Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Calcif Tissue Int ; 112(4): 493-511, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36840756

RESUMO

Growth plate chondrocytes are regulated by numerous factors and hormones as they mature during endochondral bone formation, including transforming growth factor beta-1 (TGFb1), bone morphogenetic protein 2 (BMP2), insulin-like growth factor-1 (IFG1), parathyroid hormone and parathyroid hormone related peptide (PTH, PTHrP), and Indian hedgehog (IHH). Chondrocytes in the growth plate's growth zone (GC) produce and export matrix vesicles (MVs) under the regulation of 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3]. 1α,25(OH)2D3 regulates MV enzyme composition genomically and 1α,25(OH)2D3 secreted by the cells acts on the MV membrane nongenomically, destabilizing it and releasing MV enzymes. This study examined the regulatory role 1α,25(OH)2D3 has over production and packaging of microRNA (miRNA) into MVs by GC cells and the release of miRNA by direct action on MVs. Costochondral cartilage GC cells were treated with 1α,25(OH)2D3 and the miRNA in the cells and MVs sequenced. We also treated MVs with 1α,25(OH)2D3 and determined if the miRNA was released. To assess whether MVs can act directly with chondrocytes and if this is regulated by 1α,25(OH)2D3, we stained MVs with a membrane dye and treated GC cells with them. 1α,25(OH)2D3 regulated production and packaging of a unique population of miRNA into MVs compared to the vehicle control population. 1α,25(OH)2D3 treatment of MVs did not release miRNA. Stained MVs were endocytosed by GC cells and this was increased with 1α,25(OH)2D3 treatment. This study adds new regulatory roles for 1α,25(OH)2D3 with respect to packaging and transport of MV miRNAs.


Assuntos
MicroRNAs , MicroRNAs/metabolismo , Proteínas Hedgehog/metabolismo , Condrócitos/metabolismo , Matriz Extracelular/metabolismo , Células Cultivadas
2.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37628952

RESUMO

Matrix vesicles (MVs) are nano-sized extracellular vesicles that are anchored in the extracellular matrix (ECM). In addition to playing a role in biomineralization, osteoblast-derived MVs were recently suggested to have regulatory duties. The aims of this study were to establish the characteristics of osteoblast-derived MVs in the context of extracellular vesicles like exosomes, assess their role in modulating osteoblast differentiation, and examine their mechanism of uptake. MVs were isolated from the ECM of MG63 human osteoblast-like cell cultures and characterized via enzyme activity, transmission electron microscopy, nanoparticle tracking analysis, Western blot, and small RNA sequencing. Osteoblasts were treated with MVs from two different culture conditions (growth media [GM]; osteogenic media [OM]) to evaluate their effects on the differentiation and production of inflammatory markers and on macrophage polarization. MV endocytosis was assessed using a lipophilic, fluorescent dye and confocal microscopy with the role of caveolae determined using methyl-ß-cyclodextrin. MVs exhibited a four-fold enrichment in alkaline phosphatase specific activity compared to plasma membranes; were 50-150 nm in diameter; possessed exosomal markers CD63, CD81, and CD9 and endosomal markers ALIX, TSG101, and HSP70; and were selectively enriched in microRNA linked to an anti-osteogenic effect and to M2 macrophage polarization. Treatment with GM or OM MVs decreased osteoblast differentiation. Osteoblasts endocytosed MVs using a mechanism that involves caveolae. These results support the hypothesis that osteoblasts produce MVs that participate in the regulation of osteogenesis.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , Cavéolas , Osteogênese , Endocitose , Diferenciação Celular , Meios de Cultura
3.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361965

RESUMO

Mineralization-competent cells like osteoblasts and chondrocytes release matrix vesicles (MVs) which accumulate Ca2+ and Pi, creating an optimal environment for apatite formation. The mineralization process requires the involvement of proteins, such as annexins (Anx) and tissue-nonspecific alkaline phosphatase (TNAP), as well as low molecular-weight compounds. Apigenin, a flavonoid compound, has been reported to affect bone metabolism, but there are doubts about its mechanism of action under physiological and pathological conditions. In this report, apigenin potency to modulate annexin A6 (AnxA6)- and TNAP-mediated osteoblast mineralization was explored using three cell lines: human fetal osteoblastic hFOB 1.19, human osteosarcoma Saos-2, and human coronary artery smooth muscle cells HCASMC. We compared the mineralization competence, the morphology and composition of minerals, and the protein distribution in control and apigenin-treated cells and vesicles. The mineralization ability was monitored by AR-S/CPC analysis, and TNAP activity was determined by ELISA assay. Apigenin affected the mineral structure and modulated TNAP activity depending on the concentration. We also observed increased mineralization in Saos-2 cells. Based on TEM-EDX, we found that apigenin influenced the mineral composition. This flavonoid also disturbed the intracellular distribution of AnxA6 and TNAP, especially blocking AnxA6 aggregation and TNAP attachment to the membrane, as examined by FM analysis of cells and TEM-gold analysis of vesicles. In summary, apigenin modulates the mineralization process by regulating AnxA6 and TNAP, as well as through various effects on normal and cancer bone tissues or atherosclerotic soft tissue.


Assuntos
Apigenina , Calcificação Fisiológica , Humanos , Fosfatase Alcalina/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Anexina A6/efeitos dos fármacos , Anexina A6/metabolismo , Apigenina/farmacologia , Apigenina/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Calcificação Fisiológica/fisiologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo
4.
Osteoarthritis Cartilage ; 29(1): 113-123, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33161100

RESUMO

OBJECTIVE: miR-122 stimulates proliferation of growth plate chondrocytes whereas miR-451 stimulates terminal differentiation and matrix turnover. Here, we examined the potential of these microRNA as regulators of articular chondrocytes using an in vitro model of osteoarthritis. METHODS: miR-122 and miR-451 presence in rat articular cartilage was assessed using the anterior cruciate ligament transection model of OA. In vitro testing used first passage rat articular chondrocytes (rArCs) that were transfected with lipofectamine (Lipo) and miR-122 or miR-451 for 24-h, then treated with 10 ng/mL IL-1ß in order to mimic an osteoarthritic environment. Conditioned media were collected and MMP13, PGE2 and OA-related cytokines were measured. Matrix vesicles were collected from cell layer lysates using ultra-centrifugation. Cells were treated with miR-122 or miR-451 inhibitors to verify miR-specific effects. RESULTS: Both miR-122 and miR-451 were increased in the OA articular cartilage compared to healthy tissue; rArCs expressed both microRNAs in MVs. miR-122 prevented IL-1ß-dependent increases in MMP-13 and PGE2, whereas miR-451 significantly increased the IL-1ß effect. Multiplex data indicated that miR-122 reduced the stimulatory effect of IL-1ß on IL-1α, IL-2, Il-4, IL-6, GM-CSF, MIP-1A, RANTES and VEGF. In contrast, IL-2, IL-4, IL-6, GM-CSF, and MIP-1A were increased by miR-451 while VEGF was decreased. Inhibiting miR-122 exacerbated the response to IL-1ß indicating endogenous levels of miR-122 were present. There were no differences in MMP-13 or PGE2 with miR-451 Locked Nucleic Acid (LNA) inhibitor treatment. CONCLUSIONS: Both miRs were elevated in OA in a rat bilateral anterior cruciate ligament transection (ACLT) model. miR-122 prevented, while miR-451 exacerbated the effects of IL-1ß on rArCs.


Assuntos
Artrite Experimental/metabolismo , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , MicroRNAs/genética , Osteoartrite do Joelho/metabolismo , Animais , Lesões do Ligamento Cruzado Anterior/complicações , Artrite Experimental/etiologia , Cartilagem Articular/citologia , Citocinas/metabolismo , Dinoprostona/metabolismo , Técnicas In Vitro , Metaloproteinase 13 da Matriz/metabolismo , Oligonucleotídeos , Osteoartrite do Joelho/etiologia , Ratos
5.
Calcif Tissue Int ; 109(4): 455-468, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33950267

RESUMO

Matrix vesicles (MVs) are extracellular organelles produced by growth plate cartilage cells in a zone-specific manner. MVs are similar in size to exosomes, but they are tethered to the extracellular matrix (ECM) via integrins. Originally associated with matrix calcification, studies now show that they contain matrix processing enzymes and microRNA that are specific to their zone of maturation. MVs produced by costochondral cartilage resting zone (RC) chondrocytes are enriched in microRNA 503 whereas those produced by growth zone (GC) chondrocytes are enriched in microRNA 122. MVs are packaged by chondrocytes under hormonal and factor regulation and release of their contents into the ECM is also under hormonal control, suggesting that their microRNA might have a regulatory role in growth plate proliferation and maturation. To test this, we selected a subset of these enriched microRNAs and transfected synthetic mimics back into RC and GC cells. Transfecting growth plate chondrocytes with select microRNA produced a broad range of phenotypic responses indicating that MV-based microRNAs are involved in the regulation of these cells. Specifically, microRNA 122 drives both RC and GC cells toward a proliferative phenotype, stabilizes the matrix and inhibits differentiation whereas microRNA 22 exerts control over regulatory factor production. This study demonstrates the strong regulatory capability possessed by unique MV enriched microRNAs on growth plate chondrocytes and their potential for use as therapeutic agents.


Assuntos
Lâmina de Crescimento , MicroRNAs , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Condrócitos , Matriz Extracelular , MicroRNAs/genética , Ratos , Ratos Sprague-Dawley
6.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884758

RESUMO

Biomineralization is the process by which organisms produce hard inorganic matter from soft tissues with outstanding control of mineral deposition in time and space. For this purpose, organisms deploy a sophisticated "toolkit" that has resulted in significant evolutionary innovations, for which calcium phosphate (CaP) is the biomineral selected for the skeleton of vertebrates. While CaP mineral formation in aqueous media can be investigated by studying thermodynamics and kinetics of phase transitions in supersaturated solutions, biogenic mineralization requires coping with the inherent complexity of biological systems. This mainly includes compartmentalization and homeostatic processes used by organisms to regulate key physiological factors, including temperature, pH and ion concentration. A detailed analysis of the literature shows the emergence of two main views describing the mechanism of CaP biomineralization. The first one, more dedicated to the study of in vivo systems and supported by researchers in physiology, often involves matrix vesicles (MVs). The second one, more investigated by the physicochemistry community, involves collagen intrafibrillar mineralization particularly through in vitro acellular models. Herein, we show that there is an obvious need in the biological systems to control both where and when the mineral forms through an in-depth survey of the mechanism of CaP mineralization. This necessity could gather both communities of physiologists and physicochemists under a common interest for an enzymatic approach to better describe CaP biomineralization. Both homogeneous and heterogeneous enzymatic catalyses are conceivable for these systems, and a few preliminary promising results on CaP mineralization for both types of enzymatic catalysis are reported in this work. Through them, we aim to describe the relevance of our point of view and the likely findings that could be obtained when adding an enzymatic approach to the already rich and creative research field dealing with CaP mineralization. This complementary approach could lead to a better understanding of the biomineralization mechanism and inspire the biomimetic design of new materials.


Assuntos
Biomineralização/fisiologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/metabolismo , Fosfatase Alcalina/química , Fosfatase Alcalina/metabolismo , Animais , Biocatálise , Evolução Biológica , Osso e Ossos/metabolismo , Cartilagem/metabolismo , Fenômenos Químicos , Colágeno/química , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Técnicas In Vitro , Modelos Biológicos , Filogenia , Dente/metabolismo
7.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201781

RESUMO

We recently reported an unexpected role of osteoblast-derived matrix vesicles in the delivery of microRNAs to bone matrix. Of such microRNAs, we found that miR-125b inhibited osteoclast formation by targeting Prdm1 encoding a transcriptional repressor of anti-osteoclastogenesis factors. Transgenic (Tg) mice overexpressing miR-125b in osteoblasts by using human osteocalcin promoter grow normally but exhibit high trabecular bone mass. We have now further investigated the effects of osteoblast-mediated miR-125b overexpression on skeletal morphogenesis and remodeling during development, aging and in a situation of skeletal repair, i.e., fracture healing. There were no significant differences in the growth plate, primary spongiosa or lateral (periosteal) bone formation and mineral apposition rate between Tg and wild-type (WT) mice during early bone development. However, osteoclast number and medial (endosteal) bone resorption were less in Tg compared to WT mice, concomitant with increased trabecular bone mass. Tg mice were less susceptible to age-dependent changes in bone mass, phosphate/amide I ratio and mechanical strength. In a femoral fracture model, callus formation progressed similarly in Tg and WT mice, but callus resorption was delayed, reflecting the decreased osteoclast numbers associated with the Tg callus. These results indicate that the decreased osteoclastogenesis mediated by miR-125b overexpression in osteoblasts leads to increased bone mass and strength, while preserving bone formation and quality. They also suggest that, in spite of the fact that single miRNAs may target multiple genes, the miR-125b axis may be an attractive therapeutic target for bone loss in various age groups.


Assuntos
Desenvolvimento Ósseo , Reabsorção Óssea/patologia , MicroRNAs/genética , Osteoblastos/patologia , Osteoclastos/patologia , Osteogênese , Fatores Etários , Animais , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo
8.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830274

RESUMO

The imbalance between bone resorption and bone formation in favor of resorption results in bone loss and deterioration of bone architecture. Osteoblast differentiation is a sequential event accompanying biogenesis of matrix vesicles and mineralization of collagen matrix with hydroxyapatite crystals. Considerable efforts have been made in developing naturally-occurring plant compounds, preventing bone pathologies, or enhancing bone regeneration. Coumarin aesculetin inhibits osteoporosis through hampering the ruffled border formation of mature osteoclasts. However, little is known regarding the effects of aesculetin on the impairment of matrix vesicle biogenesis. MC3T3-E1 cells were cultured in differentiation media with 1-10 µM aesculetin for up to 21 days. Aesculetin boosted the bone morphogenetic protein-2 expression, and alkaline phosphatase activation of differentiating MC3T3-E1 cells. The presence of aesculetin strengthened the expression of collagen type 1 and osteoprotegerin and transcription of Runt-related transcription factor 2 in differentiating osteoblasts for 9 days. When ≥1-5 µM aesculetin was added to differentiating cells for 15-18 days, the induction of non-collagenous proteins of bone sialoprotein II, osteopontin, osteocalcin, and osteonectin was markedly enhanced, facilitating the formation of hydroxyapatite crystals and mineralized collagen matrix. The induction of annexin V and PHOSPHO 1 was further augmented in ≥5 µM aesculetin-treated differentiating osteoblasts for 21 days. In addition, the levels of tissue-nonspecific alkaline phosphatase and collagen type 1 were further enhanced within the extracellular space and on matrix vesicles of mature osteoblasts treated with aesculetin, indicating matrix vesicle-mediated bone mineralization. Finally, aesculetin markedly accelerated the production of thrombospondin-1 and tenascin C in mature osteoblasts, leading to their adhesion to preformed collagen matrix. Therefore, aesculetin enhanced osteoblast differentiation, and matrix vesicle biogenesis and mineralization. These findings suggest that aesculetin may be a potential osteo-inductive agent preventing bone pathologies or enhancing bone regeneration.


Assuntos
Matriz Óssea/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Osteoblastos/citologia , Umbeliferonas/farmacologia , Animais , Matriz Óssea/efeitos dos fármacos , Linhagem Celular , Colágeno Tipo I/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Vesículas Extracelulares/efeitos dos fármacos , Sialoproteína de Ligação à Integrina/metabolismo , Camundongos , Osteoblastos/efeitos dos fármacos , Osteocalcina/metabolismo , Osteogênese/efeitos dos fármacos , Osteonectina/metabolismo , Osteopontina/metabolismo , Osteoprotegerina/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924370

RESUMO

The mineralization process is initiated by osteoblasts and chondrocytes during intramembranous and endochondral ossifications, respectively. Both types of cells release matrix vesicles (MVs), which accumulate Pi and Ca2+ and form apatites in their lumen. Tissue non-specific alkaline phosphatase (TNAP), a mineralization marker, is highly enriched in MVs, in which it removes inorganic pyrophosphate (PPi), an inhibitor of apatite formation. MVs then bud from the microvilli of mature osteoblasts or hypertrophic chondrocytes and, thanks to the action of the acto-myosin cortex, become released to the extracellular matrix (ECM), where they bind to collagen fibers and propagate mineral growth. In this report, we compared the mineralization ability of human fetal osteoblastic cell line (hFOB 1.19 cells) with that of osteosarcoma cell line (Saos-2 cells). Both types of cells were able to mineralize in an osteogenic medium containing ascorbic acid and beta glycerophosphate. The composition of calcium and phosphate compounds in cytoplasmic vesicles was distinct from that in extracellular vesicles (mostly MVs) released after collagenase-digestion. Apatites were identified only in MVs derived from Saos-2 cells, while MVs from hFOB 1.19 cells contained amorphous calcium phosphate complexes. In addition, AnxA6 and AnxA2 (nucleators of mineralization) increased mineralization in the sub-membrane region in strongly mineralizing Saos-2 osteosarcoma, where they co-localized with TNAP, whereas in less mineralizing hFOB 1.19 osteoblasts, AnxA6, and AnxA2 co-localizations with TNAP were less visible in the membrane. We also observed a reduction in the level of fetuin-A (FetuA), an inhibitor of mineralization in ECM, following treatment with TNAP and Ca channels inhibitors, especially in osteosarcoma cells. Moreover, a fraction of FetuA was translocated from the cytoplasm towards the plasma membrane during the stimulation of Saos-2 cells, while this displacement was less pronounced in stimulated hFOB 19 cells. In summary, osteosarcoma Saos-2 cells had a better ability to mineralize than osteoblastic hFOB 1.19 cells. The formation of apatites was observed in Saos-2 cells, while only complexes of calcium and phosphate were identified in hFOB 1.19 cells. This was also evidenced by a more pronounced accumulation of AnxA2, AnxA6, FetuA in the plasma membrane, where they were partly co-localized with TNAP in Saos-2 cells, in comparison to hFOB 1.19 cells. This suggests that both activators (AnxA2, AnxA6) and inhibitors (FetuA) of mineralization were recruited to the membrane and co-localized with TNAP to take part in the process of mineralization.


Assuntos
Anexina A2/metabolismo , Anexina A6/metabolismo , Calcificação Fisiológica , Osteoblastos/metabolismo , Osteossarcoma/metabolismo , alfa-2-Glicoproteína-HS/metabolismo , Fosfatase Alcalina/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Forma Celular , Humanos , Fósforo/metabolismo
10.
J Struct Biol ; 212(2): 107607, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32858148

RESUMO

Bone biomineralization is an exquisite process by which a hierarchically organized mineral matrix is formed. Growing evidence has uncovered the involvement of one class of extracellular vesicles, named matrix vesicles (MVs), in the formation and delivery of the first mineral nuclei to direct collagen mineralization. MVs are released by mineralization-competent cells equipped with a specific biochemical machinery to initiate mineral formation. However, little is known about the mechanisms by which MVs can trigger this process. Here, we present a combination of in situ investigations and ex vivo analysis of MVs extracted from growing-femurs of chicken embryos to investigate the role played by phosphatidylserine (PS) in the formation of mineral nuclei. By using self-assembled Langmuir monolayers, we reconstructed the nucleation core - a PS-enriched motif thought to trigger mineral formation in the lumen of MVs. In situ infrared spectroscopy of Langmuir monolayers and ex situ analysis by transmission electron microscopy evidenced that mineralization was achieved in supersaturated solutions only when PS was present. PS nucleated amorphous calcium phosphate that converted into biomimetic apatite. By using monolayers containing lipids extracted from native MVs, mineral formation was also evidenced in a manner that resembles the artificial PS-enriched monolayers. PS-enrichment in lipid monolayers creates nanodomains for local increase of supersaturation, leading to the nucleation of ACP at the interface through a multistep process. We posited that PS-mediated nucleation could be a predominant mechanism to produce the very first mineral nuclei during MV-driven bone/cartilage biomineralization.


Assuntos
Biomineralização/fisiologia , Fosfatos de Cálcio/metabolismo , Lipídeos/fisiologia , Fosfatidilserinas/metabolismo , Animais , Apatitas/metabolismo , Biomimética/métodos , Calcificação Fisiológica/fisiologia , Cálcio/metabolismo , Cartilagem/metabolismo , Galinhas , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , Fêmur/metabolismo , Microscopia Eletrônica de Transmissão/métodos
11.
Biochem Soc Trans ; 48(5): 2335-2345, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33125481

RESUMO

Extracellular vesicles (EV) are implicated in a variety of functions affecting the extracellular matrix (ECM), including matrix degradation, cross-linking of matrix proteins and matrix calcification. These processes are important in many physiological contexts such as angiogenesis and wound healing, and dysregulation of ECM homeostasis contributes to a wide range of diseases including fibrosis, cancer and arthritis. Most studies of EV have focussed on their roles in cell:cell communication, but EV can exist as integral components of the ECM. By far the most well-characterised ECM-resident EV are matrix vesicles (MV) in bone, but the broader role of EV in the ECM is not well understood. This review will explore what is known of the roles of EV in the ECM and will also highlight the similarities and differences between MV and other EV.


Assuntos
Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , Homeostase , Neovascularização Fisiológica , Animais , Artrite Reumatoide/metabolismo , Osso e Ossos/metabolismo , Comunicação Celular , Exossomos/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibrose , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias/metabolismo , Ácidos Nucleicos/metabolismo , Osteoblastos/metabolismo , Transdução de Sinais , Cicatrização
12.
Int J Mol Sci ; 21(4)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085611

RESUMO

Annexin A6 (AnxA6) is the largest member of the annexin family of proteins present in matrix vesicles (MVs). MVs are a special class of extracellular vesicles that serve as a nucleation site during cartilage, bone, and mantle dentin mineralization. In this study, we assessed the localization of AnxA6 in the MV membrane bilayer using native MVs and MV biomimetics. Biochemical analyses revealed that AnxA6 in MVs can be divided into three distinct groups. The first group corresponds to Ca2+-bound AnxA6 interacting with the inner leaflet of the MV membrane. The second group corresponds to AnxA6 localized on the surface of the outer leaflet. The third group corresponds to AnxA6 inserted in the membrane's hydrophobic bilayer and co-localized with cholesterol (Chol). Using monolayers and proteoliposomes composed of either dipalmitoylphosphatidylcholine (DPPC) to mimic the outer leaflet of the MV membrane bilayer or a 9:1 DPPC:dipalmitoylphosphatidylserine (DPPS) mixture to mimic the inner leaflet, with and without Ca2+, we confirmed that, in agreement with the biochemical data, AnxA6 interacted differently with the MV membrane. Thermodynamic analyses based on the measurement of surface pressure exclusion (πexc), enthalpy (ΔH), and phase transition cooperativity (Δt1/2) showed that AnxA6 interacted with DPPC and 9:1 DPPC:DPPS systems and that this interaction increased in the presence of Chol. The selective recruitment of AnxA6 by Chol was observed in MVs as probed by the addition of methyl-ß-cyclodextrin (MßCD). AnxA6-lipid interaction was also Ca2+-dependent, as evidenced by the increase in πexc in negatively charged 9:1 DPPC:DPPS monolayers and the decrease in ΔH in 9:1 DPPC:DPPS proteoliposomes caused by the addition of AnxA6 in the presence of Ca2+ compared to DPPC zwitterionic bilayers. The interaction of AnxA6 with DPPC and 9:1 DPPC:DPPS systems was distinct even in the absence of Ca2+ as observed by the larger change in Δt1/2 in 9:1 DPPC:DPPS vesicles as compared to DPPC vesicles. Protrusions on the surface of DPPC proteoliposomes observed by atomic force microscopy suggested that oligomeric AnxA6 interacted with the vesicle membrane. Further work is needed to delineate possible functions of AnxA6 at its different localizations and ways of interaction with lipids.


Assuntos
Anexina A6/metabolismo , Calcificação Fisiológica , Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , Varredura Diferencial de Calorimetria , Colesterol/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Microdomínios da Membrana/metabolismo , Microscopia de Força Atômica , Proteolipídeos/metabolismo
13.
Heart Lung Circ ; 29(1): 112-117, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31230870

RESUMO

Vascular calcification is a key character of advanced plaque in diabetic atherosclerosis. Microcalcification induces plaque rupture, whereas macrocalcification contributes to plaque stability. However, there is still no clear explanation for the formation and transition of these two types of calcification. Based on existing work and the latest international progress, this article provides a brief review of four aspects: calcification transition in plaque; matrix vesicle-mediated calcification transition in plaque; regulation mechanism of matrix vesicle-mediated calcification transition in diabetic plaque; and proposal of a new hypothesis, which may offer a new perspective on the study of the mechanism of calcification transition in plaque.


Assuntos
Aterosclerose/metabolismo , Angiopatias Diabéticas/metabolismo , Matriz Extracelular/metabolismo , Placa Aterosclerótica/metabolismo , Calcificação Vascular/metabolismo , Animais , Aterosclerose/patologia , Angiopatias Diabéticas/patologia , Matriz Extracelular/patologia , Humanos , Placa Aterosclerótica/patologia , Calcificação Vascular/patologia
14.
Pflugers Arch ; 471(1): 175-184, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30511265

RESUMO

Under normal physiological condition, the biomineralization process is limited to skeletal tissues and teeth and occurs throughout the individual's life. Biomineralization is an actively regulated process involving the progressive mineralization of the extracellular matrix secreted by osteoblasts in bone or odontoblasts and ameloblasts in tooth. Although the detailed molecular mechanisms underlying the formation of calcium-phosphate apatite crystals are still debated, it is suggested that calcium and phosphate may need to be transported across the membrane of the mineralizing cell, suggesting a pivotal role of phosphate transporters in bone and tooth mineralization. In this context, this short review describes the current knowledge on the role of Slc34 Na+-phosphate transporters in skeletal and tooth mineralization.


Assuntos
Osso e Ossos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo II/genética , Dente/metabolismo , Animais , Biomineralização , Humanos , Proteínas Cotransportadoras de Sódio-Fosfato Tipo II/metabolismo
15.
Biochem Biophys Res Commun ; 514(1): 252-258, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31029430

RESUMO

Extracellular vesicles (EVs) play an important role in biological functions and may feature innate therapeutic potential for diseases. In the present study, EVs released by osteoblasts at different stages of the mineralization process were investigated for their potential ability to promote bone formation. Results showed that the characteristics of EVs of mineralizing osteoblasts changed with regularity. EVs derived from the mid-to-late differentiation stage remarkably promoted osteoblast differentiation of bone marrow-derived mesenchymal stem cells and improved osteoporosis in ovariectomized mice. The findings also revealed that the effect of EVs on osteogenesis was related with the maturity of matrix vesicles (MVs), a kind of EVs selectively released by mineralizing-related cells. Nevertheless, only the EVs from the mid-to-late stage showed osteoinductive properties, Synthetic cartilage lymph (SCL) treatment of EVs from the middle stage could promote MV maturation but showed no effect on osteoinduction. Additionally, EVs derived at the middle and mid-to-late stages showed innate bone-targeting potential. Collectively, this study demonstrated that EVs released by osteoblasts at the mid-to-late differentiation stage markedly enhance osteogenesis. Our findings present the prospective use of osteoblast-released EVs in bone tissue engineering.


Assuntos
Vesículas Extracelulares/fisiologia , Osteoblastos/citologia , Osteogênese/fisiologia , Osteoporose/terapia , Animais , Diferenciação Celular , Células Cultivadas , Vesículas Extracelulares/química , Vesículas Extracelulares/transplante , Feminino , Fêmur/diagnóstico por imagem , Fêmur/patologia , Expressão Gênica , Células-Tronco Mesenquimais , Camundongos , Osteoporose/diagnóstico por imagem , Ovariectomia , Microtomografia por Raio-X
16.
Arch Biochem Biophys ; 667: 14-21, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-30998909

RESUMO

Matrix vesicles (MVs) are a class of extracellular vesicles that initiate mineralization in cartilage, bone, and other vertebrate tissues by accumulating calcium ions (Ca2+) and inorganic phosphate (Pi) within their lumen and forming a nucleation core (NC). After further sequestration of Ca2+ and Pi, the NC transforms into crystalline complexes. Direct evidence of the existence of the NC and its maturation have been provided solely by analyses of dried samples. We isolated MVs from chicken embryo cartilage and used atomic force microscopy peak force quantitative nanomechanical property mapping (AFM-PFQNM) to measure the nanomechanical and morphological properties of individual MVs under both mineralizing (+Ca2+) and non-mineralizing (-Ca2+) fluid conditions. The elastic modulus of MVs significantly increased by 4-fold after incubation in mineralization buffer. From AFM mapping data, we inferred the morphological changes of MVs as mineralization progresses: prior to mineralization, a punctate feature, the NC, is present within MVs and this feature grows and stiffens during mineralization until it occupies most of the MV lumen. Dynamic light scattering showed a significant increase in hydrodynamic diameter and no change in the zeta potential of hydrated MVs after incubation with Ca2+. This validates that crystalline complexes, which are strongly negative relative to MVs, were forming within the lumen of MVs. These data were substantiated by transmission electron microscopy energy dispersive X-ray and Fourier transform infrared spectroscopic analyses of dried MVs, which provide evidence that the complexes increased in size, crystallinity, and Ca/P ratio within MVs during the mineralization process.


Assuntos
Biomineralização/fisiologia , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Microscopia de Força Atômica/métodos , Animais , Fenômenos Biomecânicos , Cartilagem/química , Cartilagem/metabolismo , Cartilagem/ultraestrutura , Embrião de Galinha , Vesículas Extracelulares/ultraestrutura , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier
17.
J Bone Miner Metab ; 37(4): 607-613, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30324534

RESUMO

Tissue-nonspecific alkaline phosphatase (TNAP), a glycosylphosphatidylinositol-anchored ectoenzyme present on the membrane of matrix vesicles (MVs), hydrolyzes the mineralization inhibitor inorganic pyrophosphate as well as ATP to generate the inorganic phosphate needed for apatite formation. Herein, we used proteoliposomes harboring TNAP as MV biomimetics with or without nucleators of mineral formation (amorphous calcium phosphate and complexes with phosphatidylserine) to assess the role of the MVs' membrane lipid composition on TNAP activity by means of turbidity assay and FTIR analysis. We found that TNAP-proteoliposomes have the ability to induce mineralization even in the absence of mineral nucleators. We also found that the addition of cholesterol or sphingomyelin to TNAP-proteoliposomes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine reduced the ability of TNAP to induce biomineralization. Our results suggest that the lipid microenvironment is essential for the induction and propagation of minerals mediated by TNAP.


Assuntos
Fosfatase Alcalina/metabolismo , Calcificação Fisiológica , Microambiente Celular , Lipídeos/química , Proteolipídeos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Difusão Dinâmica da Luz , Humanos , Hidrólise , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier
18.
Int J Mol Sci ; 20(12)2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31212828

RESUMO

Osteoblasts initiate bone mineralization by releasing matrix vesicles (MVs) into the extracellular matrix (ECM). MVs promote the nucleation process of apatite formation from Ca2+ and Pi in their lumen and bud from the microvilli of osteoblasts during bone development. Tissue non-specific alkaline phosphatase (TNAP) as well as annexins (among them, AnxA6) are abundant proteins in MVs that are engaged in mineralization. In addition, sarcoma proto-oncogene tyrosine-protein (Src) kinase and Rho-associated coiled-coil (ROCK) kinases, which are involved in vesicular transport, may also regulate the mineralization process. Upon stimulation in osteogenic medium containing 50 µg/mL of ascorbic acid (AA) and 7.5 mM of ß-glycerophosphate (ß-GP), human osteosarcoma Saos-2 cells initiated mineralization, as evidenced by Alizarin Red-S (AR-S) staining, TNAP activity, and the partial translocation of AnxA6 from cytoplasm to the plasma membrane. The addition of 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4-d] pyrimidine (PP2), which is an inhibitor of Src kinase, significantly inhibited the mineralization process when evaluated by the above criteria. In contrast, the addition of (R)-(+)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexane carboxamide hydrochloride (Y-27632), which is an inhibitor of ROCK kinase, did not affect significantly the mineralization induced in stimulated Saos-2 cells as denoted by AR-S and TNAP activity. In conclusion, mineralization by human osteosarcoma Saos-2 cells seems to be differently regulated by Src and ROCK kinases.


Assuntos
Neoplasias Ósseas/metabolismo , Calcificação Fisiológica , Osteossarcoma/metabolismo , Quinases Associadas a rho/metabolismo , Quinases da Família src/metabolismo , Anexinas/metabolismo , Biomarcadores , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Matriz Extracelular/metabolismo , Imunofluorescência , Humanos , Proto-Oncogene Mas
19.
Connect Tissue Res ; 59(sup1): 55-61, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29471680

RESUMO

Purpose/Aim: Elevated serum phosphate is one of the major factors contributing to vascular calcification. Studies suggested that extracellular vesicles released from vascular smooth muscle cells significantly contribute to the initiation and progression of this pathology. Recently, we have demonstrated that elevated phosphate stimulates release of extracellular vesicles from osteogenic cells at the initiation of the mineralization process. Here, we used MOVAS cell line as an in vitro model of vascular calcification to examine whether vascular smooth muscle cells respond to high phosphate levels in a similar way and increase formation of extracellular vesicles. MATERIALS AND METHODS: Vesicles residing in extracellular matrix as well as vesicles released to culture medium were evaluated by nanoparticle tracking analyses. In addition, using mass spectrometry and protein profiling, protein composition of extracellular vesicles released by MOVAS cells under standard growth conditions and upon exposure to high phosphate was compared. RESULTS: Significant increase of the number of extracellular vesicles was detected after 72 h of exposure of cells to high phosphate. Elevated phosphate levels also affected protein composition of extracellular vesicles released from MOVAS cells. Finally, the comparative analyses of proteins in extracellular vesicles isolated from extracellular matrix and from conditioned medium identified significant differences in protein composition in these two groups of extracellular vesicles. CONCLUSIONS: Results of this study demonstrate that exposure of MOVAS cells to high phosphate levels stimulates the release of extracellular vesicles and changes their protein composition.


Assuntos
Vesículas Extracelulares/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Calcificação Vascular/metabolismo , Vesículas Extracelulares/patologia , Perfilação da Expressão Gênica , Humanos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fosfatos/efeitos adversos , Fosfatos/farmacologia , Proteômica , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/patologia
20.
Biochim Biophys Acta Gen Subj ; 1862(3): 532-546, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29108957

RESUMO

BACKGROUND: Matrix vesicles (MVs) are released from hypertrophic chondrocytes and from mature osteoblasts, the cells responsible for endochondral and membranous ossification. Under pathological conditions, they can also be released from cells of non-skeletal tissues such as vascular smooth muscle cells. MVs are extracellular vesicles of approximately 100-300nm diameter harboring the biochemical machinery needed to induce mineralization. SCOPE OF THE REVIEW: The review comprehensively delineates our current knowledge of MV biology and highlights open questions aiming to stimulate further research. The review is constructed as a series of questions addressing issues of MVs ranging from their biogenesis and functions, to biomimetic models. It critically evaluates experimental data including their isolation and characterization methods, like lipidomics, proteomics, transmission electron microscopy, atomic force microscopy and proteoliposome models mimicking MVs. MAJOR CONCLUSIONS: MVs have a relatively well-defined function as initiators of mineralization. They bind to collagen and their composition reflects the composition of lipid rafts. We call attention to the as yet unclear mechanisms leading to the biogenesis of MVs, and how minerals form and when they are formed. We discuss the prospects of employing upcoming experimental models to deepen our understanding of MV-mediated mineralization and mineralization disorders such as the use of reconstituted lipid vesicles, proteoliposomes and, native sample preparations and high-resolution technologies. GENERAL SIGNIFICANCE: MVs have been extensively investigated owing to their roles in skeletal and ectopic mineralization. MVs serve as a model system for lipid raft structures, and for the mechanisms of genesis and release of extracellular vesicles.


Assuntos
Condrócitos/ultraestrutura , Matriz Extracelular/metabolismo , Vesículas Extracelulares , Osteoblastos/ultraestrutura , Animais , Apatitas/metabolismo , Materiais Biomiméticos , Calcificação Fisiológica/fisiologia , Calcinose/fisiopatologia , Condrócitos/patologia , Colágeno/metabolismo , Vesículas Extracelulares/fisiologia , Humanos , Hipertrofia , Microdomínios da Membrana/fisiologia , Minerais/metabolismo , Modelos Biológicos , Biogênese de Organelas , Proteolipídeos , Manejo de Espécimes , Calcificação Vascular/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa