Melanoma/patologia , Camundongos Endogâmicos C57BL , Neoplasias/prevenção & controle , Bibliotecas de Moléculas Pequenas/farmacologia , Células Estromais/efeitos dos fármacos , Células Estromais/patologia , Microambiente Tumoral/efeitos dos fármacos
7.
Cell ; 175(6): 1620-1633.e13, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30415836

RESUMO

Fibroblasts are an essential cellular and structural component of our organs. Despite several advances, the critical behaviors that fibroblasts utilize to maintain their homeostasis in vivo have remained unclear. Here, by tracking the same skin fibroblasts in live mice, we show that fibroblast position is stable over time and that this stability is maintained despite the loss of neighboring fibroblasts. In contrast, fibroblast membranes are dynamic during homeostasis and extend to fill the space of lost neighboring fibroblasts in a Rac1-dependent manner. Positional stability is sustained during aging despite a progressive accumulation of gaps in fibroblast nuclei organization, while membrane occupancy continues to be maintained. This work defines positional stability and cell occupancy as key principles of skin fibroblast homeostasis in vivo, throughout the lifespan of mice, and identifies membrane extension in the absence of migration as the core cellular mechanism to carry out these principles.


Assuntos
Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Fibroblastos/metabolismo , Homeostase/fisiologia , Pele/metabolismo , Animais , Membrana Celular/genética , Núcleo Celular/genética , Células Cultivadas , Fibroblastos/citologia , Camundongos , Camundongos Transgênicos , Pele/citologia
8.
Cell ; 175(6): 1575-1590.e22, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30415840

RESUMO

During aging, stromal functions are thought to be impaired, but little is known whether this stems from changes of fibroblasts. Using population- and single-cell transcriptomics, as well as long-term lineage tracing, we studied whether murine dermal fibroblasts are altered during physiological aging under different dietary regimes that affect longevity. We show that the identity of old fibroblasts becomes undefined, with the fibroblast states present in young skin no longer clearly demarcated. In addition, old fibroblasts not only reduce the expression of genes involved in the formation of the extracellular matrix, but also gain adipogenic traits, paradoxically becoming more similar to neonatal pro-adipogenic fibroblasts. These alterations are sensitive to systemic metabolic changes: long-term caloric restriction reversibly prevents them, whereas a high-fat diet potentiates them. Our results therefore highlight loss of cell identity and the acquisition of adipogenic traits as a mechanism underlying cellular aging, which is influenced by systemic metabolism.


Assuntos
Adipogenia , Senescência Celular , Fibroblastos/metabolismo , Envelhecimento da Pele , Animais , Restrição Calórica , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Camundongos , Camundongos Transgênicos
9.
Cell ; 172(4): 744-757.e17, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29398113

RESUMO

Cell communication within tissues is mediated by multiple paracrine signals including growth factors, which control cell survival and proliferation. Cells and the growth factors they produce and receive constitute a circuit with specific properties that ensure homeostasis. Here, we used computational and experimental approaches to characterize the features of cell circuits based on growth factor exchange between macrophages and fibroblasts, two cell types found in most mammalian tissues. We found that the macrophage-fibroblast cell circuit is stable and robust to perturbations. Analytical screening of all possible two-cell circuit topologies revealed the circuit features sufficient for stability, including environmental constraint and negative-feedback regulation. Moreover, we found that cell-cell contact is essential for the stability of the macrophage-fibroblast circuit. These findings illustrate principles of cell circuit design and provide a quantitative perspective on cell interactions.


Assuntos
Comunicação Celular/fisiologia , Proliferação de Células/fisiologia , Fibroblastos/metabolismo , Macrófagos/metabolismo , Animais , Sobrevivência Celular/fisiologia , Feminino , Fibroblastos/citologia , Macrófagos/citologia , Masculino , Camundongos , Camundongos Transgênicos
10.
Cell ; 172(4): 881-887.e7, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29395327

RESUMO

Generation of genetically uniform non-human primates may help to establish animal models for primate biology and biomedical research. In this study, we have successfully cloned cynomolgus monkeys (Macaca fascicularis) by somatic cell nuclear transfer (SCNT). We found that injection of H3K9me3 demethylase Kdm4d mRNA and treatment with histone deacetylase inhibitor trichostatin A at one-cell stage following SCNT greatly improved blastocyst development and pregnancy rate of transplanted SCNT embryos in surrogate monkeys. For SCNT using fetal monkey fibroblasts, 6 pregnancies were confirmed in 21 surrogates and yielded 2 healthy babies. For SCNT using adult monkey cumulus cells, 22 pregnancies were confirmed in 42 surrogates and yielded 2 babies that were short-lived. In both cases, genetic analyses confirmed that the nuclear DNA and mitochondria DNA of the monkey offspring originated from the nucleus donor cell and the oocyte donor monkey, respectively. Thus, cloning macaque monkeys by SCNT is feasible using fetal fibroblasts.


Assuntos
Clonagem de Organismos , Técnicas de Transferência Nuclear , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Feminino , Ácidos Hidroxâmicos/farmacologia , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/metabolismo , Macaca fascicularis , Gravidez
11.
Cell ; 170(2): 352-366.e13, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28709002

RESUMO

Interactions between stromal fibroblasts and cancer cells generate signals for cancer progression, therapy resistance, and inflammatory responses. Although endogenous RNAs acting as damage-associated molecular patterns (DAMPs) for pattern recognition receptors (PRRs) may represent one such signal, these RNAs must remain unrecognized under non-pathological conditions. We show that triggering of stromal NOTCH-MYC by breast cancer cells results in a POL3-driven increase in RN7SL1, an endogenous RNA normally shielded by RNA binding proteins SRP9/14. This increase in RN7SL1 alters its stoichiometry with SRP9/14 and generates unshielded RN7SL1 in stromal exosomes. After exosome transfer to immune cells, unshielded RN7SL1 drives an inflammatory response. Upon transfer to breast cancer cells, unshielded RN7SL1 activates the PRR RIG-I to enhance tumor growth, metastasis, and therapy resistance. Corroborated by evidence from patient tumors and blood, these results demonstrate that regulation of RNA unshielding couples stromal activation with deployment of RNA DAMPs that promote aggressive features of cancer. VIDEO ABSTRACT.


Assuntos
Neoplasias da Mama/patologia , Exossomos/patologia , RNA não Traduzido/metabolismo , Células Estromais/patologia , Microambiente Tumoral , Neoplasias da Mama/metabolismo , Proteína DEAD-box 58/metabolismo , Exossomos/metabolismo , Humanos , Fatores Reguladores de Interferon/metabolismo , Células MCF-7 , Metástase Neoplásica , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Receptores Imunológicos , Receptores de Reconhecimento de Padrão/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Células Estromais/metabolismo , Viroses/metabolismo
12.
Immunity ; 55(8): 1483-1500.e9, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35908547

RESUMO

Primary tumors are drivers of pre-metastatic niche formation, but the coordination by the secondary organ toward metastatic dissemination is underappreciated. Here, by single-cell RNA sequencing and immunofluorescence, we identified a population of cyclooxygenase 2 (COX-2)-expressing adventitial fibroblasts that remodeled the lung immune microenvironment. At steady state, fibroblasts in the lungs produced prostaglandin E2 (PGE2), which drove dysfunctional dendritic cells (DCs) and suppressive monocytes. This lung-intrinsic stromal program was propagated by tumor-associated inflammation, particularly the pro-inflammatory cytokine interleukin-1ß, supporting a pre-metastatic niche. Genetic ablation of Ptgs2 (encoding COX-2) in fibroblasts was sufficient to reverse the immune-suppressive phenotypes of lung-resident myeloid cells, resulting in heightened immune activation and diminished lung metastasis in multiple breast cancer models. Moreover, the anti-metastatic activity of DC-based therapy and PD-1 blockade was improved by fibroblast-specific Ptgs2 deletion or dual inhibition of PGE2 receptors EP2 and EP4. Collectively, lung-resident fibroblasts reshape the local immune landscape to facilitate breast cancer metastasis.


Assuntos
Neoplasias Pulmonares , Receptores de Prostaglandina E Subtipo EP2 , Ciclo-Oxigenase 2/genética , Fibroblastos/patologia , Humanos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Receptores de Prostaglandina E Subtipo EP4/genética , Microambiente Tumoral
13.
Immunity ; 55(12): 2336-2351.e12, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36462502

RESUMO

Therapeutic promotion of intestinal regeneration holds great promise, but defining the cellular mechanisms that influence tissue regeneration remains an unmet challenge. To gain insight into the process of mucosal healing, we longitudinally examined the immune cell composition during intestinal damage and regeneration. B cells were the dominant cell type in the healing colon, and single-cell RNA sequencing (scRNA-seq) revealed expansion of an IFN-induced B cell subset during experimental mucosal healing that predominantly located in damaged areas and associated with colitis severity. B cell depletion accelerated recovery upon injury, decreased epithelial ulceration, and enhanced gene expression programs associated with tissue remodeling. scRNA-seq from the epithelial and stromal compartments combined with spatial transcriptomics and multiplex immunostaining showed that B cells decreased interactions between stromal and epithelial cells during mucosal healing. Activated B cells disrupted the epithelial-stromal cross talk required for organoid survival. Thus, B cell expansion during injury impairs epithelial-stromal cell interactions required for mucosal healing, with implications for the treatment of IBD.


Assuntos
Colite , Mucosa Intestinal , Animais , Cicatrização , Células Epiteliais/metabolismo , Epitélio , Modelos Animais de Doenças
14.
Immunity ; 55(3): 527-541.e5, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35231421

RESUMO

The presence of intratumoral tertiary lymphoid structures (TLS) is associated with positive clinical outcomes and responses to immunotherapy in cancer. Here, we used spatial transcriptomics to examine the nature of B cell responses within TLS in renal cell carcinoma (RCC). B cells were enriched in TLS, and therein, we could identify all B cell maturation stages toward plasma cell (PC) formation. B cell repertoire analysis revealed clonal diversification, selection, expansion in TLS, and the presence of fully mature clonotypes at distance. In TLS+ tumors, IgG- and IgA-producing PCs disseminated into the tumor beds along fibroblastic tracks. TLS+ tumors exhibited high frequencies of IgG-producing PCs and IgG-stained and apoptotic malignant cells, suggestive of anti-tumor effector activity. Therapeutic responses and progression-free survival correlated with IgG-stained tumor cells in RCC patients treated with immune checkpoint inhibitors. Thus, intratumoral TLS sustains B cell maturation and antibody production that is associated with response to immunotherapy, potentially via direct anti-tumor effects.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Estruturas Linfoides Terciárias , Carcinoma de Células Renais/terapia , Feminino , Humanos , Imunoglobulina G , Neoplasias Renais/terapia , Masculino , Plasmócitos , Estruturas Linfoides Terciárias/patologia , Microambiente Tumoral
15.
Genes Dev ; 37(17-18): 818-828, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37775182

RESUMO

Activating KRAS mutations (KRAS*) in pancreatic ductal adenocarcinoma (PDAC) drive anabolic metabolism and support tumor maintenance. KRAS* inhibitors show initial antitumor activity followed by recurrence due to cancer cell-intrinsic and immune-mediated paracrine mechanisms. Here, we explored the potential role of cancer-associated fibroblasts (CAFs) in enabling KRAS* bypass and identified CAF-derived NRG1 activation of cancer cell ERBB2 and ERBB3 receptor tyrosine kinases as a mechanism by which KRAS*-independent growth is supported. Genetic extinction or pharmacological inhibition of KRAS* resulted in up-regulation of ERBB2 and ERBB3 expression in human and murine models, which prompted cancer cell utilization of CAF-derived NRG1 as a survival factor. Genetic depletion or pharmacological inhibition of ERBB2/3 or NRG1 abolished KRAS* bypass and synergized with KRASG12D inhibitors in combination treatments in mouse and human PDAC models. Thus, we found that CAFs can contribute to KRAS* inhibitor therapy resistance via paracrine mechanisms, providing an actionable therapeutic strategy to improve the effectiveness of KRAS* inhibitors in PDAC patients.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proliferação de Células , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Neuregulina-1/genética , Neuregulina-1/metabolismo
16.
Immunity ; 54(8): 1788-1806.e7, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34166622

RESUMO

Lymphoid stromal cells (LSCs) are essential organizers of immune responses. We analyzed tonsillar tissue by combining flow cytometry, in situ imaging, RNA sequencing, and functional assays, defining three distinct human LSC subsets. The integrin CD49a designated perivascular stromal cells exhibiting features of local committed LSC precursors and segregated cytokine and chemokine-producing fibroblastic reticular cells (FRCs) supporting B and T cell survival. The follicular dendritic cell transcriptional profile reflected active responses to B cell and non-B cell stimuli. We therefore examined the effect of B cell stimuli on LSCs in follicular lymphoma (FL). FL B cells interacted primarily with CD49a+ FRCs. Transcriptional analyses revealed LSC reprogramming in situ downstream of the cytokines tumor necrosis factor (TNF) and transforming growth factor ß (TGF-ß), including increased expression of the chemokines CCL19 and CCL21. Our findings define human LSC populations in healthy tissue and reveal bidirectional crosstalk between LSCs and malignant B cells that may present a targetable axis in lymphoma.


Assuntos
Linfócitos B/imunologia , Células Dendríticas/imunologia , Linfoma Folicular/imunologia , Linfoma Folicular/patologia , Tonsila Palatina/imunologia , Células Estromais/imunologia , Células Cultivadas , Quimiocina CCL19/metabolismo , Quimiocina CCL21/metabolismo , Humanos , Integrina alfa1/metabolismo , Tonsila Palatina/citologia , Transdução de Sinais/imunologia , Células Estromais/citologia , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
17.
Immunity ; 54(5): 1002-1021.e10, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33761330

RESUMO

Arthritis typically involves recurrence and progressive worsening at specific predilection sites, but the checkpoints between remission and persistence remain unknown. Here, we defined the molecular and cellular mechanisms of this inflammation-mediated tissue priming. Re-exposure to inflammatory stimuli caused aggravated arthritis in rodent models. Tissue priming developed locally and independently of adaptive immunity. Repeatedly stimulated primed synovial fibroblasts (SFs) exhibited enhanced metabolic activity inducing functional changes with intensified migration, invasiveness and osteoclastogenesis. Meanwhile, human SF from patients with established arthritis displayed a similar primed phenotype. Transcriptomic and epigenomic analyses as well as genetic and pharmacological targeting demonstrated that inflammatory tissue priming relies on intracellular complement C3- and C3a receptor-activation and downstream mammalian target of rapamycin- and hypoxia-inducible factor 1α-mediated metabolic SF invigoration that prevents activation-induced senescence, enhances NLRP3 inflammasome activity, and in consequence sensitizes tissue for inflammation. Our study suggests possibilities for therapeutic intervention abrogating tissue priming without immunosuppression.


Assuntos
Proteínas do Sistema Complemento/imunologia , Fibroblastos/imunologia , Inflamação/imunologia , Membrana Sinovial/imunologia , Imunidade Adaptativa/imunologia , Animais , Artrite Reumatoide/imunologia , Linhagem Celular , Cães , Humanos , Mediadores da Inflamação/imunologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Ratos Wistar , Transdução de Sinais/imunologia
18.
Immunity ; 53(1): 127-142.e7, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32562599

RESUMO

Located within red pulp cords, splenic red pulp macrophages (RPMs) are constantly exposed to the blood flow, clearing senescent red blood cells (RBCs) and recycling iron from hemoglobin. Here, we studied the mechanisms underlying RPM homeostasis, focusing on the involvement of stromal cells as these cells perform anchoring and nurturing macrophage niche functions in lymph nodes and liver. Microscopy revealed that RPMs are embedded in a reticular meshwork of red pulp fibroblasts characterized by the expression of the transcription factor Wilms' Tumor 1 (WT1) and colony stimulating factor 1 (CSF1). Conditional deletion of Csf1 in WT1+ red pulp fibroblasts, but not white pulp fibroblasts, drastically altered the RPM network without altering circulating CSF1 levels. Upon RPM depletion, red pulp fibroblasts transiently produced the monocyte chemoattractants CCL2 and CCL7, thereby contributing to the replenishment of the RPM network. Thus, red pulp fibroblasts anchor and nurture RPM, a function likely conserved in humans.


Assuntos
Fibroblastos/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/imunologia , Baço/citologia , Proteínas WT1/metabolismo , Animais , Quimiocina CCL2/metabolismo , Quimiocina CCL7/metabolismo , Regulação da Expressão Gênica , Humanos , Imunidade Inata/imunologia , Ferro/metabolismo , Fator Estimulador de Colônias de Macrófagos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Ratos , Transdução de Sinais/imunologia , Baço/metabolismo
19.
Genes Dev ; 35(13-14): 963-975, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34168038

RESUMO

Autophagy inhibitors are currently being evaluated in clinical trials for the treatment of diverse cancers, largely due to their ability to impede tumor cell survival and metabolic adaptation. More recently, there is growing interest in whether and how modulating autophagy in the host stroma influences tumorigenesis. Fibroblasts play prominent roles in cancer initiation and progression, including depositing type 1 collagen and other extracellular matrix (ECM) components, thereby stiffening the surrounding tissue to enhance tumor cell proliferation and survival, as well as secreting cytokines that modulate angiogenesis and the immune microenvironment. This constellation of phenotypes, pathologically termed desmoplasia, heralds poor prognosis and reduces patient survival. Using mouse mammary cancer models and syngeneic transplantation assays, we demonstrate that genetic ablation of stromal fibroblast autophagy significantly impedes fundamental elements of the stromal desmoplastic response, including collagen and proinflammatory cytokine secretion, extracellular matrix stiffening, and neoangiogenesis. As a result, autophagy in stromal fibroblasts is required for mammary tumor growth in vivo, even when the cancer cells themselves remain autophagy-competent . We propose the efficacy of autophagy inhibition is shaped by this ability of host stromal fibroblast autophagy to support tumor desmoplasia.


Assuntos
Células Estromais , Microambiente Tumoral , Animais , Autofagia/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/patologia , Fibroblastos/metabolismo , Humanos , Camundongos , Microambiente Tumoral/genética
20.
Genes Dev ; 35(15-16): 1109-1122, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34301766

RESUMO

Lung adenocarcinoma, the most prevalent lung cancer subtype, is characterized by its high propensity to metastasize. Despite the importance of metastasis in lung cancer mortality, its underlying cellular and molecular mechanisms remain largely elusive. Here, we identified miR-200 miRNAs as potent suppressors for lung adenocarcinoma metastasis. miR-200 expression is specifically repressed in mouse metastatic lung adenocarcinomas, and miR-200 decrease strongly correlates with poor patient survival. Consistently, deletion of mir-200c/141 in the KrasLSL-G12D/+ ; Trp53flox/flox lung adenocarcinoma mouse model significantly promoted metastasis, generating a desmoplastic tumor stroma highly reminiscent of metastatic human lung cancer. miR-200 deficiency in lung cancer cells promotes the proliferation and activation of adjacent cancer-associated fibroblasts (CAFs), which in turn elevates the metastatic potential of cancer cells. miR-200 regulates the functional interaction between cancer cells and CAFs, at least in part, by targeting Notch ligand Jagged1 and Jagged2 in cancer cells and inducing Notch activation in adjacent CAFs. Hence, the interaction between cancer cells and CAFs constitutes an essential mechanism to promote metastatic potential.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pulmonares , MicroRNAs , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Metástase Neoplásica/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa