Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37248747

RESUMO

Human Phenotype Ontology (HPO)-based approaches have gained popularity in recent times as a tool for genomic diagnostics of rare diseases. However, these approaches do not make full use of the available information on disease and patient phenotypes. We present a new method called Phen2Disease, which utilizes the bidirectional maximum matching semantic similarity between two phenotype sets of patients and diseases to prioritize diseases and genes. Our comprehensive experiments have been conducted on six real data cohorts with 2051 cases (Cohort 1, n = 384; Cohort 2, n = 281; Cohort 3, n = 185; Cohort 4, n = 784; Cohort 5, n = 208; and Cohort 6, n = 209) and two simulated data cohorts with 1000 cases. The results of the experiments showed that Phen2Disease outperforms the three state-of-the-art methods when only phenotype information and HPO knowledge base are used, particularly in cohorts with fewer average numbers of HPO terms. We also observed that patients with higher information content scores have more specific information, leading to more accurate predictions. Moreover, Phen2Disease provides high interpretability with ranked diseases and patient HPO terms presented. Our method provides a novel approach to utilizing phenotype data for genomic diagnostics of rare diseases, with potential for clinical impact. Phen2Disease is freely available on GitHub at https://github.com/ZhuLab-Fudan/Phen2Disease.


Assuntos
Ontologias Biológicas , Doenças Raras , Humanos , Semântica , Genômica , Fenótipo
2.
Hum Mutat ; 41(2): 347-362, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31680375

RESUMO

Precise identification of causative variants from whole-genome sequencing data, including both coding and noncoding variants, is challenging. The Critical Assessment of Genome Interpretation 5 SickKids clinical genome challenge provided an opportunity to assess our ability to extract such information. Participants in the challenge were required to match each of the 24 whole-genome sequences to the correct phenotypic profile and to identify the disease class of each genome. These are all rare disease cases that have resisted genetic diagnosis in a state-of-the-art pipeline. The patients have a range of eye, neurological, and connective-tissue disorders. We used a gene-centric approach to address this problem, assigning each gene a multiphenotype-matching score. Mutations in the top-scoring genes for each phenotype profile were ranked on a 6-point scale of pathogenicity probability, resulting in an approximately equal number of top-ranked coding and noncoding candidate variants overall. We were able to assign the correct disease class for 12 cases and the correct genome to a clinical profile for five cases. The challenge assessor found genes in three of these five cases as likely appropriate. In the postsubmission phase, after careful screening of the genes in the correct genome, we identified additional potential diagnostic variants, a high proportion of which are noncoding.


Assuntos
Estudos de Associação Genética/métodos , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Genoma Humano , Genômica/métodos , Doenças Raras , Algoritmos , Alelos , Variação Genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Modelos Teóricos , Fenótipo , Sequenciamento Completo do Genoma , Fluxo de Trabalho
3.
BMC Bioinformatics ; 19(Suppl 4): 162, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29745853

RESUMO

BACKGROUND: Although rapid developed sequencing technologies make it possible for genotype data to be used in clinical diagnosis, it is still challenging for clinicians to understand the results of sequencing and make correct judgement based on them. Before this, diagnosis based on clinical features held a leading position. With the establishment of the Human Phenotype Ontology (HPO) and the enrichment of phenotype-disease annotations, there throws much more attention to the improvement of phenotype-based diagnosis. RESULTS: In this study, we presented a novel method called RelativeBestPair to measure similarity from the query terms to hereditary diseases based on HPO and then rank the candidate diseases. To evaluate the performance, we simulated a set of patients based on 44 complex diseases. Besides, by adding noise or imprecision or both, cases closer to real clinical conditions were generated. Thus, four simulated datasets were used to make comparison among RelativeBestPair and seven existing semantic similarity measures. RelativeBestPair ranked the underlying disease as top 1 on 93.73% of the simulated dataset without noise and imprecision, 93.64% of the simulated dataset with noise and without imprecision, 39.82% of the simulated dataset without noise and with imprecision, and 33.64% of the simulated dataset with both noise and imprecision. CONCLUSION: Compared with the seven existing semantic similarity measures, RelativeBestPair showed similar performance in two datasets without imprecision. While RelativeBestPair appeared to be equal to Resnik and better than other six methods in the simulated dataset without noise and with imprecision, it significantly outperformed all other seven methods in the simulated dataset with both noise and imprecision. It can be indicated that RelativeBestPair might be of great help in clinical setting.


Assuntos
Doença , Semântica , Simulação por Computador , Bases de Dados como Assunto , Humanos , Fenótipo
4.
Hum Mutat ; 39(2): 197-201, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29193559

RESUMO

A significant challenge facing clinical translation of exome sequencing is meaningful and efficient variant interpretation. Each exome contains ∼500 rare coding variants; laboratories must systematically and efficiently identify which variant(s) contribute to the patient's phenotype. In silico filtering is an approach that reduces analysis time while decreasing the chances of incidental findings. We retrospectively assessed 55 solved exomes using available datasets as in silico filters: Online Mendelian Inheritance in Man (OMIM), Orphanet, Human Phenotype Ontology (HPO), and Radboudumc University Medical Center curated panels. We found that personalized panels produced using HPO terms for each patient had the highest success rate (100%), while producing considerably less variants to assess. HPO panels also captured multiple diagnoses in the same individual. We conclude that custom HPO-derived panels are an efficient and effective way to identify clinically relevant exome variants.


Assuntos
Exoma/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Humanos , Estudos Retrospectivos , Análise de Sequência de DNA/métodos , Software
5.
Hum Mutat ; 38(9): 1169-1181, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28512736

RESUMO

Compared with earlier more restricted sequencing technologies, identification of rare disease variants using whole-genome sequence has the possibility of finding all causative variants, but issues of data quality and an overwhelming level of background variants complicate the analysis. The CAGI4 SickKids clinical genome challenge provided an opportunity to assess the landscape of variants found in a difficult set of 25 unsolved rare disease cases. To address the challenge, we developed a three-stage pipeline, first carefully analyzing data quality, then classifying high-quality gene-specific variants into seven categories, and finally examining each candidate variant for compatibility with the often complex phenotypes of these patients for final prioritization. Variants consistent with the phenotypes were found in 24 out of the 25 cases, and in a number of these, there are prioritized variants in multiple genes. Data quality analysis suggests that some of the selected variants are likely incorrect calls, complicating interpretation. The data providers followed up on three suggested variants with Sanger sequencing, and in one case, a prioritized variant was confirmed as likely causative by the referring physician, providing a diagnosis in a previously intractable case.


Assuntos
Variação Genética , Genômica/métodos , Doenças Raras/genética , Criança , Predisposição Genética para Doença , Humanos , Análise de Sequência de DNA , Software
6.
Curr Protoc ; 4(1): e955, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284225

RESUMO

The international Mitochondrial Disease Sequence Data Resource Consortium (MSeqDR) Quick-Mitome (QM) is a web-based platform enabling automated variant interpretation of whole-exome sequencing (WES) datasets for the genetic diagnosis of primary mitochondrial diseases (PMD). Designed specifically to address the unique dual genome nature of PMD etiologies, QM includes features for both nuclear and mitochondrial DNA (mtDNA) genome analysis. QM requires VCF variant lists, HPO ID clinical phenotypes, and pedigree files for multiple-sample VCF inputs. QM maps phenotypes to HPO terms before analysis. QM analysis requires 2 to 20 min for 100,000 variants on an 8-vCPU AWS server using Exomiser's "PASS_ONLY" mode for nuclear variants. QM ranks variants based on allele frequency, phenotype-gene association, functional impact, and inheritance mode. Variants are further annotated with multiple data sources such as OMIM, ClinVar, dbNSFP, gnoMAD, MITOMAP, and MSeqDR. In addition to standard Exomiser results, QM generates an Analysis Report and QM Integrated Report with add-on mtDNA-specific analyses, including haplogroup prediction with Phy-Mer, heteroplasmy calculation, and mvTool annotations. We developed the Mitochondrial Disease Variant (MDV) classifier using XGBoost to predict variant pathogenicity for PMD. The MDV classifier was trained on >120 features and performance benchmarking showed that it correctly classified >98% of nuclear gene variants as being pathogenic or benign, and predicted PMD-causing variants with 94% precision. The MSeqDR QM server is an open-access resource for phenotype-driven dual-genome analyses for PMD diagnosis by the global mitochondrial disease community. It is publicly available for non-commercial, non-clinical research use at https://mseqdr.org/quickmitome.php. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Standardizing clinical phenotypes into human phenotype ontology (HPO) terms as the phenotype input for Quick-Mitome (QM) Basic Protocol 2: Prepare the pedigree input for multiple-sample VCF Basic Protocol 3: Quick-Mitome (QM) analysis Basic Protocol 4: Reviewing and understanding the QM Integrated Report and Analysis Report.


Assuntos
Doenças Mitocondriais , Humanos , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Fenótipo , DNA Mitocondrial/genética , Mitocôndrias , Aprendizado de Máquina
7.
Genes (Basel) ; 15(5)2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38790248

RESUMO

The case report by Mabry et al. (1970) of a family with four children with elevated tissue non-specific alkaline phosphatase, seizures and profound developmental disability, became the basis for phenotyping children with the features that became known as Mabry syndrome. Aside from improvements in the services available to patients and families, however, the diagnosis and treatment of this, and many other developmental disabilities, did not change significantly until the advent of massively parallel sequencing. As more patients with features of the Mabry syndrome were identified, exome and genome sequencing were used to identify the glycophosphatidylinositol (GPI) biosynthesis disorders (GPIBDs) as a group of congenital disorders of glycosylation (CDG). Biallelic variants of the phosphatidylinositol glycan (PIG) biosynthesis, type V (PIGV) gene identified in Mabry syndrome became evidence of the first in a phenotypic series that is numbered HPMRS1-6 in the order of discovery. HPMRS1 [MIM: 239300] is the phenotype resulting from inheritance of biallelic PIGV variants. Similarly, HPMRS2 (MIM 614749), HPMRS5 (MIM 616025) and HPMRS6 (MIM 616809) result from disruption of the PIGO, PIGW and PIGY genes expressed in the endoplasmic reticulum. By contrast, HPMRS3 (MIM 614207) and HPMRS4 (MIM 615716) result from disruption of post attachment to proteins PGAP2 (HPMRS3) and PGAP3 (HPMRS4). The GPI biosynthesis disorders (GPIBDs) are currently numbered GPIBD1-21. Working with Dr. Mabry, in 2020, we were able to use improved laboratory diagnostics to complete the molecular diagnosis of patients he had originally described in 1970. We identified biallelic variants of the PGAP2 gene in the first reported HPMRS patients. We discuss the longevity of the Mabry syndrome index patients in the context of the utility of pyridoxine treatment of seizures and evidence for putative glycolipid storage in patients with HPMRS3. From the perspective of the laboratory innovations made that enabled the identification of the HPMRS phenotype in Dr. Mabry's patients, the need for treatment innovations that will benefit patients and families affected by developmental disabilities is clear.


Assuntos
Defeitos Congênitos da Glicosilação , Deficiências do Desenvolvimento , Glicosilfosfatidilinositóis , Humanos , Deficiências do Desenvolvimento/genética , Glicosilfosfatidilinositóis/genética , Defeitos Congênitos da Glicosilação/genética , Fenótipo , Masculino , Mutação , Feminino , Proteínas de Membrana/genética , Manosiltransferases
8.
Gland Surg ; 12(5): 664-676, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37284705

RESUMO

Background: The increase in the diagnosis of papillary thyroid carcinoma (PTC) has prompted researchers to establish a diagnostic model and identify functional subclusters. The Human Phenotype Ontology (HPO) platform is widely available for differential diagnostics and phenotype-driven investigations based on next-generation sequence-variation data. However, a systematic and comprehensive study to identify and validate PTC subclusters based on HPO is lacking. Methods: We first used the HPO platform to identify the PTC subclusters. An enrichment analysis was then conducted to examine the key biological processes and pathways associated with the subclusters, and a gene mutation analysis of the subclusters was conducted. For each subcluster, the differentially expressed genes (DEGs) were selected and validated. Finally, a single-cell RNA-sequencing data set was used to verify the DEGs. Results: In our study, 489 PTC patients from The Cancer Genome Atlas (TCGA) were included. Our analysis demonstrated that distinct subclusters of PTC are associated with different survival times and have different functional enrichment, and that C-C motif chemokine ligand 21 (CCL21) and zinc finger CCHC-type containing 12 (ZCCHC12) were the common down- and upregulated genes, respectively, in the 4 subclusters. Additionally, 20 characteristic genes were identified in the 4 subclusters, some of which have previously been reported to have roles in PTC. Further, we found that these characteristic genes were mainly expressed in thyrocytes, endothelial cells, and fibroblasts, and were rarely expressed in immune cells. Conclusions: We first identified subclusters in PTC based on HPO and found that patients with distinct subclusters have different prognoses. We then identified and validated the characteristic genes in the 4 subclusters. These findings are expected to serve as a crucial reference that will improve our understanding of PTC heterogeneity and the use of novel targets.

9.
Front Immunol ; 14: 1215869, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781402

RESUMO

Introduction: Accurate and standardized phenotypic descriptions are essential in diagnosing rare diseases and discovering new diseases, and the Human Phenotype Ontology (HPO) system was developed to provide a rich collection of hierarchical phenotypic descriptions. However, although the HPO terms for inborn errors of immunity have been improved and curated, it has not been investigated whether this curation improves the diagnosis of systemic autoinflammatory disease (SAID) patients. Here, we aimed to study if improved HPO annotation for SAIDs enhanced SAID identification and to demonstrate the potential of phenotype-driven genome diagnostics using curated HPO terms for SAIDs. Methods: We collected HPO terms from 98 genetically confirmed SAID patients across eight different European SAID expertise centers and used the LIRICAL (Likelihood Ratio Interpretation of Clinical Abnormalities) computational algorithm to estimate the effect of HPO curation on the prioritization of the correct SAID for each patient. Results: Our results show that the percentage of correct diagnoses increased from 66% to 86% and that the number of diagnoses with the highest ranking increased from 38 to 45. In a further pilot study, curation also improved HPO-based whole-exome sequencing (WES) analysis, diagnosing 10/12 patients before and 12/12 after curation. In addition, the average number of candidate diseases that needed to be interpreted decreased from 35 to 2. Discussion: This study demonstrates that curation of HPO terms can increase identification of the correct diagnosis, emphasizing the high potential of HPO-based genome diagnostics for SAIDs.


Assuntos
Doenças Hereditárias Autoinflamatórias , Síndrome de Imunodeficiência Adquirida dos Símios , Humanos , Animais , Projetos Piloto , Bases de Dados Genéticas , Fenótipo , Doenças Hereditárias Autoinflamatórias/diagnóstico , Doenças Hereditárias Autoinflamatórias/genética
10.
Genes (Basel) ; 13(7)2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35885950

RESUMO

Results of expression studies can be useful to clarify the genotype-phenotype relationship. However, according to data from recent literature, there is a large group of genes that are revealed as differentially expressed (DE) in many studies, regardless of the biological context. Additional analyses could shed more light on the relationships between genes, their differential expression, and diseases. We generated a set of 9972 disease genes from five gene-phenotype databases (OMIM, ORPHANET, DDG2P, DisGeNet and MalaCards) and a report of the International Union of Immunological Societies. To study transcriptomics of disease and non-disease genes in healthy tissues, we obtained data from the Human Protein Atlas (HPA) website. We analyzed the dependency between expression in healthy tissues and gene occurrence in Gene Expression Omnibus series using tools within the Enrichr libraries. The results of expression studies were annotated with Gene Ontology (GO) and Human Phenotype Ontology (HPO) terms. Using transcriptomics analysis of healthy tissues, we validated the previous findings of higher expression levels of disease genes in pathologically linked tissues compared to other tissues. Preferentially DE genes were generally highly expressed in one or multiple tissues and were enriched for disease genes. According to the results of GO enrichment analyses, both down- and up-regulated DE genes most often took part in immune response, translation and tissue-specific processes. A connection between DE-related pathology and the diversity of HPO terms was found. Investigating a link between expression and phenotype contributes to understanding the mode of development and progression of human diseases.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Ontologia Genética , Humanos , Fenótipo , Transcriptoma/genética
11.
Front Med (Lausanne) ; 9: 770031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35155491

RESUMO

BACKGROUND: COVID-19 pandemic is disaster to public health worldwide. Better perspective on COVID's features early in its course-prior to the development of vaccines and widespread variants-may prove useful in the understanding of future pandemics. Ontology provides a standardized integrative method for knowledge modeling and computer-assisted reasoning. In this study, we systematically extracted and analyzed clinical phenotypes and comorbidities in COVID-19 patients found at different countries and regions during the early pandemic using an ontology-based bioinformatics approach, with the aim to identify new insights and hidden patterns of the COVID-19 symptoms. RESULTS: A total of 48 research articles reporting analysis of first-hand clinical data from over 40,000 COVID-19 patients were surveyed. The patients studied therein were diagnosed with COVID-19 before May 2020. A total of 18 commonly-occurring phenotypes in these COVID-19 patients were first identified and then classified into different hierarchical groups based on the Human Phenotype Ontology (HPO). This meta-analytic approach revealed that fever, cough, and the loss of smell and taste were ranked as the most commonly-occurring phenotype in China, the US, and Italy, respectively. We also found that the patients from Europe and the US appeared to have more frequent occurrence of many nervous and abdominal symptom phenotypes (e.g., loss of smell, loss of taste, and diarrhea) than patients from China during the early pandemic. A total of 22 comorbidities, such as diabetes and kidney failure, were found to commonly exist in COVID-19 patients and positively correlated with the severity of the disease. The knowledge learned from the study was further modeled and represented in the Coronavirus Infectious Disease Ontology (CIDO), supporting semantic queries and analysis. Furthermore, also considering the symptoms caused by new viral variants at the later stages, a spiral model hypothesis was proposed to address the changes of specific symptoms during different stages of the pandemic. CONCLUSIONS: Differential patterns of symptoms in COVID-19 patients were found given different locations, time, and comorbidity types during the early pandemic. The ontology-based informatics provides a unique approach to systematically model, represent, and analyze COVID-19 symptoms, comorbidities, and the factors that influence the disease outcomes.

12.
Front Immunol ; 12: 803763, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35140711

RESUMO

Background: Chronic granulomatous disease (CGD) is an inborn error of immunity (IEI), characterised by recurrent bacterial and fungal infections. It is inherited either in an X-linked (XL) or autosomal recessive (AR) mode. Phenome refers to the entire set of phenotypes expressed, and its study allows us to generate new knowledge of the disease. The objective of the study is to reveal the phenomic differences between XL and AR-CGD by using Human Phenotype Ontology (HPO) terms. Methods: We collected data on 117 patients with genetically diagnosed CGD from Asia and Africa referred to the Asian Primary Immunodeficiency Network (APID network). Only 90 patients with sufficient clinical information were included for phenomic analysis. We used HPO terms to describe all phenotypes manifested in the patients. Results: XL-CGD patients had a lower age of onset, referral, clinical diagnosis, and genetic diagnosis compared with AR-CGD patients. The integument and central nervous system were more frequently affected in XL-CGD patients. Regarding HPO terms, perianal abscess, cutaneous abscess, and elevated hepatic transaminase were correlated with XL-CGD. A higher percentage of XL-CGD patients presented with BCGitis/BCGosis as their first manifestation. Among our CGD patients, lung was the most frequently infected organ, with gastrointestinal system and skin ranking second and third, respectively. Aspergillus species, Mycobacterium bovis, and Mycobacteirum tuberculosis were the most frequent pathogens to be found. Conclusion: Phenomic analysis confirmed that XL-CGD patients have more recurrent and aggressive infections compared with AR-CGD patients. Various phenotypic differences listed out can be used as clinical handles to distinguish XL or AR-CGD based on clinical features.


Assuntos
Genes Recessivos , Genes Ligados ao Cromossomo X , Predisposição Genética para Doença , Doença Granulomatosa Crônica/diagnóstico , Doença Granulomatosa Crônica/etiologia , Fenômica/métodos , Fenótipo , Alelos , Gerenciamento Clínico , Feminino , Estudos de Associação Genética , Testes Genéticos , Doença Granulomatosa Crônica/complicações , Doença Granulomatosa Crônica/terapia , Humanos , Infecções/etiologia , Infecções/terapia , Masculino , Análise de Sequência de DNA
13.
Phenomics ; 1(4): 171-185, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36939789

RESUMO

Deciphering the relationship between human proteins (genes) and phenotypes is one of the fundamental tasks in phenomics research. The Human Phenotype Ontology (HPO) builds upon a standardized logical vocabulary to describe the abnormal phenotypes encountered in human diseases and paves the way towards the computational analysis of their genetic causes. To date, many computational methods have been proposed to predict the HPO annotations of proteins. In this paper, we conduct a comprehensive review of the existing approaches to predicting HPO annotations of novel proteins, identifying missing HPO annotations, and prioritizing candidate proteins with respect to a certain HPO term. For each topic, we first give the formalized description of the problem, and then systematically revisit the published literatures highlighting their advantages and disadvantages, followed by the discussion on the challenges and promising future directions. In addition, we point out several potential topics to be worthy of exploration including the selection of negative HPO annotations and detecting HPO misannotations. We believe that this review will provide insight to the researchers in the field of computational phenotype analyses in terms of comprehending and developing novel prediction algorithms.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa