Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nano Lett ; 23(20): 9243-9249, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37792552

RESUMO

The chiral helimagnet CrNb3S6 hosts various temperature- and magnetic-field-stabilized chiral soliton lattices (CSLs) and corresponding exotic collective spin resonance modes, which make it an ideal candidate for future magnetic storage/memory and magnon-based information processing. While most studies have focused on characterizing various static spin textures in this chiral helimagnet, its corresponding collective dynamics have rarely been explored. This study systematically investigates the temperature- and magnetic-field-dependent magnetic dynamics of a single crystal of CrNb3S6 using broadband microwave spectroscopy. We observe an optical mode with a temperature-independent mode number in addition to Kittel-like ferromagnetic resonance (FMR) modes in the CSL phase, consistent with the temperature-independent normalized CSL period L(H)/L(0) based on the 1D chiral sine-Gordon model. Furthermore, combining theoretical model fitting and micromagnetic simulation, we provide a detailed phase diagram and temporal-spatial resolution of dynamic modes, which may help to develop high-frequency exchange-coupling-based spintronic devices.

2.
Nano Lett ; 15(7): 4839-44, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26099019

RESUMO

Using dynamic cantilever magnetometry we measure an enhanced skyrmion lattice phase extending from around 29 K down to at least 0.4 K in single MnSi nanowires (NWs). Although recent experiments on two-dimensional thin films show that reduced dimensionality stabilizes the skyrmion phase, our results are surprising given that the NW dimensions are much larger than the skyrmion lattice constant. Furthermore, the stability of the phase depends on the orientation of the NWs with respect to the applied magnetic field, suggesting that an effective magnetic anisotropy, likely due to the large surface-to-volume ratio of these nanostructures, is responsible for the stabilization. The compatibility of our technique with nanometer-scale samples paves the way for future studies on the effect of confinement and surfaces on magnetic skyrmions.

3.
J Phys Condens Matter ; 36(16)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38190728

RESUMO

In cubic helimagnets MnSi and Cu2OSeO3with their nearly isotropic magnetic properties, the magnetic structure undergoes helical deformation, which is almost completely determined by the helicoid wavenumberk=D/J, where magnetization field stiffnessJis associated with isotropic spin exchange, andDis a pseudoscalar value characterizing the antisymmetric Dzyaloshinskii-Moriya (DM) interaction. Another magnetic feature of these crystals, also caused by the DM interactions, are antiferromagnetic spin cantings, similar to the ferromagnetic cantings responsible for the phenomenon of weak ferromagnetism. Here we show that cantings can strongly influence the helical order through the value of the parameterD. Changing the cantings in a strong magnetic field is predicted to affect the magnon spectrum of the crystals.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa