Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.123
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 33(15): 1300-1314, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38676626

RESUMO

MicroRNAs (miRNAs) are a subset of small non-coding single-stranded RNA molecules involved in the regulation of post-transcriptional gene expression of a variety of transcript targets. Therefore altered miRNA expression may result in the dysregulation of key genes and biological pathways that has been reported with the onset and progression of neurodegenerative diseases, such as Amyotrophic lateral sclerosis (ALS). ALS is marked by a progressive degeneration of motor neurons (MNs) present in the spinal cord, brain stem and motor cortex. Although the pathomechanism underlying molecular interactions of ALS remains poorly understood, alterations in RNA metabolism, including dysregulation of miRNA expression in familial as well as sporadic forms are still scarcely studied. In this study, we performed combined transcriptomic data and miRNA profiling in MN samples of the same samples of iPSC-derived MNs from SOD1- and TARDBP (TDP-43 protein)-mutant-ALS patients and healthy controls. We report a global upregulation of mature miRNAs, and suggest that differentially expressed (DE) miRNAs have a significant impact on mRNA-level in SOD1-, but not in TARDBP-linked ALS. Furthermore, in SOD1-ALS we identified dysregulated miRNAs such as miR-124-3p, miR-19b-3p and miR-218 and their potential targets previously implicated in important functional process and pathogenic pathways underlying ALS. These miRNAs may play key roles in the neuronal development and cell survival related functions in SOD1-ALS. Altogether, we provide evidence of miRNA regulated genes expression mainly in SOD1 rather than TDP43-ALS.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ligação a DNA , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Neurônios Motores , RNA Mensageiro , Superóxido Dismutase-1 , MicroRNAs/genética , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Transcriptoma/genética
2.
J Neurosci ; 44(15)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38438257

RESUMO

DYT1 dystonia is a debilitating neurological movement disorder, and it represents the most frequent and severe form of hereditary primary dystonia. There is currently no cure for this disease due to its unclear pathogenesis. In our previous study utilizing patient-specific motor neurons (MNs), we identified distinct cellular deficits associated with the disease, including a deformed nucleus, disrupted neurodevelopment, and compromised nucleocytoplasmic transport (NCT) functions. However, the precise molecular mechanisms underlying these cellular impairments have remained elusive. In this study, we revealed the genome-wide changes in gene expression in DYT1 MNs through transcriptomic analysis. We found that those dysregulated genes are intricately involved in neurodevelopment and various biological processes. Interestingly, we identified that the expression level of RANBP17, a RAN-binding protein crucial for NCT regulation, exhibited a significant reduction in DYT1 MNs. By manipulating RANBP17 expression, we further demonstrated that RANBP17 plays an important role in facilitating the nuclear transport of both protein and transcript cargos in induced human neurons. Excitingly, the overexpression of RANBP17 emerged as a substantial mitigating factor, effectively restoring impaired NCT activity and rescuing neurodevelopmental deficits observed in DYT1 MNs. These findings shed light on the intricate molecular underpinnings of impaired NCT in DYT1 neurons and provide novel insights into the pathophysiology of DYT1 dystonia, potentially leading to the development of innovative treatment strategies.


Assuntos
Distonia Muscular Deformante , Distonia , Distúrbios Distônicos , Proteína ran de Ligação ao GTP , Humanos , Transporte Ativo do Núcleo Celular , Chaperonas Moleculares/genética , Neurônios Motores/metabolismo
3.
J Cell Sci ; 136(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36583297

RESUMO

Anti-apoptotic B-cell lymphoma 2 (Bcl-2) regulates a wide array of cellular functions involved in cell death, cell survival and autophagy. Less known is its involvement in the differentiation of cardiomyocytes. As a consequence, mechanisms by which Bcl-2 contributes to cardiac differentiation remain to be elucidated. To address this, we used CRISPR/Cas9 to knockout (KO) BCL2 in human induced pluripotent stem cells (hiPSCs) and investigated the consequence of this KO for differentiation towards cardiomyocytes. Our results indicate that differentiation of hiPSCs to cardiomyocytes was delayed following BCL2 KO. This was not related to the canonical anti-apoptotic function of Bcl-2. This delay led to reduced expression and activity of the cardiomyocyte Ca2+ toolkit. Finally, Bcl-2 KO reduced c-Myc expression and nuclear localization in the early phase of the cardiac differentiation process, which accounts at least in part for the observed delay in the cardiac differentiation. These results suggest that there is a central role for Bcl-2 in cardiomyocyte differentiation and maturation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Diferenciação Celular/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética
4.
Stem Cells ; 42(2): 107-115, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37995336

RESUMO

Advanced technologies have enabled the engineering of self-organized 3-dimensional (3D) cellular structures from human induced pluripotent stem cells (hiPSCs), namely organoids, which recapitulate some key features of tissue development and functions of the human central nervous system (CNS). While hiPSC-derived 3D CNS organoids hold promise in providing a human-specific platform for studying CNS development and diseases, most of them do not incorporate the full range of implicated cell types, including vascular cell components and microglia, limiting their ability to accurately recreate the CNS environment and their utility in the study of certain aspects of the disease. Here we have developed a novel approach, called vascularized brain assembloids, for constructing hiPSC-derived 3D CNS structures with a higher level of cellular complexity. This is achieved by integrating forebrain organoids with common myeloid progenitors and phenotypically stabilized human umbilical vein endothelial cells (VeraVecs), which can be cultured and expanded in serum-free conditions. Compared with organoids, these assembloids exhibited enhanced neuroepithelial proliferation, advanced astrocytic maturation, and increased synapse numbers. Strikingly, the assembloids derived from hiPSCs harboring the tauP301S mutation exhibited increased levels of total tau and phosphorylated tau, along with a higher proportion of rod-like microglia-like cells and enhanced astrocytic activation, when compared to the assembloids derived from isogenic hiPSCs. Additionally, the tauP301S assembloids showed an altered profile of neuroinflammatory cytokines. This innovative assembloid technology serves as a compelling proof-of-concept model, opening new avenues for unraveling the intricate complexities of the human brain and accelerating progress in the development of effective treatments for neurological disorders.


Assuntos
Células-Tronco Pluripotentes Induzidas , Tauopatias , Humanos , Encéfalo , Sistema Nervoso Central , Organoides , Células Endoteliais da Veia Umbilical Humana
5.
Brain ; 147(9): 3113-3130, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38743588

RESUMO

Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common inherited peripheral neuropathy caused by a 1.5 Mb tandem duplication of chromosome 17 harbouring the PMP22 gene. This dose-dependent overexpression of PMP22 results in disrupted Schwann cell myelination of peripheral nerves. To obtain better insights into the underlying pathogenic mechanisms in CMT1A, we investigated the role of PMP22 duplication in cellular homeostasis in CMT1A mouse models and in patient-derived induced pluripotent stem cells differentiated into Schwann cell precursors (iPSC-SCPs). We performed lipidomic profiling and bulk RNA sequencing (RNA-seq) on sciatic nerves of two developing CMT1A mouse models and on CMT1A patient-derived iPSC-SCPs. For the sciatic nerves of the CMT1A mice, cholesterol and lipid metabolism was downregulated in a dose-dependent manner throughout development. For the CMT1A iPSC-SCPs, transcriptional analysis unveiled a strong suppression of genes related to autophagy and lipid metabolism. Gene ontology enrichment analysis identified disturbances in pathways related to plasma membrane components and cell receptor signalling. Lipidomic analysis confirmed the severe dysregulation in plasma membrane lipids, particularly sphingolipids, in CMT1A iPSC-SCPs. Furthermore, we identified reduced lipid raft dynamics, disturbed plasma membrane fluidity and impaired cholesterol incorporation and storage, all of which could result from altered lipid storage homeostasis in the patient-derived CMT1A iPSC-SCPs. Importantly, this phenotype could be rescued by stimulating autophagy and lipolysis. We conclude that PMP22 duplication disturbs intracellular lipid storage and leads to a more disordered plasma membrane owing to an alteration in the lipid composition, which might ultimately lead to impaired axo-glial interactions. Moreover, targeting lipid handling and metabolism could hold promise for the treatment of patients with CMT1A.


Assuntos
Membrana Celular , Doença de Charcot-Marie-Tooth , Homeostase , Células-Tronco Pluripotentes Induzidas , Metabolismo dos Lipídeos , Proteínas da Mielina , Células de Schwann , Animais , Humanos , Camundongos , Membrana Celular/metabolismo , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Duplicação Gênica , Homeostase/fisiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Proteínas da Mielina/metabolismo , Proteínas da Mielina/genética , Células de Schwann/metabolismo , Nervo Isquiático/metabolismo
6.
Cell Physiol Biochem ; 58(5): 538-547, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39370954

RESUMO

BACKGROUND/AIMS: Advances in induced pluripotent stem cell (iPSC) technology allow for reprogramming of adult somatic cells into stem cells from which patient- and disease-specific cardiomyocytes (CMs) can be derived. Yet, the potential of iPSC technology to revolutionize cardiovascular research is limited, in part, by the embryonic nature of these cells. Here, we test the hypothesis that decellularized porcine left ventricular extracellular cardiac matrix (ECM) provides environmental cues that promote transcriptional maturation and patterning of iPSC-CMs in culture. METHODS: Cardiac progenitor cells were plated on ECM or standard tissue plates (2D monolayer) for 30 days, after which CM orientation and single cell transcriptomics were evaluated using confocal imaging and singe cell RNA-sequencing, respectively. RESULTS: Cardiac progenitors differentiated on left ventricular ECM formed longitudinal fibers that differed quantitatively from progenitors differentiated in standard 2D conditions. Unsupervised clustering of single cell transcriptomics identified a CM cluster expressing a higher level of genes related to CM maturation. CMs differentiated on ECM were overrepresented in this cluster, indicating a bias toward CM maturation, compared to cells differentiated in standard 2D monolayer conditions. CONCLUSION: Our data suggest that environmental cues related to the left ventricular ECM may promote differentiation to a more mature CM state compared to cells differentiated on a standard 2D monolayer, while facilitating organization into longitudinal micro-fibers. Our study highlights the utility of ECM as a differentiation substrate to promote CM maturation and fiber orientation in vitro .


Assuntos
Diferenciação Celular , Matriz Extracelular , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Humanos , Matriz Extracelular/metabolismo , Animais , Suínos , Transcriptoma , Células Cultivadas , Análise de Célula Única , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo
7.
Biochem Biophys Res Commun ; 692: 149356, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38071890

RESUMO

The small intestine, which plays a crucial role in the absorption and metabolism of drugs and foods, serves as a target organ for drug-induced toxicity and immune interactions with functional foods and intestinal bacteria. Current alternative models of the human small intestine, such as Caco-2 cells and experimental animals, have limitations due to variations in the expression levels of metabolic enzymes, transporters, and receptors. This study presents investigations into the utility of human induced pluripotent stem cell-derived small intestinal epithelial cells (hiSIECs) for pharmacokinetic, toxicological, and immunological studies, respectively. While hiSIECs displayed small intestinal epithelial cell characteristics and barrier function, they demonstrated pharmacokinetic properties such as cytochrome P450 3A4/5 activity equivalent to human primary enterocytes and stable P-glycoprotein activity. These cells also demonstrated potential for assessing two forms of intestinal toxicity caused by anticancer drugs and gamma-secretase inhibitors, displaying immune responses mediated by toll-like and fatty acid receptors while serving as an inflammatory gut model through the addition of tumor necrosis factor alpha and interferon gamma. Overall, hiSIECs hold promise as an in vitro model for assessing pharmacokinetics, toxicity, and effects on the intestinal immunity of pharmaceuticals, functional foods, supplements, and intestinal bacteria.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Células CACO-2 , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular , Células Epiteliais/metabolismo , Intestino Delgado/metabolismo , Proteínas de Transporte/metabolismo , Mucosa Intestinal/metabolismo
8.
Adv Funct Mater ; 34(3)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707790

RESUMO

Skeletal muscle connective tissue (MCT) surrounds myofiber bundles to provide structural support, produce force transduction from tendons, and regulate satellite cell differentiation during muscle regeneration. Engineered muscle tissue composed of myofibers layered within MCT has not yet been developed. Herein, a bioengineering strategy to create MCT-layered myofibers through the development of stem cell fate-controlling biomaterials that achieve both myogenesis and fibroblast differentiation in a locally controlled manner at the single construct is introduced. The reciprocal role of transforming growth factor-beta 1 (TGF-ß1) and its inhibitor as well as 3D matrix stiffness to achieve co-differentiation of MCT fibroblasts and myofibers from a human-induced pluripotent stem cell (hiPSC)-derived paraxial mesoderm is studied. To avoid myogenic inhibition, TGF-ß1 is conjugated on the gelatin-based hydrogel to control the fibroblasts' populations locally; the TGF-ß1 degrades after 2 weeks, resulting in increased MCT-specific extracellular matrix (ECM) production. The locations of myofibers and fibroblasts are precisely controlled by using photolithography and co-axial wet spinning techniques, which results in the formation of MCT-layered functional myofibers in 3D constructs. This advanced engineering strategy is envisioned as a possible method for obtaining biomimetic human muscle grafts for various biomedical applications.

9.
Cell Tissue Res ; 396(1): 119-139, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369646

RESUMO

Primary human hepatocytes (PHHs) are used extensively for in vitro liver cultures to study hepatic functions. However, limited availability and invasive retrieval prevent their widespread use. Induced pluripotent stem cells exhibit significant potential since they can be obtained non-invasively and differentiated into hepatic lineages, such as hepatocyte-like cells (iHLCs). However, there are concerns about their fetal phenotypic characteristics and their hepatic functions compared to PHHs in culture. Therefore, we performed an RNA-sequencing (RNA-seq) analysis to understand pathways that are either up- or downregulated in each cell type. Analysis of the RNA-seq data showed an upregulation in the bile secretion pathway where genes such as AQP9 and UGT1A1 were higher expressed in PHHs compared to iHLCs by 455- and 15-fold, respectively. Upon immunostaining, bile canaliculi were shown to be present in PHHs. The TCA cycle in PHHs was upregulated compared to iHLCs. Cellular analysis showed a 2-2.5-fold increase in normalized urea production in PHHs compared to iHLCs. In addition, drug metabolism pathways, including cytochrome P450 (CYP450) and UDP-glucuronosyltransferase enzymes, were upregulated in PHHs compared to iHLCs. Of note, CYP2E1 gene expression was significantly higher (21,810-fold) in PHHs. Acetaminophen and ethanol were administered to PHH and iHLC cultures to investigate differences in biotransformation. CYP450 activity of baseline and toxicant-treated samples was significantly higher in PHHs compared to iHLCs. Our analysis revealed that iHLCs have substantial differences from PHHs in critical hepatic functions. These results have highlighted the differences in gene expression and hepatic functions between PHHs and iHLCs to motivate future investigation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Hepatócitos , Fígado , Diferenciação Celular , Perfilação da Expressão Gênica
10.
J Neurovirol ; 30(2): 131-145, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38478163

RESUMO

The neurogenic niches within the central nervous system serve as essential reservoirs for neural precursor cells (NPCs), playing a crucial role in neurogenesis. However, these NPCs are particularly vulnerable to infection by the herpes simplex virus 1 (HSV-1). In the present study, we investigated the changes in the transcriptome of NPCs in response to HSV-1 infection using bulk RNA-Seq, compared to those of uninfected samples, at different time points post infection and in the presence or absence of antivirals. The results showed that NPCs upon HSV-1 infection undergo a significant dysregulation of genes playing a crucial role in aspects of neurogenesis, including genes affecting NPC proliferation, migration, and differentiation. Our analysis revealed that the CREB signaling, which plays a crucial role in the regulation of neurogenesis and memory consolidation, was the most consistantly downregulated pathway, even in the presence of antivirals. Additionally, cholesterol biosynthesis was significantly downregulated in HSV-1-infected NPCs. The findings from this study, for the first time, offer insights into the intricate molecular mechanisms that underlie the neurogenesis impairment associated with HSV-1 infection.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Células-Tronco Neurais , Neurogênese , RNA-Seq , Transcriptoma , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Células-Tronco Neurais/virologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Animais , Herpes Simples/genética , Herpes Simples/virologia , Herpes Simples/metabolismo , Antivirais/farmacologia , Diferenciação Celular , Camundongos , Transdução de Sinais , Colesterol/metabolismo , Proliferação de Células , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Regulação da Expressão Gênica , Movimento Celular
11.
Stem Cells ; 41(1): 1-10, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36190736

RESUMO

Induced pluripotent stem cells (iPSCs) generated from somatic cell sources are pluripotent and capable of indefinite expansion in vitro. They provide an unlimited source of cells that can be differentiated into lung progenitor cells for potential clinical use in pulmonary regenerative medicine. This review gives a comprehensive overview of recent progress toward the use of iPSCs to generate proximal and distal airway epithelial cells and mix lung organoids. Furthermore, their potential applications and future challenges for the field are discussed, with a focus on the technological hurdles that must be cleared before stem cell therapeutics can be used for clinical treatment.


Assuntos
Células-Tronco Pluripotentes Induzidas , Pulmão , Células Epiteliais , Organoides , Diferenciação Celular
12.
Stem Cells ; 41(2): 140-152, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36512477

RESUMO

The ability to differentiate human-induced pluripotent stem cells (hiPSCs) efficiently into defined cardiac lineages, such as cardiomyocytes and cardiac endothelial cells, is crucial to study human heart development and model cardiovascular diseases in vitro. The mechanisms underlying the specification of these cell types during human development are not well understood which limits fine-tuning and broader application of cardiac model systems. Here, we used the expression of ETV2, a master regulator of hematoendothelial specification in mice, to identify functionally distinct subpopulations during the co-differentiation of endothelial cells and cardiomyocytes from hiPSCs. Targeted analysis of single-cell RNA-sequencing data revealed differential ETV2 dynamics in the 2 lineages. A newly created fluorescent reporter line allowed us to identify early lineage-predisposed states and show that a transient ETV2-high-state initiates the specification of endothelial cells. We further demonstrated, unexpectedly, that functional cardiomyocytes can originate from progenitors expressing ETV2 at a low level. Our study thus sheds light on the in vitro differentiation dynamics of 2 important cardiac lineages.


Assuntos
Células Endoteliais , Células-Tronco Pluripotentes Induzidas , Animais , Camundongos , Humanos , Células Endoteliais/metabolismo , Miócitos Cardíacos/metabolismo , Regulação para Cima , Diferenciação Celular/genética , Endotélio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Respir Res ; 25(1): 180, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664797

RESUMO

BACKGROUND: Pulmonary ionocytes have been identified in the airway epithelium as a small population of ion transporting cells expressing high levels of CFTR (cystic fibrosis transmembrane conductance regulator), the gene mutated in cystic fibrosis. By providing an infinite source of airway epithelial cells (AECs), the use of human induced pluripotent stem cells (hiPSCs) could overcome some challenges of studying ionocytes. However, the production of AEC epithelia containing ionocytes from hiPSCs has proven difficult. Here, we present a platform to produce hiPSC-derived AECs (hiPSC-AECs) including ionocytes and investigate their role in the airway epithelium. METHODS: hiPSCs were differentiated into lung progenitors, which were expanded as 3D organoids and matured by air-liquid interface culture as polarised hiPSC-AEC epithelia. Using CRISPR/Cas9 technology, we generated a hiPSCs knockout (KO) for FOXI1, a transcription factor that is essential for ionocyte specification. Differences between FOXI1 KO hiPSC-AECs and their wild-type (WT) isogenic controls were investigated by assessing gene and protein expression, epithelial composition, cilia coverage and motility, pH and transepithelial barrier properties. RESULTS: Mature hiPSC-AEC epithelia contained basal cells, secretory cells, ciliated cells with motile cilia, pulmonary neuroendocrine cells (PNECs) and ionocytes. There was no difference between FOXI1 WT and KO hiPSCs in terms of their capacity to differentiate into airway progenitors. However, FOXI1 KO led to mature hiPSC-AEC epithelia without ionocytes with reduced capacity to produce ciliated cells. CONCLUSION: Our results suggest that ionocytes could have role beyond transepithelial ion transport by regulating epithelial properties and homeostasis in the airway epithelium.


Assuntos
Células-Tronco Pluripotentes Induzidas , Mucosa Respiratória , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/citologia , Diferenciação Celular/fisiologia , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Organoides/metabolismo
14.
Cytotherapy ; 26(6): 556-566, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38483359

RESUMO

BACKGROUND AIMS: Few human induced pluripotent stem cell (hiPSC) lines are Good Manufacturing Practice (GMP)-compliant, limiting the clinical use of hiPSC-derived products. Here, we addressed this by establishing and validating an in-house platform to produce GMP-compliant hiPSCs that would be appropriate for producing both allogeneic and autologous hiPSC-derived products. METHODS: Our standard research protocol for hiPSCs production was adapted and translated into a GMP-compliant platform. In addition to the generation of GMP-compliant hiPSC, the platform entails the methodology for donor recruitment, consent and screening, donor material procurement, hiPSCs manufacture, in-process control, specific QC test validation, QC testing, product release, hiPSCs storage and stability testing. For platform validation, one test run and three production runs were performed. Highest-quality lines were selected to establish master cell banks (MCBs). RESULTS: Two MCBs were successfully released under GMP conditions. They demonstrated safety (sterility, negative mycoplasma, endotoxins <5.0 EU/mL and negative adventitious agents), cell identity (>75% of cells expressing markers of undifferentiated state, identical STR profile, normal karyotype in >20 metaphases), purity (negative residual vectors and no plasmid integration in the genome) and potency (expression of at least two of the three markers for each of the three germ layers). In addition, directed differentiation to somitoids (skeletal muscle precursors) and six potential clinical products from all three germ layers was achieved: pancreatic islets (endoderm), kidney organoids and cardiomyocytes (mesoderm), and keratinocytes, GABAergic interneurons and inner-ear organoids (ectoderm). CONCLUSIONS: We successfully developed and validated a platform for generating GMP-compliant hiPSC lines. The two MCBs released were shown to differentiate into clinical products relevant for our own and other regenerative medicine interests.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Técnicas de Cultura de Células/métodos , Linhagem Celular
15.
FASEB J ; 37(2): e22770, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36688807

RESUMO

The search for reliable human blood-brain barrier (BBB) models represents a challenge for the development/testing of strategies aiming to enhance brain delivery of drugs. Human-induced pluripotent stem cells (hiPSCs) have raised hopes in the development of predictive BBB models. Differentiating strategies are thus required to generate endothelial cells (ECs), a major component of the BBB. Several hiPSC-based protocols have reported the generation of in vitro models with significant differences in barrier properties. We studied in depth the properties of iPSCs byproducts from two protocols that have been established to yield these in vitro barrier models. Our analysis/study reveals that iPSCs derivatives endowed with EC features yield high permeability models while the cells that exhibit outstanding barrier properties show principally epithelial cell-like (EpC) features. We found that models containing EpC-like cells express tight junction proteins, transporters/efflux pumps and display a high functional tightness with very low permeability, which are features commonly shared between BBB and epithelial barriers. Our study demonstrates that hiPSC-based BBB models need extensive characterization beforehand and that a reliable human BBB model containing EC-like cells and displaying low permeability is still needed.


Assuntos
Barreira Hematoencefálica , Células-Tronco Pluripotentes Induzidas , Humanos , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Permeabilidade
16.
Brain Behav Immun ; 122: 27-43, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39098436

RESUMO

Elevated interleukin (IL-)6 levels during prenatal development have been linked to increased risk for neurodevelopmental disorders (NDD) in the offspring, but the mechanism remains unclear. Human-induced pluripotent stem cell (hiPSC) models offer a valuable tool to study the effects of IL-6 on features relevant for human neurodevelopment in vitro. We previously reported that hiPSC-derived microglia-like cells (MGLs) respond to IL-6, but neural progenitor cells (NPCs) in monoculture do not. Therefore, we investigated whether co-culturing hiPSC-derived MGLs with NPCs would trigger a cellular response to IL-6 stimulation via secreted factors from the MGLs. Using N=4 donor lines without psychiatric diagnosis, we first confirmed that NPCs can respond to IL-6 through trans-signalling when recombinant IL-6Ra is present, and that this response is dose-dependent. MGLs secreted soluble IL-6R, but at lower levels than found in vivo and below that needed to activate trans-signalling in NPCs. Whilst transcriptomic and secretome analysis confirmed that MGLs undergo substantial transcriptomic changes after IL-6 exposure and subsequently secrete a cytokine milieu, NPCs in co-culture with MGLs exhibited a minimal transcriptional response. Furthermore, there were no significant cell fate-acquisition changes when differentiated into post-mitotic cultures, nor alterations in synaptic densities in mature neurons. These findings highlight the need to investigate if trans-IL-6 signalling to NPCs is a relevant disease mechanism linking prenatal IL-6 exposure to increased risk for psychiatric disorders. Moreover, our findings underscore the importance of establishing more complex in vitro human models with diverse cell types, which may show cell-specific responses to microglia-released cytokines to fully understand how IL-6 exposure may influence human neurodevelopment.


Assuntos
Técnicas de Cocultura , Células-Tronco Pluripotentes Induzidas , Interleucina-6 , Microglia , Células-Tronco Neurais , Humanos , Microglia/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/metabolismo , Interleucina-6/metabolismo , Transdução de Sinais , Diferenciação Celular/efeitos dos fármacos , Receptores de Interleucina-6/metabolismo , Células Cultivadas , Transcriptoma , Citocinas/metabolismo
17.
Biotechnol Bioeng ; 121(4): 1178-1190, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38184815

RESUMO

Recent advancements in bioengineering have introduced potential alternatives to liver transplantation via the development of self-assembled liver organoids, derived from human-induced pluripotent stem cells (hiPSCs). However, the limited maturity of the tissue makes it challenging to implement this technology on a large scale in clinical settings. In this study, we developed a highly efficient method for generating functional liver organoids from hiPSC-derived carboxypeptidase M liver progenitor cells (CPM+ LPCs), using a microwell structure, and enhanced maturation through direct oxygenation in oxygen-permeable culture plates. We compared the morphology, gene expression profile, and function of the liver organoid with those of cells cultured under conventional conditions using either monolayer or spheroid culture systems. Our results revealed that liver organoids generated using polydimethylsiloxane-based honeycomb microwells significantly exhibited enhanced albumin secretion, hepatic marker expression, and cytochrome P450-mediated metabolism. Additionally, the oxygenated organoids consisted of both hepatocytes and cholangiocytes, which showed increased expression of bile transporter-related genes as well as enhanced bile transport function. Oxygen-permeable polydimethylsiloxane membranes may offer an efficient approach to generating highly mature liver organoids consisting of diverse cell populations.


Assuntos
Células-Tronco Pluripotentes Induzidas , Metaloendopeptidases , Humanos , Oxigênio/metabolismo , Diferenciação Celular , Fígado/metabolismo , Técnicas de Cultura de Células/métodos , Organoides/metabolismo , Dimetilpolisiloxanos , Proteínas Ligadas por GPI
18.
Biotechnol Bioeng ; 121(2): 489-506, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013504

RESUMO

Brain organoids are self-organized, three-dimensional (3D) aggregates derived from pluripotent stem cells that have cell types and cellular architectures resembling those of the developing human brain. The current understanding of human brain developmental processes and neurological disorders has advanced significantly with the introduction of this in vitro model. Brain organoids serve as a translational link between two-dimensional (2D) cultures and in vivo models which imitate the neural tube formation at the early and late stages and the differentiation of neuroepithelium with whole-brain regionalization. In addition, the generation of region-specific brain organoids made it possible to investigate the pathogenic and etiological aspects of acquired and inherited brain disease along with drug discovery and drug toxicity testing. In this review article, we first summarize an overview of the existing methods and platforms used for generating brain organoids and their limitations and then discuss the recent advancement in brain organoid technology. In addition, we discuss how brain organoids have been used to model aspects of neurodevelopmental and neurodegenerative diseases, including autism spectrum disorder (ASD), Rett syndrome, Zika virus-related microcephaly, Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD).


Assuntos
Transtorno do Espectro Autista , Células-Tronco Pluripotentes Induzidas , Doenças do Sistema Nervoso , Infecção por Zika virus , Zika virus , Humanos , Encéfalo , Organoides
19.
Circ Res ; 131(12): 980-1000, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36367103

RESUMO

BACKGROUND: RBPs (RNA-binding proteins) perform indispensable functions in the post-transcriptional regulation of gene expression. Numerous RBPs have been implicated in cardiac development or physiology based on gene knockout studies and the identification of pathogenic RBP gene mutations in monogenic heart disorders. The discovery and characterization of additional RBPs performing indispensable functions in the heart will advance basic and translational cardiovascular research. METHODS: We performed a differential expression screen in zebrafish embryos to identify genes enriched in nkx2.5-positive cardiomyocytes or cardiopharyngeal progenitors compared to nkx2.5-negative cells from the same embryos. We investigated the myocardial-enriched gene RNA-binding protein with multiple splicing (variants) 2 [RBPMS2)] by generating and characterizing rbpms2 knockout zebrafish and human cardiomyocytes derived from RBPMS2-deficient induced pluripotent stem cells. RESULTS: We identified 1848 genes enriched in the nkx2.5-positive population. Among the most highly enriched genes, most with well-established functions in the heart, we discovered the ohnologs rbpms2a and rbpms2b, which encode an evolutionarily conserved RBP. Rbpms2 localizes selectively to cardiomyocytes during zebrafish heart development and strong cardiomyocyte expression persists into adulthood. Rbpms2-deficient embryos suffer from early cardiac dysfunction characterized by reduced ejection fraction. The functional deficit is accompanied by myofibril disarray, altered calcium handling, and differential alternative splicing events in mutant cardiomyocytes. These phenotypes are also observed in RBPMS2-deficient human cardiomyocytes, indicative of conserved molecular and cellular function. RNA-sequencing and comparative analysis of genes mis-spliced in RBPMS2-deficient zebrafish and human cardiomyocytes uncovered a conserved network of 29 ortholog pairs that require RBPMS2 for alternative splicing regulation, including RBFOX2, SLC8A1, and MYBPC3. CONCLUSIONS: Our study identifies RBPMS2 as a conserved regulator of alternative splicing, myofibrillar organization, and calcium handling in zebrafish and human cardiomyocytes.


Assuntos
Cálcio , Miocárdio , Proteínas de Ligação a RNA , Proteínas de Peixe-Zebra , Animais , Humanos , Cálcio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
20.
J Neurooncol ; 170(1): 67-77, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39196480

RESUMO

PURPOSE: Glioblastoma (GBM) is the most prevalent, malignant, primary brain tumor in adults, characterized by limited treatment options, frequent relapse, and short survival after diagnosis. Until now, none of the existing therapy and treatment approaches have proven to be an effective cure. The availability of predictive human blood-tumor barrier (BTB) test systems that can mimic in-vivo pathophysiology of GBM would be of great interest in preclinical research. Here, we present the establishment of a new BTB in-vitro test system combining GBM spheroids and BBB models derived from human induced pluripotent stem cells (hiPSCs). METHODS: We co-cultured hiPSC-derived brain capillary endothelial-like cells (iBCECs) with GBM spheroids derived from U87-MG and U373-MG cell lines in a cell culture insert-based format. Spheroids were monitored over 168 hours (h) of culture, characterized for GBM-specific marker expression and treated with standard chemotherapeutics to distinguish inhibitory effects between 2D mono-culture and 3D spheroids. GBM-induced changes on iBCECs barrier integrity were verified via measurement of transendothelial electrical resistance (TEER), immunocytochemical staining of tight junction (TJ) proteins claudin-5 and occludin as well as the glucose transporter-1 (Glut-1). GBM-induced secretion of vascular endothelial growth factor (VEGF) was additionally quantified. RESULTS: Our hypothesis was validated by reduced expression of TJ proteins, occludin and claudin-5 together with significant barrier breakdown in iBCECs after only 24 h of co-culture, demonstrated by reduction in TEER from 1313 ± 265 Ω*cm2 to 712 ± 299 Ω*cm2 (iBCECs + U87-MG) and 762 ± 316 Ω*cm2 (iBCECs + U373-MG). Furthermore, 3D spheroids show more resistance to standard GBM chemotherapeutics in-vitro compared to 2D cultures. CONCLUSIONS: We demonstrate the establishment of a simplified, robust in-vitro BTB test system, with potential application in preclinical therapeutic screening and in studying GBM-induced pathological changes at the BBB.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Técnicas de Cocultura , Glioblastoma , Esferoides Celulares , Glioblastoma/patologia , Glioblastoma/metabolismo , Humanos , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Esferoides Celulares/patologia , Células-Tronco Pluripotentes Induzidas , Células Endoteliais/patologia , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa