Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Genet ; 55: 555-581, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34535062

RESUMO

The cerebral cortex is at the core of brain functions that are thought to be particularly developed in the human species. Human cortex specificities stem from divergent features of corticogenesis, leading to increased cortical size and complexity. Underlying cellular mechanisms include prolonged patterns of neuronal generation and maturation, as well as the amplification of specific types of stem/progenitor cells. While the gene regulatory networks of corticogenesis appear to be largely conserved among all mammals including humans, they have evolved in primates, particularly in the human species, through the emergence of rapidly divergent transcriptional regulatory elements, as well as recently duplicated novel genes. These human-specific molecular features together control key cellular milestones of human corticogenesis and are often affected in neurodevelopmental disorders, thus linking human neural development, evolution, and diseases.


Assuntos
Córtex Cerebral , Neurogênese , Animais , Córtex Cerebral/fisiologia , Redes Reguladoras de Genes/genética , Humanos , Mamíferos , Neurogênese/genética
2.
Proc Natl Acad Sci U S A ; 119(41): e2200689119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191229

RESUMO

Evidence of how gestational parameters evolved is essential to understanding this fundamental stage of human life. Until now, these data seemed elusive given the skeletal bias of the fossil record. We demonstrate that dentition provides a window into the life of neonates. Teeth begin to form in utero and are intimately associated with gestational development. We measured the molar dentition for 608 catarrhine primates and collected data on prenatal growth rate (PGR) and endocranial volume (ECV) for 19 primate genera from the literature. We found that PGR and ECV are highly correlated (R2 = 0.93, P < 0.001). Additionally, we demonstrated that molar proportions are significantly correlated with PGR (P = 0.004) and log-transformed ECV (P = 0.001). From these correlations, we developed two methods for reconstructing PGR in the fossil record, one using ECV and one using molar proportions. Dental proportions reconstruct hominid ECV (R2 = 0.81, P < 0.001), a result that can be extrapolated to PGR. As teeth dominate fossil assemblages, our findings greatly expand our ability to investigate life history in the fossil record. Fossil ECVs and dental measurements from 13 hominid species both support significantly increasing PGR throughout the terminal Miocene and Plio-Pleistocene, reflecting known evolutionary changes. Together with pelvic and endocranial morphology, reconstructed PGRs indicate the need for increasing maternal energetics during pregnancy over the last 6 million years, reaching a human-like PGR (i.e., more similar to humans than to other extant apes) and ECV in later Homo less than 1 million years ago.


Assuntos
Evolução Biológica , Hominidae , Animais , Feminino , Fósseis , Hominidae/anatomia & histologia , Humanos , Recém-Nascido , Dente Molar , Gravidez
3.
Dev Growth Differ ; 66(6): 342-348, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39113583

RESUMO

The brain in the genus Homo expanded rapidly during evolution, accelerated by a reciprocated interaction between neural, cognitive, and ecological niches (triadic niche construction, or TNC). This biologically costly expansion incubated latent cognitive capabilities that, with a quick and inexpensive rewiring of brain areas in a second phase of TNC, provided the basis for Homo sapiens specific abilities. The neural demands for perception of the human body in interaction with tools and the environment required highly integrated sensorimotor domains, inducing the parietal lobe expansion seen in humans. These newly expanded brain areas allowed connecting the sensations felt in the body to the actions in the world through the cognitive function of "projection". In this opinion article, we suggest that as a relationship of equivalence between body parts, tools and their external effects was established, mental mechanisms of self-objectification might have emerged as described previously, grounding notions of spatial organization, idealized objects, and their transformations, as well as socio-emotional states in the sensing agent through a self-in-the-world map. Therefore, human intelligence and its features such as symbolic thought, language, mentalizing, and complex technical and social behaviors could have stemmed from the explicit awareness of the causal relationship between the self and intentional modifications to the environment.


Assuntos
Encéfalo , Humanos , Animais , Encéfalo/fisiologia , Primatas/fisiologia , Evolução Biológica , Cognição/fisiologia
4.
Biogerontology ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240404

RESUMO

Empirical studies of aging in primates show that local selective forces rather than phylogenetic history determine the exceptional nature of human longevity (Bronikowski et al., Science 331:1325-1328, 2011). This article proposes an evolutionary rationale for this pattern of primate mortality by invoking the parameter, Life-Table Entropy, a measure of the uncertainty in the life span of a randomly chosen newborn. Life-table entropy is positively correlated with maximal life span, that is, the mean life span of a species living under favourable conditions.The logic which underlies the exceptional nature of human longevity derives from the terrestrial life-history of humans - a singularity within the primate lineage; and the concomitant ecological constraints-the hunter-gatherer, agricultural, and industrial modes of subsistence, that have defined human evolutionary history. The effect of these ecological constraints on the evolution of life span is encoded in the Entropic Principle of Longevity: life-table entropy increases in equilibrium species, populations evolving in environments with stable, renewable resources; and decreases in opportunistic species, populations subject to fluctuating resource endowments.The Entropic Principle of Longevity is a derivative of Directionality Theory, an analytic study of the evolutionary process of variation and selection based on Evolutionary Entropy, a statistical measure of the uncertainty in the age of the mother of a randomly chosen newborn. Evolutionary entropy is the organizing concept of The Entropic Principle of Evolution: Evolutionary Entropy increases in equilibrium species and decreases in opportunistic species.

5.
J Anat ; 242(2): 164-173, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36302086

RESUMO

The primate scapula has been studied widely since its shape has been shown to correlate with how the forelimb is used in daily activities. In this study, we expand on the existing literature and use an image-based methodology that was originally developed for orthopaedic practice to quantify and compare the three-dimensional (3D) morphology of the scapula across humans and great apes. We expect that this image-based approach will allow us to identify differences between great apes and humans that can be related to differences in mobility and loading regime of the shoulder. We hypothesize that gorillas and chimpanzees will have a similar scapular morphology, geared towards stability and weight-bearing in knuckle-walking, whilst the scapular morphology of orangutans is expected to be more similar to that of humans given their high glenohumeral mobility associated with their suspensory lifestyle. We made 3D reconstructions of computed tomography scans of 69 scapulae from four hominid genera (Pongo, Gorilla, Pan and Homo). On these 3D bone meshes, the inferior glenoid plane was determined, and subsequently, a set of bony landmarks on the scapular body, coracoid, and acromion were defined. These landmarks allowed us to measure a set of functionally relevant angles which represent acromial overhang, subacromial space and coracoacromial space. The angles that were measured are: the delto-fulcral triangle (DFT), comprising the alpha, beta, and delta angle, the acromion-glenoid angle (AGA), the coracoid-glenoid centre-posterior acromial angle (CGA), the anterior tilt (TA CGA) and the posterior tilt of the CGA (PT CGA). Three observers placed the landmarks on the 3D bone meshes, allowing us to calculate the inter-observer error. The main differences in the DFT were found between humans and the great apes, with small differences between the great apes. The DFT of humans was significantly lower compared to that of the great apes, with the smallest alpha (32.7°), smallest delta (45.7°) and highest beta angle (101.6°) of all genera. The DFT of chimpanzees was significantly higher compared to that of humans (p < 0.01), with a larger alpha (37.6°) and delta angle (54.5°) and smaller beta angle (87.9°). The mean AGA of humans (59.1°) was significantly smaller (p < 0.001) than that of gorillas (68.8°). The mean CGA of humans (110.1°) was significantly higher (p < 0.001) than in orangutans (92.9°). Humans and gorillas showed mainly a posterior tilt of their coracoacromial complex whilst chimpanzees showed mainly an anterior tilt. The coracoacromial complex of the orangutans was not tilted anteriorly or posteriorly. With our image-based method, we were able to identify morphological features of the scapula that differed significantly between hominid genera. However, we did not find an overall dichotomy in scapular morphology geared towards high stability (Pan/Gorilla) or high mobility (Homo/Pongo). Further research is needed to investigate the functional implications of these differences in scapular morphology.


Assuntos
Hominidae , Articulação do Ombro , Animais , Humanos , Gorilla gorilla , Pan troglodytes , Escápula/diagnóstico por imagem , Escápula/anatomia & histologia , Hominidae/anatomia & histologia , Articulação do Ombro/diagnóstico por imagem , Articulação do Ombro/anatomia & histologia , Tomografia Computadorizada por Raios X , Pongo , Pongo pygmaeus
6.
Glia ; 70(1): 145-154, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34533866

RESUMO

Varicose projection astrocytes (VP-As) are found in the cerebral cortex and have been described to be specific to humans and chimpanzees. To further examine the phylogenetic distribution of this cell type, we analyzed cortical tissue from several primates ranging from primitive primates to primates evolutionary closer to human such as apes. We specifically analyzed tissue from four strepsirrhine species, one tarsier, six species of platyrrhine monkeys, ten species of cercopithecoid monkeys, two hylobatid ape species, four to six cases each of chimpanzee, bonobo, gorilla, and orangutan, and thirteen human. We found that VP-As were present only in human and other apes (hominoids) and were absent in all other species. We showed that VP-As are localized to layer VI and the superficial white matter of the cortex. The presence of VP-As co-occured with interlaminar astrocytes that also had varicosities in their processes. Due to their location, their long tangential processes, and their irregular presence within species, we propose that VP-As are astrocytes that develop varicosities under specific conditions and that are not a distinct astrocyte type.


Assuntos
Astrócitos , Primatas , Animais , Astrócitos/metabolismo , Evolução Biológica , Córtex Cerebral , Filogenia , Primatas/metabolismo
7.
Am J Phys Anthropol ; 175(4): 931-942, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33860534

RESUMO

OBJECTIVES: Convolutional neural network (CNN) is a state-of-art deep learning (DL) method with superior performance in image classification. Here, a CNN-based workflow is proposed to discriminate hominid teeth. Our hope is that this method could help confirm otherwise questionable records of Homo from Pleistocene deposits where there is a standing risk of mis-attributing molars of Pongo to Homo. METHODS AND MATERIALS: A two-step workflow was designed. The first step is converting the enamel-dentine junction (EDJ) into EDJ card, that is, a two-dimensional image conversion of the three-dimensional EDJ surface. In this step, researchers must carefully orient the teeth according to the cervical plane. The second step is training the CNN learner with labeled EDJ cards. A sample consisting of 53 fossil Pongo and 53 Homo (modern human and Neanderthal) was adopted to generate EDJ cards, which were then separated into training set (n = 84) and validation set (n = 22). To assess the feasibility of this workflow, a Pongo-Homo classifier was trained from the aforementioned EDJ card set, and then the classifier was used to predict the taxonomic affinities of six samples (test set) from von Koenigswald's Chinese Apothecary collection. RESULTS: Results show that EDJ cards in validation set are classified accurately by the CNN learner. More importantly, taxonomic predictions for six specimens in test set match well with the diagnosis results deduced from multiple lines of evidence, implying the great potential of CNN method. DISCUSSION: This workflow paves a way for future studies using CNN to address taxonomic complexity (e.g., distinguishing Pongo and Homo teeth from the Pleistocene of Asia). Further improvements include visual interpretation and extending the applicability to moderately worn teeth.


Assuntos
Aprendizado Profundo , Hominidae , Animais , Dentina , Humanos , Pongo , Fluxo de Trabalho
8.
Am J Phys Anthropol ; 174(3): 555-567, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33247444

RESUMO

OBJECTIVE: Three-dimensional relative enamel thickness (3DRET) is important for assessing hypotheses about taxonomy, phylogeny, and dietary reconstruction for primates. However, its weaknesses have not been thoroughly investigated. Here, we analyze its weaknesses and propose an index aiming at better taxonomic discrimination. MATERIALS AND METHODS: The dimensionless 3D index, ratio of enamel-thickness to dentine-thickness (3DRED), which is defined as the cubic root of the ratio of 3D average enamel thickness (3DAET) to 3D average dentine thickness (3DADT), is proposed here. To compare 3DRET and 3DRED and their sensitivity to voxel size, a fossil orangutan molar was scanned 14 times with different resolutions ranging from 10 to 50 µm. Enamel thickness analysis was carried out for each resultant digital model. In addition, enamel thickness measurements of 179 mandibular permanent molars (eight genera) were analyzed, followed by investigating the relationship between 3DRET and 3DAET and between 3DRED and 3DAET. RESULTS: Regarding sensitivity, 3DRED is more robust than 3DRET. In addition, 3DRET is correlated with 3DAET by linear curve with regression coefficients approximating or larger than 0.8 in most cases, while 3DRED shows less correlation with 3DAET. Furthermore, there are clear separations between different taxa in the bivariate plot of 3DRED against 3DAET, indicative of the taxonomic value of 3DRED. CONCLUSION: Under certain conditions, 3DRED promises to be a robust and reliable alternative to 3DRET in taxonomic study.


Assuntos
Esmalte Dentário/anatomia & histologia , Dentina/anatomia & histologia , Imageamento Tridimensional/métodos , Odontometria/classificação , Primatas , Animais , Antropologia Física , Esmalte Dentário/diagnóstico por imagem , Dentina/diagnóstico por imagem , Dieta , Humanos , Dente Molar/anatomia & histologia , Dente Molar/diagnóstico por imagem , Primatas/anatomia & histologia , Primatas/classificação
9.
J Hum Evol ; 149: 102898, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33142154

RESUMO

A partial left femur (TM 266-01-063) was recovered in July 2001 at Toros-Menalla, Chad, at the same fossiliferous location as the late Miocene holotype of Sahelanthropus tchadensis (the cranium TM 266-01-060-1). It was recognized as a probable primate femur in 2004 when one of the authors was undertaking a taphonomic survey of the fossil assemblages from Toros-Menalla. We are confident the TM 266 femoral shaft belongs to a hominid. It could sample a hominid hitherto unrepresented at Toros-Menalla, but a more parsimonious working hypothesis is that it belongs to S. tchadensis. The differences between TM 266 and the late Miocene Orrorin tugenensis partial femur BAR 1002'00, from Kenya, are consistent with maintaining at least a species-level distinction between S. tchadensis and O. tugenensis. The results of our preliminary functional analysis suggest the TM 266 femoral shaft belongs to an individual that was not habitually bipedal, something that should be taken into account when considering the relationships of S. tchadensis. The circumstances of its discovery should encourage researchers to check to see whether there is more postcranial evidence of S. tchadensis among the fossils recovered from Toros-Menalla.


Assuntos
Fêmur/anatomia & histologia , Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Animais , Chade , Hominidae/classificação , Paleontologia
10.
Naturwissenschaften ; 107(5): 40, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870408

RESUMO

Paleontology has long relied on assumptions about the genetic and developmental influences on skeletal variation. The last few decades of developmental genetics have elucidated the genetic pathways involved in making teeth and patterning the dentition. Quantitative genetic analyses have refined this genotype:phenotype map even more, especially for primates. We now have the ability to define dental traits with a fair degree of fidelity to the underlying genetic architecture; for example, the molar module component (MMC) and the premolar-molar module (PMM) that have been defined through quantitative genetic analyses. We leverage an extensive dataset of extant and extinct hominoid dental variation to explore how these two genetically patterned phenotypes have evolved through time. We assess MMC and PMM to test the hypothesis that these two traits reveal a more biologically informed taxonomy at the genus and species levels than do more traditional measurements. Our results indicate that MMC values for hominids fall into two categories and that Homo is derived compared with earlier taxa. We find a more variable, species-level pattern for PMM. These results, in combination with previous research, demonstrate that MMC reflects the phenotypic output of a more evolutionarily stable, or phylogenetically congruent, genetic mechanism, and PMM is a reflection of a more evolutionarily labile mechanism. These results suggest that the human lineage since the split with chimpanzees may not represent as much genus-level variation as has been inferred from traits whose etiologies are not understood.


Assuntos
Dentição , Fósseis/anatomia & histologia , Hominidae/classificação , Hominidae/genética , Filogenia , Animais , Genótipo , Humanos , Fenótipo
11.
Am J Phys Anthropol ; 171(2): 219-241, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31762017

RESUMO

OBJECTIVES: The dexterity of fossil hominins is often inferred by assessing the comparative manual anatomy and behaviors of extant hominids, with a focus on the thumb. The aim of this study is to test whether trabecular structure is consistent with what is currently known about habitually loaded thumb postures across extant hominids. MATERIALS AND METHODS: We analyze first metacarpal (Mc1) subarticular trabecular architecture in humans (Homo sapiens, n = 10), bonobos (Pan paniscus, n = 10), chimpanzees (Pan troglodytes, n = 11), as well as for the first time, gorillas (Gorilla gorilla gorilla, n = 10) and orangutans (Pongo sp., n = 1, Pongo abelii, n = 3 and Pongo pygmaeus, n = 5). Using a combination of subarticular and whole-epiphysis approaches, we test for significant differences in relative trabecular bone volume (RBV/TV) and degree of anisotropy (DA) between species. RESULTS: Humans have significantly greater RBV/TV on the radiopalmar aspects of both the proximal and distal Mc1 subarticular surfaces and greater DA throughout the Mc1 head than other hominids. Nonhuman great apes have greatest RBV/TV on the ulnar aspect of the Mc1 head and the palmar aspect of the Mc1 base. Gorillas possessed significantly lower DA in the Mc1 head than any other taxon in our sample. DISCUSSION: These results are consistent with abduction of the thumb during forceful "pad-to-pad" precision grips in humans and, in nonhuman great apes, a habitually adducted thumb that is typically used in precision and power grips. This comparative context will help infer habitual manipulative and locomotor grips in fossil hominins.


Assuntos
Osso Esponjoso/anatomia & histologia , Hominidae/anatomia & histologia , Ossos Metacarpais/anatomia & histologia , Polegar/anatomia & histologia , Animais , Feminino , Humanos , Masculino
12.
J Anat ; 235(1): 45-66, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31099419

RESUMO

Trabecular bone remodels during life in response to loading and thus should, at least in part, reflect potential variation in the magnitude, frequency and direction of joint loading across different hominid species. Here we analyse the trabecular structure across all non-pollical metacarpal distal heads (Mc2-5) in extant great apes, expanding on previous volume of interest and whole-epiphysis analyses that have largely focused on only the first or third metacarpal. Specifically, we employ both a univariate statistical mapping and a multivariate approach to test for both inter-ray and interspecific differences in relative trabecular bone volume fraction (RBV/TV) and degree of anisotropy (DA) in Mc2-5 subchondral trabecular bone. Results demonstrate that whereas DA values only separate Pongo from African apes (Pan troglodytes, Pan paniscus, Gorilla gorilla), RBV/TV distribution varies with the predicted loading of the metacarpophalangeal (McP) joints during locomotor behaviours in each species. Gorilla exhibits a relatively dorsal distribution of RBV/TV consistent with habitual hyper-extension of the McP joints during knuckle-walking, whereas Pongo has a palmar distribution consistent with flexed McP joints used to grasp arboreal substrates. Both Pan species possess a disto-dorsal distribution of RBV/TV, compatible with multiple hand postures associated with a more varied locomotor regime. Further inter-ray comparisons reveal RBV/TV patterns consistent with varied knuckle-walking postures in Pan species in contrast to higher RBV/TV values toward the midline of the hand in Mc2 and Mc5 of Gorilla, consistent with habitual palm-back knuckle-walking. These patterns of trabecular bone distribution and structure reflect different behavioural signals that could be useful for determining the behaviours of fossil hominins.


Assuntos
Hominidae/anatomia & histologia , Locomoção/fisiologia , Ossos Metacarpais/anatomia & histologia , Animais , Gorilla gorilla/anatomia & histologia , Mãos/anatomia & histologia , Humanos , Pan paniscus/anatomia & histologia , Pan troglodytes/anatomia & histologia , Pongo abelii/anatomia & histologia , Pongo pygmaeus/anatomia & histologia , Postura/fisiologia , Caminhada/fisiologia
13.
J Anat ; 234(5): 679-693, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30793309

RESUMO

Studies of femoral trabecular structure have shown that the orientation and volume of bone are associated with variation in loading and could be informative about individual joint positioning during locomotion. In this study, we analyse for the first time trabecular bone patterns throughout the femoral head using a whole-epiphysis approach to investigate how potential trabecular variation in humans and great apes relates to differences in locomotor modes. Trabecular architecture was analysed using microCT scans of Pan troglodytes (n = 20), Gorilla gorilla (n = 14), Pongo sp. (n = 5) and Homo sapiens (n = 12) in medtool 4.1. Our results revealed differences in bone volume fraction (BV/TV) distribution patterns, as well as overall trabecular parameters of the femoral head between great apes and humans. Pan and Gorilla showed two regions of high BV/TV in the femoral head, consistent with hip posture and loading during two discrete locomotor modes: knuckle-walking and climbing. Most Pongo specimens also displayed two regions of high BV/TV, but these regions were less discrete and there was more variability across the sample. In contrast, Homo showed only one main region of high BV/TV in the femoral head and had the lowest BV/TV, as well as the most anisotropic trabeculae. The Homo trabecular structure is consistent with stereotypical loading with a more extended hip compared with great apes, which is characteristic of modern human bipedalism. Our results suggest that holistic evaluations of femoral head trabecular architecture can reveal previously undetected patterns linked to locomotor behaviour in extant apes and can provide further insight into hip joint loading in fossil hominins and other primates.


Assuntos
Osso Esponjoso/anatomia & histologia , Cabeça do Fêmur/anatomia & histologia , Hominidae/anatomia & histologia , Animais , Evolução Biológica , Fêmur/anatomia & histologia , Gorilla gorilla/anatomia & histologia , Articulação do Quadril/anatomia & histologia , Humanos , Locomoção/fisiologia , Pan troglodytes/anatomia & histologia , Pongo/anatomia & histologia , Postura/fisiologia
14.
Proc Natl Acad Sci U S A ; 112(16): 4877-84, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25901308

RESUMO

Australopithecus fossils were regularly interpreted during the late 20th century in a framework that used living African apes, especially chimpanzees, as proxies for the immediate ancestors of the human clade. Such projection is now largely nullified by the discovery of Ardipithecus. In the context of accumulating evidence from genetics, developmental biology, anatomy, ecology, biogeography, and geology, Ardipithecus alters perspectives on how our earliest hominid ancestors--and our closest living relatives--evolved.


Assuntos
Evolução Biológica , Fósseis , Pan troglodytes/fisiologia , Animais , Ecossistema , Hominidae/anatomia & histologia , Humanos , Locomoção , Dente/anatomia & histologia
15.
Am J Phys Anthropol ; 162(4): 732-746, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28035660

RESUMO

OBJECTIVES: Modern humans diverge from other extant hominids (chimpanzees, gorillas, and orangutans) in a series of craniofacial morphological features. Like hylobatids, they possess a face with a reduced subnasal prognathism that is associated with a globular basicranium. These traits are not independent, as the skull is a complex integrated structure. The aim of the present study is to determine relationships between the face and the basicranium in two hominid genera (Homo and Pan) and a hylobatid genus (Hylobates) to test if these taxa share common patterns of integration linking these structures. MATERIALS AND METHODS: Three dimensional (3D) geometric morphometric analyses and 3D homologous landmarks are used to compare the integration patterns between facial and basicranial structures in a comparative sample of Homo, Pan, and Hylobates. Pooled within-genus partial least squares analyses are computed to describe and quantify these patterns of integration. RESULTS: The covariation analyses show similar patterns of integration shared between the three studied taxa. These patterns correspond to the brachycephalic and dolichocephalic conditions previously defined in hominins and hominids. DISCUSSION: Results confirm that hominoids share similar patterns of integration. This is in line with the hypothesis that morphological integration is mostly conservative in hominoids. These similar patterns of integration may explain the convergent evolution of short faces in humans and hylobatids.


Assuntos
Face/anatomia & histologia , Hylobates/anatomia & histologia , Crânio/anatomia & histologia , Adulto , Animais , Antropologia Física , Evolução Biológica , Face/diagnóstico por imagem , Feminino , Humanos , Análise dos Mínimos Quadrados , Masculino , Pan troglodytes/anatomia & histologia , Crânio/diagnóstico por imagem
16.
Proc Natl Acad Sci U S A ; 110(26): 10501-6, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23733966

RESUMO

Hominin fossil evidence in the Turkana Basin in Kenya from ca. 4.1 to 1.4 Ma samples two archaic early hominin genera and records some of the early evolutionary history of Paranthropus and Homo. Stable carbon isotopes in fossil tooth enamel are used to estimate the fraction of diet derived from C3 or C4 resources in these hominin taxa. The earliest hominin species in the Turkana Basin, Australopithecus anamensis, derived nearly all of its diet from C3 resources. Subsequently, by ca. 3.3 Ma, the later Kenyanthropus platyops had a very wide dietary range--from virtually a purely C3 resource-based diet to one dominated by C4 resources. By ca. 2 Ma, hominins in the Turkana Basin had split into two distinct groups: specimens attributable to the genus Homo provide evidence for a diet with a ca. 65/35 ratio of C3- to C4-based resources, whereas P. boisei had a higher fraction of C4-based diet (ca. 25/75 ratio). Homo sp. increased the fraction of C4-based resources in the diet through ca. 1.5 Ma, whereas P. boisei maintained its high dependency on C4-derived resources.


Assuntos
Dieta/história , Hominidae , Animais , Isótopos de Carbono , Esmalte Dentário/química , Fósseis , História Antiga , Humanos , Quênia
17.
Am J Phys Anthropol ; 158(3): 475-86, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26174601

RESUMO

OBJECTIVES: Extant Pongo diverges from other hominids by a series of craniofacial morphological features, such as a concave face, a reduced supraorbital torus, or an upwardly orientated palate. These traits are not independent because the skull is a complex integrated structure. The aim of this study is to describe the relationship between the face and mandible of Pongo, in order to examine the link between mandibular structures and the set-up of the unique facial features of orangutans. MATERIALS AND METHODS: Using 3D geometric morphometrics, the morphological integration between face and mandible of Pongo is compared to that of the three extant hominids: Homo, Pan, and Gorilla. Pooled within-species partial least squares analyses are computed in order to quantify the patterns and levels of integration. RESULTS: The covariation analyses show unique patterns of integration and levels of correlation in Pongo when compared to other hominids. This study shows that the craniofacial features distinguishing Pongo from African great apes are related to differences in the patterns of integration and levels of correlation between facial and mandibular shape. DISCUSSION: Changes in important functions may play a part in these modifications of craniofacial integration. This study underlines the importance of the mandible and of the mandibular functions in the development of the unique craniofacial features of Pongo.


Assuntos
Evolução Biológica , Face/anatomia & histologia , Mandíbula/anatomia & histologia , Pongo/anatomia & histologia , Crânio/anatomia & histologia , Animais , Antropologia Física , Feminino , Hominidae/anatomia & histologia , Humanos , Análise dos Mínimos Quadrados , Masculino
18.
Am J Phys Anthropol ; 157(4): 666-74, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25845703

RESUMO

OBJECTIVES: Among the ten fossil hominid deciduous teeth reported so far from the Pleistocene sediments of the Sangiran Dome of Java are two isolated lower second molars: specimens PCG.2 from the Kabuh Formation and FS-72 from the Pucangan Formation. While PCG.2 appears to be certainly attributable to Homo erectus, FS-72 is somewhat more problematic, even though it is commonly listed within the Indonesian H. erectus hypodigm. Largely because of its large size, it was originally attributed to Meganthropus paleojavanicus. Subsequent study highlighted a set of metric and nonmetric crown features also found in Australopith and African early Homo (notably H. habilis) homologues. An additional problem with the taxonomic assignment of isolated teeth from the Pleistocene of Java is the presence of Pongo in these same deposits. METHODS: To assess the taxonomic affinity of FS-72, we investigated its inner structure (tissue proportions and enamel-dentine junction morphology) by using techniques of 2-3D virtual imaging coupled with geometric morphometric analyses. RESULTS: The results show that FS-72 has thinner enamel compared to fossil and recent humans and that its topographic repartition more closely follows the pongine pattern. It also exhibits a Pongo-like elongated morphology of the enamel-dentine junction, with proportionally lower and mesiodistally spaced dentine horns. CONCLUSIONS: Given the morphological and metric similarities between fossil orangutan and H. erectus molars, we tested the hypothesis that its internal morphology more closely resembles the patterns evinced by PCG.2 and modern humans than Pongo. Accordingly, we consider that FS-72 more likely represents a dm2 of Pongo rather than Homo.


Assuntos
Hominidae/anatomia & histologia , Hominidae/classificação , Dente Molar/anatomia & histologia , Animais , Esmalte Dentário/anatomia & histologia , Fósseis , Humanos , Imageamento Tridimensional , Indonésia , Paleodontologia , Pongo/anatomia & histologia
19.
J Hum Evol ; 76: 129-53, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25223718

RESUMO

Handaxe-bearing sites in China are currently known to occur in a number of alluvial basins, the best known being Dingcun, Bose and Luonan. Bose in the south and Luonan in central China on the northern margin of the Qinling Mountains are most familiar to English-speaking researchers. Here we document the Danjiangkou Reservoir Region (DRR) as another major area for large cutting tools (LCTs), located in central China on the southeastern edge of the Qinling Mountains. Large cutting tools are preserved in three terraces of the Han and Dan Rivers in Hubei and Henan Provinces, with dates from ca. 0.8 Ma (millions of years ago) (Terrace 4) to the first half of the Middle Pleistocene (Terrace 3), and possibly to the Late Pleistocene (Terrace 2). This paper reports on LCTs discovered in Terraces 3 and 2, with a majority from the older terrace (and one specimen from Terrace 4). Regional environments during the Middle Pleistocene were relatively warm, humid and stable. Despite the poor quality of raw materials (predominantly quartz phyllite and trachyte for the LCTs), good examples of both handaxes and cleavers are present, plus two types of picks. The LCT technology is compared and contrasted with other Asian industries and with the Acheulean. Overall the DRR LCTs show both technological and morphological similarities with Acheulean LCTs, with some differences that are mainly attributed to raw material properties, subsistence ecology, and 'cultural drift.' The DRR LCTs expand the range of morphological variability of the East Asian material and highlight the need for greater reliance on technological analysis and raw material evaluation for best comparison of Chinese assemblages with the Acheulean tradition.


Assuntos
Arqueologia , Comportamento de Utilização de Ferramentas , China , Cronologia como Assunto , Terminologia como Assunto
20.
J Hum Evol ; 71: 12-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24666602

RESUMO

Insects provide an important part of the diet of primates, including hominins. Investigations of insectivory in primates has focused primarily on the value of insects in the diet, and on the means of obtaining the insects, with little attention devoted to the predator-prey relationship itself and less to evolutionary aspects of insect defense against predatory vertebrates, including primates. Data indicate that, far from being a passive half of the relationship, insects in general, and stinging Hymenoptera in particular, are active participants that have greatly influenced the relationship. Predators have been a strong component of the selection pressure in the evolution of painful and toxic bee, wasp, and ant stings and these insects, in turn, have influenced hunting behavior and learning in at least higher primates. The special example of honey bees and humans is highlighted. Both humans and the bees have benefitted from a relationship that represents an unprecedented example of a predator-prey interaction evolving recently into facultative mutualism.


Assuntos
Evolução Biológica , Cadeia Alimentar , Himenópteros/fisiologia , Mordeduras e Picadas de Insetos/fisiopatologia , Dor/fisiopatologia , Animais , Venenos de Artrópodes/efeitos adversos , Humanos , Mordeduras e Picadas de Insetos/etiologia , Camundongos , Dor/etiologia , Comportamento Predatório , Primatas , Vertebrados
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa