Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37570521

RESUMO

In the present study, Fe1.1(CrxMn1-x)1.9O4 nanoparticles (0 ≤ x ≤ 0.5) were successfully synthesized by a combustion method, and the influence of Cr substitution on the structural and magnetic properties of the obtained nanoparticles was studied by various methods. The structural analysis revealed that the sample with x = 0 has a tetragonal structure, while all Cr-doped samples crystallize into a cubic structure. Additionally, the results of TEM show that doping with chromium leads to an increase in particle size. The magnetic hysteresis loops demonstrate the behavior typical for soft magnetic materials with low coercivity and remanence magnetization. The magnetic measurements revealed that the saturation magnetization of the obtained nanoparticles demonstrates a decreasing trend with increasing Cr content. The influence of chromium doping on the observation change in saturation magnetization is discussed. Based on the results of temperature-dependent magnetization measurements, it was found that the temperature of a magnetic transition in synthesized nanoparticles depends on Cr content.

2.
Nanomaterials (Basel) ; 13(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37049366

RESUMO

Fe1.1Mn1.9O4 nanoparticles were successfully synthesized using a combustion method. The influence of the heating temperature on the evolution of the structural and magnetic properties has been studied using various methods. The structural analysis results revealed that as-synthesized nanoparticles have a tetragonal structure with an average size of ~24 nm. The magnetic measurements of the sample showed its ferrimagnetic nature at room temperature with hysteresis at low fields. Temperature-dependent magnetization measurements allowed for the conclusion that the Curie temperature for Fe1.1Mn1.9O4 nanoparticles was ~465 °C. After high-temperature magnetic measurements, during which the samples were heated to various maximum heating temperatures (Tmax.heat.) in the range from 500 to 900 °C, it was found that the structure of the samples after cooling to room temperature depended on the heating temperature. Herewith, when the heating temperature was 600 < Tmax.heat. < 700 °C, an irreversible structural phase transition occurred, and the cooled samples retained a high-temperature cubic structure. The results of the magnetic analysis showed that the samples, following high-temperature magnetic measurements, demonstrated ferrimagnetic behavior.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa