Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 946
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 179(7): 1582-1589.e7, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31787376

RESUMO

The hyperpolarization-activated cyclic nucleotide-gated (HCN) channel is a voltage-gated cation channel that mediates neuronal and cardiac pacemaker activity. The HCN channel exhibits reversed voltage dependence, meaning it closes with depolarization and opens with hyperpolarization. Different from Na+, Ca2+, and Kv1-Kv7 channels, the HCN channel does not have domain-swapped voltage sensors. We introduced a reversible, metal-mediated cross bridge into the voltage sensors to create the chemical equivalent of a hyperpolarized conformation and determined the structure using cryoelectron microscopy (cryo-EM). Unlike the depolarized HCN channel, the S4 helix is displaced toward the cytoplasm by two helical turns. Near the cytoplasm, the S4 helix breaks into two helices, one running parallel to the membrane surface, analogous to the S4-S5 linker of domain-swapped voltage-gated channels. These findings suggest a basis for allosteric communication between voltage sensors and the gate in this kind of channel. They also imply that voltage sensor movements are not the same in all voltage-gated channels.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Ativação do Canal Iônico , Animais , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Potenciais da Membrana , Conformação Proteica em alfa-Hélice , Células Sf9 , Spodoptera
2.
Cell ; 168(1-2): 111-120.e11, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28086084

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels underlie the control of rhythmic activity in cardiac and neuronal pacemaker cells. In HCN, the polarity of voltage dependence is uniquely reversed. Intracellular cyclic adenosine monophosphate (cAMP) levels tune the voltage response, enabling sympathetic nerve stimulation to increase the heart rate. We present cryo-electron microscopy structures of the human HCN channel in the absence and presence of cAMP at 3.5 Å resolution. HCN channels contain a K+ channel selectivity filter-forming sequence from which the amino acids create a unique structure that explains Na+ and K+ permeability. The voltage sensor adopts a depolarized conformation, and the pore is closed. An S4 helix of unprecedented length extends into the cytoplasm, contacts the C-linker, and twists the inner helical gate shut. cAMP binding rotates cytoplasmic domains to favor opening of the inner helical gate. These structures advance understanding of ion selectivity, reversed polarity gating, and cAMP regulation in HCN channels.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais de Potássio/química , Sequência de Aminoácidos , Microscopia Crioeletrônica/métodos , AMP Cíclico/química , AMP Cíclico/metabolismo , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Modelos Moleculares , Canais de Potássio/metabolismo , Alinhamento de Sequência
3.
Proc Natl Acad Sci U S A ; 121(14): e2400066121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38536754

RESUMO

The inherently low signal-to-noise ratio of NMR and MRI is now being addressed by hyperpolarization methods. For example, iridium-based catalysts that reversibly bind both parahydrogen and ligands in solution can hyperpolarize protons (SABRE) or heteronuclei (X-SABRE) on a wide variety of ligands, using a complex interplay of spin dynamics and chemical exchange processes, with common signal enhancements between 103 and 104. This does not approach obvious theoretical limits, and further enhancement would be valuable in many applications (such as imaging mM concentration species in vivo). Most SABRE/X-SABRE implementations require far lower fields (µT-mT) than standard magnetic resonance (>1T), and this gives an additional degree of freedom: the ability to fully modulate fields in three dimensions. However, this has been underexplored because the standard simplifying theoretical assumptions in magnetic resonance need to be revisited. Here, we take a different approach, an evolutionary strategy algorithm for numerical optimization, multi-axis computer-aided heteronuclear transfer enhancement for SABRE (MACHETE-SABRE). We find nonintuitive but highly efficient multiaxial pulse sequences which experimentally can produce a sevenfold improvement in polarization over continuous excitation. This approach optimizes polarization differently than traditional methods, thus gaining extra efficiency.

4.
Brain ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088003

RESUMO

The clinical manifestations of sporadic amyotrophic lateral sclerosis (ALS) vary widely. However, the current classification of ALS is mainly based on clinical presentations, while the roles of electrophysiological and biomedical biomarkers remain limited. Herein, we investigated a group of patients with sporadic ALS and an ALS mouse model with superoxide dismutase 1 (SOD1)/G93A transgenes using nerve excitability tests (NET) to investigate axonal membrane properties and chemical precipitation, followed by enzyme-linked immunosorbent assay analysis to measure plasma misfolded protein levels. Six of 19 patients (31.6%) with sporadic ALS had elevated plasma misfolded SOD1 protein levels. In sporadic ALS patients, only those with elevated misfolded SOD1 protein levels showed an increased inward rectification in the current-threshold (I/V) curve and an increased threshold reduction in the hyperpolarizing threshold electrotonus (TE) in the NET study. Two familial ALS patients with SOD1 mutations also exhibited similar electrophysiological patterns of NET. For patients with sporadic ALS showing significantly increased inward rectification in the I/V curve, we noted an elevation in plasma misfolded SOD1 level, but not in total SOD1, misfolded C9orf72, or misfolded phosphorylated TDP43 levels. Computer simulations demonstrated that the aforementioned axonal excitability changes are likely associated with an increase in hyperpolarization-activated cyclic nucleotide-gated (HCN) current. In SOD1/G93A mice, NET also showed an increased inward rectification in the I/V curve, which could be reversed by a single injection of the HCN channel blocker, ZD7288. Daily treatment of SOD1/G93A mice with ZD7288 partially prevented the early motor function decline and spinal motor neuron death. In summary, sporadic ALS patients with elevated plasma misfolded SOD1 exhibited similar patterns of motor axonal excitability changes as familial ALS patients and ALS mice with mutant SOD1 genes, suggesting the existence of SOD1-associated sporadic ALS. The observed NET pattern of increased inward rectification in the I/V curve was attributable to an elevation in the HCN current in SOD1-associated ALS.

5.
Cell Mol Life Sci ; 81(1): 135, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478096

RESUMO

Parkinson's disease (PD) is a motor disorder resulting from dopaminergic neuron degeneration in the substantia nigra caused by age, genetics, and environment. The disease severely impacts a patient's quality of life and can even be life-threatening. The hyperpolarization-activated cyclic nucleotide-gated (HCN) channel is a member of the HCN1-4 gene family and is widely expressed in basal ganglia nuclei. The hyperpolarization-activated current mediated by the HCN channel has a distinct impact on neuronal excitability and rhythmic activity associated with PD pathogenesis, as it affects the firing activity, including both firing rate and firing pattern, of neurons in the basal ganglia nuclei. This review aims to comprehensively understand the characteristics of HCN channels by summarizing their regulatory role in neuronal firing activity of the basal ganglia nuclei. Furthermore, the distribution and characteristics of HCN channels in each nucleus of the basal ganglia group and their effect on PD symptoms through modulating neuronal electrical activity are discussed. Since the roles of the substantia nigra pars compacta and reticulata, as well as globus pallidus externus and internus, are distinct in the basal ganglia circuit, they are individually described. Lastly, this investigation briefly highlights that the HCN channel expressed on microglia plays a role in the pathological process of PD by affecting the neuroinflammatory response.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Qualidade de Vida , Gânglios da Base/fisiologia , Substância Negra
6.
Proc Natl Acad Sci U S A ; 119(22): e2201644119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35605126

RESUMO

Spatial resolution in MRI is ultimately limited by the signal detection sensitivity of NMR, since resolution equal to ρiso in all three dimensions requires the detection of NMR signals from a volume ρiso3. With inductively detected NMR at room temperature, it has therefore proven difficult to achieve isotropic resolution better than ρiso = 3.0 µm, even with radio-frequency microcoils, optimized samples, high magnetic fields, optimized pulse sequence methods, and data acquisition times around 60 h. Here we show that spatial resolution can be improved and data acquisition times can be reduced substantially by performing MRI measurements at 5 K and using dynamic nuclear polarization (DNP) to enhance sensitivity. We describe the experimental apparatus and methods, and we report images of test samples with ρiso = 2.6 µm and ρiso = 1.7 µm, with signal-to-noise ratios greater than 15, acquired in 31.5 and 81.6 h, respectively. Image resolutions are verified by quantitative comparisons with simulations. These results establish a promising direction for high-resolution MRI of small samples. With further improvements in the experimental apparatus and in paramagnetic dopants for DNP, DNP-enhanced low-temperature MRI with ρiso < 1.0 µm is likely to become feasible, potentially enabling informative studies of structures within typical eukaryotic cells, cell clusters, and tissue samples.


Assuntos
Temperatura Baixa , Imageamento por Ressonância Magnética , Células , Eucariotos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Razão Sinal-Ruído
7.
Biochem Biophys Res Commun ; 700: 149585, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38290177

RESUMO

Endothelial microvascular dysfunction affects multi-organ pathologic processes that contribute to increased vascular tone and is at the base of impaired metabolic and cardiovascular diseases. The vascular dilation impaired by nitric oxide (NO) deficiency in such dysfunctional endothelium is often balanced by endothelial-derived hyperpolarizing factors (EDHFs), which play a critical role in managing vascular tone. Our latest research has uncovered a new group of lactone oxylipins produced in the polyunsaturated fatty acids (PUFAs) CYP450 epoxygenase pathway, significantly affecting vascular dilation. The lactone oxylipin, derived from arachidonic acid (5,6-diHET lactone, AA-L), has been previously shown to facilitate vasodilation dependent on the endothelium in isolated human microvessels. The administration of the lactone oxylipin derived from eicosapentaenoic acid (5,6-diHETE lactone, EPA-L) to hypertensive rats demonstrated a significant decrease in blood pressure and improvement in the relaxation of microvessels. However, the molecular signaling processes that underlie these observations were not fully understood. The current study delineates the molecular pathways through which EPA-L promotes endothelium-dependent vascular dilation. In microvessels from hypertensive individuals, it was found that EPA-L mediates endothelium-dependent vasodilation while the signaling pathway was not dependent on NO. In vitro studies on human endothelial cells showed that the hyperpolarization mediated by EPA-L relies on G-protein-coupled receptor (GPR)-phospholipase C (PLC)-IP3 signaling that further activates calcium-dependent potassium flux. The pathway was confirmed using a range of inhibitors and cells overexpressing GPR40, where a specific antagonist reduced the calcium levels and outward currents induced by EPA-L. The downstream AKT and endothelial NO synthase (eNOS) phosphorylations were non-significant. These findings show that the GPR-PLC-IP3 pathway is a key mediator in the EPA-L-triggered vasodilation of arterioles. Therefore, EPA-L is identified as a significant lactone-based PUFA metabolite that contributes to endothelial and vascular health.


Assuntos
Células Endoteliais , Hipertensão , Humanos , Ratos , Animais , Células Endoteliais/metabolismo , Fosfolipases Tipo C/metabolismo , Cálcio/metabolismo , Dilatação , Oxilipinas/metabolismo , Endotélio Vascular/metabolismo , Vasodilatação , Hipertensão/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais
8.
Microcirculation ; 31(5): e12859, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38818977

RESUMO

OBJECTIVE: The endothelium regulates crucial aspects of vascular function, including hemostasis, vasomotor tone, proliferation, immune cell adhesion, and microvascular permeability. Endothelial cells (ECs), especially in arterioles, are pivotal for flow distribution and peripheral resistance regulation. Investigating vascular endothelium physiology, particularly in microvascular ECs, demands precise isolation and culturing techniques. METHODS: Freshly isolated ECs are vital for examining protein expression, ion channel behavior, and calcium dynamics. Establishing primary endothelial cell cultures is crucial for unraveling vascular functions and understanding intact microvessel endothelium roles. Despite the significance, detailed protocols and comparisons with intact vessels are scarce in microvascular research. We developed a reproducible method to isolate microvascular ECs, assessing substrate influence by cultivating cells on fibronectin and gelatin matrix gels. This comparative approach enhances our understanding of microvascular endothelial cell biology. RESULTS: Microvascular mesenteric ECs expressed key markers (VE-cadherin and eNOS) in both matrix gels, confirming cell culture purity. Under uncoated conditions, ECs were undetected, whereas proteins linked to smooth muscle cells and fibroblasts were evident. Examining endothelial cell (EC) physiological dynamics on distinct matrix substrates revealed comparable cell length, shape, and Ca2+ elevations in both male and female ECs on gelatin and fibronectin matrix gels. Gelatin-cultured ECs exhibited analogous membrane potential responses to acetylcholine (ACh) or adenosine triphosphate (ATP), contrasting with their fibronectin-cultured counterparts. In the absence of stimulation, fibronectin-cultured ECs displayed a more depolarized resting membrane potential than gelatin-cultured ECs. CONCLUSIONS: Gelatin-cultured ECs demonstrated electrical behaviors akin to intact endothelium from mouse mesenteric arteries, thus advancing our understanding of endothelial cell behavior within diverse microenvironments.


Assuntos
Células Endoteliais , Gelatina , Microvasos , Óxido Nítrico Sintase Tipo III , Animais , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Camundongos , Feminino , Masculino , Microvasos/citologia , Microvasos/metabolismo , Microvasos/fisiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Células Cultivadas , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Géis , Antígenos CD/metabolismo , Caderinas/metabolismo , Cultura Primária de Células , Endotélio Vascular/metabolismo , Endotélio Vascular/citologia
9.
Magn Reson Med ; 91(5): 2153-2161, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38193310

RESUMO

PURPOSE: Improving the quality and maintaining the fidelity of large coverage abdominal hyperpolarized (HP) 13 C MRI studies with a patch based global-local higher-order singular value decomposition (GL-HOVSD) spatiotemporal denoising approach. METHODS: Denoising performance was first evaluated using the simulated [1-13 C]pyruvate dynamics at different noise levels to determine optimal kglobal and klocal parameters. The GL-HOSVD spatiotemporal denoising method with the optimized parameters was then applied to two HP [1-13 C]pyruvate EPI abdominal human cohorts (n = 7 healthy volunteers and n = 8 pancreatic cancer patients). RESULTS: The parameterization of kglobal = 0.2 and klocal = 0.9 denoises abdominal HP data while retaining image fidelity when evaluated by RMSE. The kPX (conversion rate of pyruvate-to-metabolite, X = lactate or alanine) difference was shown to be <20% with respect to ground-truth metabolic conversion rates when there is adequate SNR (SNRAUC > 5) for downstream metabolites. In both human cohorts, there was a greater than nine-fold gain in peak [1-13 C]pyruvate, [1-13 C]lactate, and [1-13 C]alanine apparent SNRAUC . The improvement in metabolite SNR enabled a more robust quantification of kPL and kPA . After denoising, we observed a 2.1 ± 0.4 and 4.8 ± 2.5-fold increase in the number of voxels reliably fit across abdominal FOVs for kPL and kPA quantification maps. CONCLUSION: Spatiotemporal denoising greatly improves visualization of low SNR metabolites particularly [1-13 C]alanine and quantification of [1-13 C]pyruvate metabolism in large FOV HP 13 C MRI studies of the human abdomen.


Assuntos
Imageamento por Ressonância Magnética , Ácido Pirúvico , Humanos , Ácido Pirúvico/metabolismo , Abdome/diagnóstico por imagem , Lactatos , Alanina , Isótopos de Carbono/metabolismo
10.
NMR Biomed ; 37(5): e5107, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38279190

RESUMO

Hyperpolarized carbon-13 labeled compounds are increasingly being used in medical MR imaging (MRI) and MR imaging (MRI) and spectroscopy (MRS) research, due to its ability to monitor tissue and cell metabolism in real-time. Although radiological biomarkers are increasingly being considered as clinical indicators, biopsies are still considered the gold standard for a large variety of indications. Bioreactor systems can play an important role in biopsy examinations because of their ability to provide a physiochemical environment that is conducive for therapeutic response monitoring ex vivo. We demonstrate here a proof-of-concept bioreactor and microcoil receive array setup that allows for ex vivo preservation and metabolic NMR spectroscopy on up to three biopsy samples simultaneously, creating an easy-to-use and robust way to simultaneously run multisample carbon-13 hyperpolarization experiments. Experiments using hyperpolarized [1-13C]pyruvate on ML-1 leukemic cells in the bioreactor setup were performed and the kinetic pyruvate-to-lactate rate constants ( k PL ) extracted. The coefficient of variation of the experimentally found k PL s for five repeated experiments was C V = 35 % . With this statistical power, treatment effects of 30%-40% change in lactate production could be easily differentiable with only a few hyperpolarization dissolutions on this setup. Furthermore, longitudinal experiments showed preservation of ML-1 cells in the bioreactor setup for at least 6 h. Rat brain tissue slices were also seen to be preserved within the bioreactor for at least 1 h. This validation serves as the basis for further optimization and upscaling of the setup, which undoubtedly has huge potential in high-throughput studies with various biomarkers and tissue types.


Assuntos
Análise do Fluxo Metabólico , Ácido Pirúvico , Ratos , Animais , Isótopos de Carbono , Ácido Pirúvico/metabolismo , Ácido Láctico/metabolismo , Reatores Biológicos , Biomarcadores
11.
Chemistry ; : e202400187, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38887134

RESUMO

Parahydrogen-induced polarization (PHIP) is an emerging technique to enhance the signal of stable isotope metabolic contrast agents for Magnetic Resonance (MR). The objective of this study is to continue establishing 1-13C-pyruvate-d3, signal-enhanced via PHIP, as a hyperpolarized contrast agent, obtained in seconds, to monitor metabolism in human cancer. Our focus was on human pancreatic and colon tumor xenografts. 1-13C-vinylpyruvate-d6 was hydrogenated using parahydrogen. Thereafter, the polarization of the protons was transferred to 13C. Following a workup procedure, the free hyperpolarized 1-13C-pyruvate-d3 was obtained in clean aqueous solution. After injection into animals bearing either pancreatic or colon cancer xenografts, slice-selective MR spectra were acquired and analyzed to determine rate constants of metabolic conversion into lactate and alanine. 1-13C-pyruvate-d3 proved to follow the increased metabolic rate to lactate and alanine in the tumor xenografts.

12.
Chemistry ; 30(25): e202304071, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38381807

RESUMO

Hyperpolarized 129Xe gas was FDA-approved as an inhalable contrast agent for magnetic resonance imaging of a wide range of pulmonary diseases in December 2022. Despite the remarkable success in clinical research settings, the widespread clinical translation of HP 129Xe gas faces two critical challenges: the high cost of the relatively low-throughput hyperpolarization equipment and the lack of 129Xe imaging capability on clinical MRI scanners, which have narrow-bandwidth electronics designed only for proton (1H) imaging. To solve this translational grand challenge of gaseous hyperpolarized MRI contrast agents, here we demonstrate the utility of batch-mode production of proton-hyperpolarized diethyl ether gas via heterogeneous pairwise addition of parahydrogen to ethyl vinyl ether. An approximately 0.1-liter bolus of hyperpolarized diethyl ether gas was produced in 1 second and injected in excised rabbit lungs. Lung ventilation imaging was performed using sub-second 2D MRI with up to 2×2 mm2 in-plane resolution using a clinical 0.35 T MRI scanner without any modifications. This feasibility demonstration paves the way for the use of inhalable diethyl ether as a gaseous contrast agent for pulmonary MRI applications using any clinical MRI scanner.


Assuntos
Meios de Contraste , Pulmão , Imageamento por Ressonância Magnética , Isótopos de Xenônio , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Animais , Pulmão/diagnóstico por imagem , Coelhos , Isótopos de Xenônio/química , Gases/química , Éter/química
13.
Chemistry ; 30(32): e202400472, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38565520

RESUMO

Chemical activation of the nuclear singlet state of dihydrogen, para-hydrogen, can dramatically increase the sensitivity of magnetic resonance spectroscopy and imaging. Here, we show that the highly reversible activation of para-hydrogen by an iridium pyridylpyrrolide complex is capable of producing this hyperpolarisation effect. Bound alkene ligands exhibit signal enhancement without reduction to alkanes, which is in contrast to the most widely used hyperpolarisation catalysts. The complex is recoverable due to the highly reversible binding and release of H2, and result in enhanced hydride signals in a wide range of coordinating and non-coordinating deuterated solvents. Synthetic modification of the ligand substituents and the addition of co-ligands show a strong dependence of chemical structure on reactivity, which reveals an untapped potential to exploit pyridylpyrrolides as ligands in the development of tunable para-hydrogen induced hyperpolarisation catalysts or molecular probes.

14.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001612

RESUMO

Multimodal imaging-the ability to acquire images of an object through more than one imaging mode simultaneously-has opened additional perspectives in areas ranging from astronomy to medicine. In this paper, we report progress toward combining optical and magnetic resonance (MR) imaging in such a "dual" imaging mode. They are attractive in combination because they offer complementary advantages of resolution and speed, especially in the context of imaging in scattering environments. Our approach relies on a specific material platform, microdiamond particles hosting nitrogen vacancy (NV) defect centers that fluoresce brightly under optical excitation and simultaneously "hyperpolarize" lattice [Formula: see text] nuclei, making them bright under MR imaging. We highlight advantages of dual-mode optical and MR imaging in allowing background-free particle imaging and describe regimes in which either mode can enhance the other. Leveraging the fact that the two imaging modes proceed in Fourier-reciprocal domains (real and k-space), we propose a sampling protocol that accelerates image reconstruction in sparse-imaging scenarios. Our work suggests interesting possibilities for the simultaneous optical and low-field MR imaging of targeted diamond nanoparticles.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Imagem Óptica/métodos , Fluorescência , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imagem Multimodal/instrumentação , Nanopartículas/química , Nanopartículas/ultraestrutura , Nitrogênio/química , Imagem Óptica/instrumentação , Imagens de Fantasmas
15.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753510

RESUMO

Hyperpolarized fumarate is a promising biosensor for carbon-13 magnetic resonance metabolic imaging. Such molecular imaging applications require nuclear hyperpolarization to attain sufficient signal strength. Dissolution dynamic nuclear polarization is the current state-of-the-art methodology for hyperpolarizing fumarate, but this is expensive and relatively slow. Alternatively, this important biomolecule can be hyperpolarized in a cheap and convenient manner using parahydrogen-induced polarization. However, this process requires a chemical reaction, and the resulting solutions are contaminated with the catalyst, unreacted reagents, and reaction side-product molecules, and are hence unsuitable for use in vivo. In this work we show that the hyperpolarized fumarate can be purified from these contaminants by acid precipitation as a pure solid, and later redissolved to a desired concentration in a clean aqueous solvent. Significant advances in the reaction conditions and reactor equipment allow for formation of hyperpolarized fumarate at 13C polarization levels of 30-45%.


Assuntos
Técnicas Biossensoriais , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Fumaratos/isolamento & purificação , Fumaratos/metabolismo , Imagem Molecular/métodos , Água/química , Soluções
16.
Magn Reson Chem ; 62(2): 94-100, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38173282

RESUMO

The para spin isomer of hydrogen gas possesses high nuclear spin order that can enhance the NMR signals of a variety of molecular species. Hydrogen is routinely enriched in the para spin state by lowering the gas temperature while flowing through a catalyst. Although parahydrogen enrichments approaching 100% are achievable near the H2 liquefaction temperature of 20 K, many experimentalists operate at liquid nitrogen temperatures (77 K) due to the lower associated costs and overall simplicity of the parahydrogen generator. Parahydrogen that is generated at 77 K provides an enrichment value of ~51% of the para spin isomer; while useful, there are many applications that can benefit from low-cost access to higher parahydrogen enrichments. Here, we introduce a method of improving parahydrogen enrichment values using a liquid nitrogen-cooled generator that operates at temperatures less than 77 K. The boiling temperature of liquid nitrogen is lowered through internal evaporation into helium gas bubbles that are injected into the liquid. Changes to liquid nitrogen temperatures and parahydrogen enrichment values were monitored as a function of helium gas flow rate. The injected helium bubbles lowered the liquid nitrogen temperature to ~65.5 K, and parahydrogen enrichments of up to ~59% were achieved; this represents an ~16% improvement compared with the expected parahydrogen fraction at 77 K. This technique is simple to implement in standard liquid nitrogen-cooled parahydrogen generators and may be of interest to a wide range of scientists that require a cost-effective approach to improving parahydrogen enrichment values.

17.
Alzheimers Dement ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994745

RESUMO

INTRODUCTION: In tauopathies, altered tau processing correlates with impairments in synaptic density and function. Changes in hyperpolarization-activated cyclic nucleotide-gated (HCN) channels contribute to disease-associated abnormalities in multiple neurodegenerative diseases. METHODS: To investigate the link between tau and HCN channels, we performed histological, biochemical, ultrastructural, and functional analyses of hippocampal tissues from Alzheimer's disease (AD), age-matched controls, Tau35 mice, and/or Tau35 primary hippocampal neurons. RESULTS: Expression of specific HCN channels is elevated in post mortem AD hippocampus. Tau35 mice develop progressive abnormalities including increased phosphorylated tau, enhanced HCN channel expression, decreased dendritic branching, reduced synapse density, and vesicle clustering defects. Tau35 primary neurons show increased HCN channel expression enhanced hyperpolarization-induced membrane voltage "sag" and changes in the frequency and kinetics of spontaneous excitatory postsynaptic currents. DISCUSSION: Our findings are consistent with a model in which pathological changes in tauopathies impact HCN channels to drive network-wide structural and functional synaptic deficits. HIGHLIGHTS: Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are functionally linked to the development of tauopathy. Expression of specific HCN channels is elevated in the hippocampus in Alzheimer's disease and the Tau35 mouse model of tauopathy. Increased expression of HCN channels in Tau35 mice is accompanied by hyperpolarization-induced membrane voltage "sag" demonstrating a detrimental effect of tau abnormalities on HCN channel function. Tau35 expression alters synaptic organization, causing a loosened vesicle clustering phenotype in Tau35 mice.

18.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255921

RESUMO

5-Deazaflavins are analogs of naturally occurring flavin cofactors. They serve as substitutes for natural flavin cofactors to investigate and modify the reaction pathways of flavoproteins. Demethylated 5-deazaflavins are potential candidates for artificial cofactors, allowing us to fine-tune the reaction kinetics and absorption characteristics of flavoproteins. In this contribution, demethylated 5-deazariboflavin radicals are investigated (1) to assess the influence of the methyl groups on the electronic structure of the 5-deazaflavin radical and (2) to explore their photophysical properties with regard to their potential as artificial cofactors. We determined the proton hyperfine structure of demethylated 5-deazariboflavins using photochemically induced dynamic nuclear polarization (photo-CIDNP) spectroscopy, as well as density functional theory (DFT). To provide context, we compare our findings to a study of flavin mononucleotide (FMN) derivatives. We found a significant influence of the methylation pattern on the absorption properties, as well as on the proton hyperfine coupling ratios of the xylene moiety, which appears to be solvent-dependent. This effect is enhanced by the replacement of N5 by C5-H in 5-deazaflavin derivatives compared to their respective flavin counterparts.


Assuntos
Dinitrocresóis , Prótons , Riboflavina , Análise Espectral , Flavoproteínas
19.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612808

RESUMO

We examined the localization of the 5-hydroxytryptamine (5-HT) receptor and its effects on mouse colonic interstitial cells of Cajal (ICCs) using electrophysiological techniques. Treatment with 5-HT increased the pacemaker activity in colonic ICCs with depolarization of membrane potentials in a dose-dependent manner. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blockers blocked pacemaker activity and 5-HT-induced effects. Moreover, an adenylate cyclase inhibitor inhibited 5-HT-induced effects, and cell-permeable 8-bromo-cAMP increased the pacemaker activity. Various agonists of the 5-HT receptor subtype were working in colonic ICCs, including the 5-HT4 receptor. In small intestinal ICCs, 5-HT depolarized the membrane potentials transiently. Adenylate cyclase inhibitors or HCN blockers did not show any influence on 5-HT-induced effects. Anoctamin-1 (ANO1) or T-type Ca2+ channel blockers inhibited the pacemaker activity of colonic ICCs and blocked 5-HT-induced effects. A tyrosine protein kinase inhibitor inhibited pacemaker activity in colonic ICCs under controlled conditions but did not show any influence on 5-HT-induced effects. Among mitogen-activated protein kinase (MAPK) inhibitors, a p38 MAPK inhibitor inhibited 5-HT-induced effects on colonic ICCs. Thus, 5-HT's effect on pacemaker activity in small intestinal and colonic ICCs has excitatory but variable patterns. ANO1, T-type Ca2+, and HCN channels are involved in 5-HT-induced effects, and MAPKs are involved in 5-HT effects in colonic ICCs.


Assuntos
Doenças do Colo , Células Intersticiais de Cajal , Animais , Camundongos , Masculino , Serotonina/farmacologia , Células Intersticiais do Testículo , Inibidores de Adenilil Ciclases , Bloqueadores dos Canais de Cálcio , Inibidores de Proteínas Quinases
20.
Angew Chem Int Ed Engl ; 63(12): e202309188, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-37727926

RESUMO

The hydrogen molecule, which exists in two spin isomers (ortho- and parahydrogen), is a highly studied system due to its fundamental properties and practical applications. Parahydrogen is used for Nuclear Magnetic Resonance signal enhancement, which is hyperpolarization of other molecules, including biorelevant ones. Hyperpolarization can be achieved by using Signal Amplification by Reversible Exchange (SABRE). SABRE can also convert parahydrogen into orthohydrogen, and surprisingly, in some cases, it has been discovered that orthohydrogen's resonance has the Partially Negative Line (PNL) pattern. Here, an approach for obtaining orthohydrogen with a PNL signal is presented for two catalysts: Ir-IMes, and Ir-IMesBn. The type of solvent in which SABRE is conducted is crucial for the observation of PNL. Specifically, a PNL signal can be easily generated in benzene using both catalysts, but it is more intense for Ir-IMesBn. In acetone, PNL is observed only for Ir-IMesBn. In methanol, no PNL is detected. The PNL effect is only detectable during the initial steps of pre-catalyst activation, and disappears as the activation process progresses. We have proposed a working hypothesis that explains our results. The presented data may facilitate the further investigation of PNL and its applications in material science and catalysis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa