Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 474(2): 384-387, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27120462

RESUMO

We have developed a method of obtaining natural actin from smooth muscles of the bivalves on the example of the Сrenomytilus grayanus catch muscle. The muscles were previously rigorized to prevent a loss of thin filaments during homogenization and washings. Thin filaments were isolated with a low ionic strength solution in the presence of ATP and sodium pyrophosphate. Surface proteins of thin filaments-tropomyosin, troponin, calponin and some minor actin-binding proteins-were dissociated from actin filaments by increasing the ionic strength to 0.6 M KCL. Natural fibrillar actin obtained in that way depolymerizes easily in low ionic strength solutions commonly used for the extraction of Straub-type actin from acetone powder. Purification of natural actin was carried out by the polymerization-depolymerization cycle. The content of inactivated actin remaining in the supernatant is much less than at a similar purification of Straub-type actin. A comparative investigation was performed between the natural mussel actin and the Straub-type rabbit skeletal actin in terms of the key properties of actin: polymerization, activation of Mg-ATPase activity of myosin, and the electron-microscopic structure of actin polymers.


Assuntos
Actinas/química , Actinas/isolamento & purificação , Moluscos/química , Músculo Liso/química , Actinas/ultraestrutura , Animais , Peso Molecular , Viscosidade
2.
Biochim Biophys Acta ; 1832(12): 2352-67, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24075941

RESUMO

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene represent the most common genetic cause of Parkinson's disease (PD). However, LRRK2 function and molecular mechanisms causing the parkinsonian phenotype remain widely unknown. Most of LRRK2 knockdown and overexpression models strengthen the relevance of LRRK2 in regulating neurite outgrowth. We have recently identified ARHGEF7 as the first guanine nucleotide exchange factor (GEF) of LRRK2. This GEF is influencing neurite outgrowth through regulation of actin polymerization. Here, we examined the expression profile of neuroblastoma cells with reduced LRRK2 and ARHGEF7 levels to identify additional partners of LRRK2 in this process. Tropomyosins (TPMs), and in particular TPM4, were the most interesting candidates next to other actin cytoskeleton regulating transcripts in this dataset. Subsequently, enhanced neurite branching was shown using primary hippocampal neurons of LRRK2 knockdown animals. Furthermore, we observed an enhanced number of growth cones per neuron and a mislocalization and dysregulation of ARHGEF7 and TPM4 in these neuronal compartments. Our results reveal a fascinating connection between the neurite outgrowth phenotype of LRRK2 models and the regulation of actin polymerization directing further investigations of LRRK2-related pathogenesis.


Assuntos
Citoesqueleto de Actina/metabolismo , Cones de Crescimento/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Tropomiosina/metabolismo , Animais , Biomarcadores/metabolismo , Western Blotting , Proliferação de Células , Células Cultivadas , Imunofluorescência , Perfilação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Técnicas Imunoenzimáticas , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Camundongos , Camundongos Knockout , Células NIH 3T3 , Neuritos/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neurônios/citologia , Neurônios/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Troca de Nucleotídeo Guanina Rho/antagonistas & inibidores , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Tropomiosina/genética
3.
Biochem Biophys Res Commun ; 443(3): 876-81, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24342607

RESUMO

F-actin plays a crucial role in fundamental cellular processes, and is extremely susceptible to peroxynitrite attack due to the high abundance of tyrosine in the peptide. Methionine sulfoxide reductase (Msr) B1 is a selenium-dependent enzyme (selenoprotein R) that may act as a reactive oxygen species (ROS) scavenger. However, its function in coping with reactive nitrogen species (RNS)-mediated stress and the physiological significance remain unclear. Thus, the present study was conducted to elucidate the role and mechanism of MsrB1 in protecting human lens epithelial (hLE) cells against peroxynitrite-induced F-actin disruption. While exposure to high concentrations of peroxynitrite and gene silencing of MsrB1 by siRNA alone caused disassembly of F-actin via inactivation of extracellular signal-regulated kinase (ERK) in hLE cells, the latter substantially aggravated the disassembly of F-actin triggered by the former. This aggravation concurred with elevated nitration of F-actin and inactivation of ERK compared with that induced by the peroxynitrite treatment alone. In conclusion, MsrB1 protected hLE cells against the peroxynitrite-induced F-actin disruption, and the protection was mediated by inhibiting the resultant nitration of F-actin and inactivation of ERKs.


Assuntos
Actinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Inativação Gênica/efeitos dos fármacos , Cristalino/citologia , Metionina Sulfóxido Redutases/metabolismo , Ácido Peroxinitroso/farmacologia , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Immunoblotting , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Nitrosação/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
4.
Biochem Biophys Res Commun ; 437(3): 331-5, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23811404

RESUMO

Myocardin-related transcription factors (MRTFs) are robust coactivators of serum response factor (SRF). MRTFs contain three copies of the RPEL motif at their N-terminus, and they bind to monomeric globular actin (G-actin). Previous studies illustrate that G-actin binding inhibits MRTF activity by preventing the MRTFs nuclear accumulation. In the living cells, the majority of G-actin is sequestered by G-actin binding proteins that prevent spontaneous actin polymerization. Here, we demonstrate that the most abundant G-actin sequestering protein thymosin-ß4 (Tß4) was involved in the regulation of subcellular localization and activity of MRTF-A. Tß4 competed with MRTF-A for G-actin binding; thus, interfering with G-actin-MRTF-A complex formation. Tß4 overexpression induced the MRTF-A nuclear accumulation and activation of MRTF-SRF signaling. The activation rate of MRTF-A by the Tß4 mutant L17A, whose affinity for G-actin is very low, was lower than that by wild-type Tß4. In contrast, the ß-actin mutant 3DA, which has a lower affinity for Tß4, more effectively suppressed MRTF-A activity than wild-type ß-actin. Furthermore, ectopic Tß4 increased the endogenous expression of SRF-dependent actin cytoskeletal genes. Thus, Tß4 is an important MRTF regulator that controls the G-actin-MRTFs interaction.


Assuntos
Actinas/metabolismo , Timosina/fisiologia , Transativadores/metabolismo , Actinas/antagonistas & inibidores , Animais , Células HEK293 , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Transdução de Sinais/fisiologia , Frações Subcelulares/metabolismo , Timosina/metabolismo , Transativadores/antagonistas & inibidores , Transativadores/fisiologia
5.
Cell Signal ; 26(1): 70-82, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24036211

RESUMO

Human MAP3K4 (MTK1) functions upstream of mitogen activated protein kinases (MAPKs). In this study we show MTK1 is required for human epidermal growth factor receptor 2/3 (HER2/HER3)-heregulin beta1 (HRG) induced cell migration in MCF-7 breast cancer cells. We demonstrate that HRG stimulation leads to association of MTK1 with activated HER3 in MCF-7 and T-47D breast cancer cells. Activated HER3 association with MTK1 is dependent on HER2 activation and is decreased by pre-treatment with the HER2 inhibitor, lapatinib. Moreover, we also identify the actin interacting region (AIR) on MTK1. Disruption of actin cytoskeletal polymerization with cytochalasin D inhibited HRG induced MTK1/HER3 association. Additionally, HRG stimulation leads to extracellular acidification that is independent of cellular proliferation. HRG induced extracellular acidification is significantly inhibited when MTK1 is knocked down in MCF-7 cells. Similarly, pre-treatment with lapatinib significantly decreased HRG induced extracellular acidification. Extracellular acidification is linked with cancer cell migration. We performed scratch assays that show HRG induced cell migration in MCF-7 cells. Knockdown of MTK1 significantly inhibited HRG induced cell migration. Furthermore, pre-treatment with lapatinib also significantly decreased cell migration. Cell migration is required for cancer cell metastasis, which is the major cause of cancer patient mortality. We identify MTK1 in the HER2/HER3-HRG mediated extracellular acidification and cell migration pathway in breast cancer cells.


Assuntos
Ácidos/metabolismo , Movimento Celular , Espaço Extracelular/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Movimento Celular/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Feminino , Técnicas de Silenciamento de Genes , Humanos , Imunoprecipitação , MAP Quinase Quinase Quinase 4/química , MAP Quinase Quinase Quinase 4/metabolismo , Células MCF-7 , Dados de Sequência Molecular , Peso Molecular , Neuregulina-1/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína
6.
Vascul Pharmacol ; 59(5-6): 120-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23872622

RESUMO

Vascular smooth muscle cells (VSMCs) exhibit shrinkage-induced activation of Na(+)/H(+) exchanger isoform 1 (NHE-1) and Na(+), K(+), 2Cl(-) cotransporter (NKCC) under hyperosmotic conditions. To investigate the roles of these ion transporters in vascular smooth muscle force induced by hyperosmotic stress, we tested the effects of 5-(N, N-dimethyl)-amiloride (DMA; NHE inhibitor), cariporide (a selective NHE-1 inhibitor), and bumetanide (NKCC inhibitor) on the contractile response of rat aortic rings to hyperosmolar solutions. NHE inhibitors significantly augmented the maximum force response and contractile sensitivity to hyperosmolar sucrose, NaCl, and glucose in endothelium-denuded rings. Bumetanide elicited a comparatively modest increase in sensitivity. NHE inhibitors blocked the increase in intracellular pH and enhanced the cell volume decrease of cultured VSMCs after exposure to hyperosmolar sucrose. However, DMA had no effect on the increase in cytosolic free Ca(2+) concentration ([Ca(2+)]i) in rat VSMCs and on the increases in phosphorylation of myosin phosphatase target subunit 1 and myosin light chain (MLC) in aortic rings in response to hyperosmolar sucrose. Hyperosmolar sucrose-induced force was significantly attenuated by cytochalasin B in the presence or absence of DMA. Exposure to hyperosmolar sucrose increased the ratio of F- to G-actin; the ratio was further elevated by DMA. These results suggest that the potentiation of hyperosmotic shrinkage by NHE inhibition promotes actin polymerization in VSMCs and augments force production independent of changes in [Ca(2+)]i and MLC phosphorylation.


Assuntos
Aorta Torácica/efeitos dos fármacos , Trocadores de Sódio-Hidrogênio/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Vasoconstrição/efeitos dos fármacos , Actinas/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Aorta Torácica/metabolismo , Bumetanida/farmacologia , Cálcio/metabolismo , Guanidinas/farmacologia , Concentração de Íons de Hidrogênio , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Cadeias Leves de Miosina/efeitos dos fármacos , Cadeias Leves de Miosina/metabolismo , Concentração Osmolar , Fosforilação/efeitos dos fármacos , Polimerização/efeitos dos fármacos , Ratos , Ratos Wistar , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Simportadores de Cloreto de Sódio-Potássio/efeitos dos fármacos , Sulfonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa