Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731799

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder. Dopamine (DA) neurons in the substantia nigra pars compacta, which have axonal projections to the dorsal striatum (dSTR), degenerate in PD. In contrast, DA neurons in the ventral tegmental area, with axonal projections to the ventral striatum, including the nucleus accumbens (NAcc) shell, are largely spared. This study aims to uncover the relative contributions of glycolysis and oxidative phosphorylation (OxPhos) to DA release in the striatum. We measured evoked DA release in mouse striatal brain slices using fast-scan cyclic voltammetry applied every two minutes. Blocking OxPhos resulted in a greater reduction in evoked DA release in the dSTR when compared to the NAcc shell, while blocking glycolysis caused a more significant decrease in evoked DA release in the NAcc shell than in the dSTR. Furthermore, when glycolysis was bypassed in favor of direct OxPhos, evoked DA release in the NAcc shell decreased by approximately 50% over 40 min, whereas evoked DA release in the dSTR was largely unaffected. These results demonstrate that the dSTR relies primarily on OxPhos for energy production to maintain evoked DA release, whereas the NAcc shell depends more on glycolysis. Consistently, two-photon imaging revealed higher oxidation levels of DA terminals in the dSTR than in the NAcc shell. Together, these findings partly explain the selective vulnerability of DA terminals in the dSTR to degeneration in PD.


Assuntos
Corpo Estriado , Dopamina , Glicólise , Fosforilação Oxidativa , Animais , Dopamina/metabolismo , Camundongos , Corpo Estriado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neurônios Dopaminérgicos/metabolismo , Núcleo Accumbens/metabolismo
2.
Bull Exp Biol Med ; 177(1): 22-25, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38954297

RESUMO

We studied the respiratory activity of mitochondria in peripheral blood leukocytes from 36 patients with coronary heart disease (CHD) and a history of ventricular tachyarrhythmias required cardioverter-defibrillator implantation. The measurements were carried out in incubation buffers with different oxidation substrates (succinate and pyruvate-malate mixture). In pyruvate-malate incubation buffer, oxygen consumption rate and respiratory control coefficients in patients with triggered device did not differ significantly from those in patients without cardioverter-defibrillator triggering. At the same time, respiratory control coefficients were below the reference values. In succinate buffer, values of mitochondrial parameters were significantly lower in patients with triggered devices. Our findings indicate that mitochondria of patients with non-triggered cardioverters-defibrillators have better functional and metabolic plasticity. It was concluded that activity of respiratory processes in mitochondria could be an indicator that should be taken into the account when assessing the risk of developing ventricular tachyarrhythmias.


Assuntos
Doença das Coronárias , Desfibriladores Implantáveis , Consumo de Oxigênio , Humanos , Masculino , Pessoa de Meia-Idade , Doença das Coronárias/fisiopatologia , Doença das Coronárias/terapia , Consumo de Oxigênio/fisiologia , Feminino , Mitocôndrias/metabolismo , Idoso , Taquicardia Ventricular/fisiopatologia , Taquicardia Ventricular/terapia , Ácido Pirúvico/metabolismo , Ácido Succínico/metabolismo , Malatos/metabolismo , Mitocôndrias Cardíacas/metabolismo
3.
BMC Plant Biol ; 23(1): 496, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37845628

RESUMO

BACKGROUND: Conventional methods to measure oxygen consumption, such as Clark-type electrodes, have limitations such as requiring a large amount of starting material. Moreover, commercially available kits for high-throughput methods are usually optimized for animal cells and mitochondria. Here, we present a novel method to measure the oxygen consumption rate using a high-throughput assay in isolated mitochondria of European beech seeds. To perform the measurements, we adapted the Agilent Seahorse XF Cell Mito Stress Test Kit protocol for measurements on plant mitochondria. RESULTS: The optimized protocol for OCR measurement of mitochondria isolated from beech seeds allowed the observation of storage period-dependent gradual decreases in non-phosphorylating respiration, phosphorylating respiration and maximal FCCP-stimulated respiration. The longer the seeds were stored, the greater the impairment of respiratory function. CONCLUSIONS: Thanks to this method it is possible to minimize the amount of plant material and conduct research to obtain information on the respiratory condition and activity of plant mitochondria, including the efficiency of oxidative phosphorylation and the maximum oxidative capacity of the respiratory chain. We demonstrated that the improved protocol is suitable for study of plant material.


Assuntos
Respiração Celular , Mitocôndrias , Animais , Mitocôndrias/metabolismo , Consumo de Oxigênio , Transporte de Elétrons , Oxirredução , Plantas , Oxigênio/metabolismo
4.
J Bioenerg Biomembr ; 53(5): 513-523, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34365583

RESUMO

The poor outcomes in retinoblastoma necessitate new treatments. Salinomycin is an attractive candidate, and has demonstrated selective anti-cancer properties in different cancer types. This work addressed the efficacy of salinomycin in retinoblastoma models and probe the associated mechanisms. Cellular functional assays were conducted to determine the effects salinomycin in vitro. Xenograft retinoblastoma mouse model was established to investigate the efficacy of salinomycin in vivo. Biochemical assays were conducted to analyze the mechanism of salinomycin's action focusing on mitochondrial functions, energy reduction-related signaling pathways. Salinomycin has positive effects towards retinoblastoma cells regardless of heterogeneity through suppressing growth and inducing apoptosis. Salinomycin also specifically inhibits cells displaying stemness and highly invasive phenotypes. Using retinoblastoma xenograft mouse model, we show that salinomycin at non-toxic dose effectively inhibits growth and induces apoptosis. Mechanistic studies show that salinomycin inhibits mitochondrial respiration via specifically suppressing complex I and II activities, reduces mitochondrial membrane potential and decreases energy reduction, followed by induction of oxidative stress and damage, AMPK activation and mTOR inhibition. Our study highlights that adding salinomycin to the existing treatment armamentarium for retinoblastoma is beneficial.


Assuntos
Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Antibacterianos/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Piranos/uso terapêutico , Retinoblastoma/tratamento farmacológico , Animais , Antibacterianos/farmacologia , Humanos , Camundongos , Camundongos SCID , Piranos/farmacologia
5.
Br J Nutr ; 126(11): 1642-1650, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33551001

RESUMO

BACKGROUND: Previous research has suggested that curcumin potentially induces mitochondrial biogenesis in skeletal muscle via increasing cyclic AMP (cAMP) levels. However, the regulatory mechanisms for this phenomenon remain unknown. The purpose of the present study was to clarify the mechanism by which curcumin activates cAMP-related signalling pathways that upregulate mitochondrial biogenesis and respiration in skeletal muscle. METHODS: The effect of curcumin treatment (i.p., 100 mg/kg-BW/d for 28 d) on mitochondrial biogenesis was determined in rats. The effects of curcumin and exercise (swimming for 2 h/d for 3 d) on the cAMP signalling pathway were determined in the absence and presence of phosphodiesterase (PDE) or protein kinase A (PKA) inhibitors. Mitochondrial respiration, citrate synthase (CS) activity, cAMP content and protein expression of cAMP/PKA signalling molecules were analysed. RESULTS: Curcumin administration increased cytochrome c oxidase subunit (COX-IV) protein expression, and CS and complex I activity, consistent with the induction of mitochondrial biogenesis by curcumin. Mitochondrial respiration was not altered by curcumin treatment. Curcumin and PDE inhibition tended to increase cAMP levels with or without exercise. In addition, exercise increased the phosphorylation of phosphodiesterase 4A (PDE4A), whereas curcumin treatment strongly inhibited PDE4A phosphorylation regardless of exercise. Furthermore, curcumin promoted AMP-activated protein kinase (AMPK) phosphorylation and PPAR gamma coactivator (PGC-1α) deacetylation. Inhibition of PKA abolished the phosphorylation of AMPK. CONCLUSION: The present results suggest that curcumin increases cAMP levels via inhibition of PDE4A phosphorylation, which induces mitochondrial biogenesis through a cAMP/PKA/AMPK signalling pathway. Our data also suggest the possibility that curcumin utilises a regulatory mechanism for mitochondrial biogenesis that is distinct from the exercise-induced mechanism in skeletal muscle.


Assuntos
Curcumina , Biogênese de Organelas , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Curcumina/farmacologia , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Fatores de Transcrição/metabolismo
6.
Surg Endosc ; 35(8): 4321-4331, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32856153

RESUMO

BACKGROUND: Fluorescence-based enhanced reality (FLER) is a computer-based quantification method of fluorescence angiographies to evaluate bowel perfusion. The aim of this prospective trial was to assess the clinical feasibility and to correlate FLER with metabolic markers of perfusion, during colorectal resections. METHODS: FLER analysis and visualization was performed in 22 patients (diverticulitis n = 17; colorectal cancer n = 5) intra- and extra-abdominally during distal and proximal resection, respectively. The fluorescence signal of indocyanine green (0.2 mg/kg) was captured using a near-infrared camera and computed to create a virtual color-coded cartography. This was overlaid onto the bowel (enhanced reality). It helped to identify regions of interest (ROIs) where samples were subsequently obtained. Resections were performed strictly guided according to clinical decision. On the surgical specimen, samplings were made at different ROIs to measure intestinal lactates (mmol/L) and mitochondria efficiency as acceptor control ratio (ACR). RESULTS: The native (unquantified) fluorescent signal diffused to obvious ischemic areas during the distal appreciation. Proximally, a lower diffusion of ICG was observed. Five anastomotic complications occurred. The expected values of local capillary lactates were correlated with the measured values both proximally (3.62 ± 2.48 expected vs. 3.17 ± 2.8 actual; rho 0.89; p = 0.0006) and distally (4.5 ± 3 expected vs. 4 ± 2.5 actual; rho 0.73; p = 0.0021). FLER values correlated with ACR at the proximal site (rho 0.76; p = 0.04) and at the ischemic zone (rho 0.71; p = 0.01). In complicated cases, lactates at the proximal resection site were higher (5.8 ± 4.5) as opposed to uncomplicated cases (2.45 ± 1.5; p = 0.008). ACR was reduced proximally in complicated (1.3 ± 0.18) vs. uncomplicated cases (1.68 ± 0.3; p = 0.023). CONCLUSIONS: FLER allows to image the quantified fluorescence signal in augmented reality and provides a reproducible estimation of bowel perfusion (NCT02626091).


Assuntos
Colo , Verde de Indocianina , Anastomose Cirúrgica , Fístula Anastomótica , Colo/diagnóstico por imagem , Colo/cirurgia , Angiofluoresceinografia , Humanos , Perfusão , Estudos Prospectivos
7.
Biochim Biophys Acta ; 1848(4): 995-1004, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25600660

RESUMO

Monensin is a carrier of cations through lipid membranes capable of exchanging sodium (potassium) cations for protons by an electroneutral mechanism, whereas its ethyl ester derivative ethyl-monensin is supposed to transport sodium (potassium) cations in an electrogenic manner. To elucidate mechanistic details of the ionophoric activity, ion fluxes mediated by monensin and ethyl-monensin were measured on planar bilayer lipid membranes, liposomes, and mitochondria. In particular, generation of membrane potential on liposomes was studied via the measurements of rhodamine 6G uptake by fluorescence correlation spectroscopy. In mitochondria, swelling experiments were expounded by the additional measurements of respiration, membrane potential, and matrix pH. It can be concluded that both monensin and ethyl-monensin can perform nonelectrogenic exchange of potassium (sodium) ions for protons and serve as electrogenic potassium ion carriers similar to valinomycin. The results obtained are in line with the predictions based on the crystal structures of the monensin complexes with sodium ions and protons (Huczynski et al., Biochim. Biophys. Acta, 1818 (2012) pp. 2108-2119). The functional activity observed for artificial membranes and mitochondria can be applied to explain the activity of ionophores in living systems. It can also be important for studying the antitumor activity of monensin.


Assuntos
Transporte Biológico/efeitos dos fármacos , Troca Iônica , Mitocôndrias Hepáticas/metabolismo , Monensin/química , Monensin/farmacologia , Prótons , Animais , Respiração Celular/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Ionóforos/farmacologia , Cinética , Bicamadas Lipídicas/metabolismo , Lipossomos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Membranas Artificiais , Mitocôndrias Hepáticas/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Dilatação Mitocondrial/efeitos dos fármacos , Nigericina/farmacologia , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Potássio/metabolismo , Ionóforos de Próton/química , Ionóforos de Próton/farmacologia , Ratos , Sódio/metabolismo , Valinomicina/farmacologia
8.
Neurochem Res ; 41(4): 880-91, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26586405

RESUMO

Mitochondrial respiratory chain complexes enzymatic (MRCCE) activities were successfully evaluated in frozen brain samples. Epilepsy surgery offers an ethical opportunity to study human brain tissue surgically removed to treat drug resistant epilepsies. Epilepsy surgeries are done with hemodynamic and laboratory parameters to maintain physiology, but there are no studies analyzing the association among these parameters and MRCCE activities in the human brain tissue. We determined the intra-operative parameters independently associated with MRCCE activities in middle temporal neocortex (Cx), amygdala (AMY) and head of hippocampus (HIP) samples of patients (n = 23) who underwent temporal lobectomy using multiple linear regressions. MRCCE activities in Cx, AMY and HIP are differentially associated to trans-operative mean arterial blood pressure, O2 saturation, hemoglobin, and anesthesia duration to time of tissue sampling. The time-course between the last seizure occurrence and tissue sampling as well as the sample storage to biochemical assessments were also associated with enzyme activities. Linear regression models including these variables explain 13-17 % of MRCCE activities and show a moderate to strong effect (r = 0.37-0.82). Intraoperative hemodynamic and laboratory parameters as well as the time from last seizure to tissue sampling and storage time are associated with MRCCE activities in human samples from the Cx, AMYG and HIP. Careful control of these parameters is required to minimize confounding biases in studies using human brain samples collected from elective neurosurgery.


Assuntos
Encéfalo/enzimologia , Complexo II de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Epilepsia/enzimologia , Adulto , Lobectomia Temporal Anterior , Encéfalo/patologia , Encéfalo/cirurgia , Epilepsia/patologia , Epilepsia/cirurgia , Feminino , Congelamento , Humanos , Masculino , Manejo de Espécimes/métodos , Succinato Desidrogenase/metabolismo
9.
Int J Mol Sci ; 17(12)2016 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-27973394

RESUMO

Adrenergic receptors couple to Gs-proteins leading to transmembrane adenylyl cyclase activation and cytosolic cyclic adenosine monophosphate (cAMP) production. Cyclic AMP is also produced in the mitochondrial matrix, where it regulates respiration through protein kinase A (PKA)-dependent phosphorylation of respiratory chain complexes. We hypothesized that a blunted mitochondrial cAMP-PKA pathway would participate in sepsis-induced heart dysfunction. Adult male mice were subjected to intra-abdominal sepsis. Mitochondrial respiration of cardiac fibers and myocardial contractile performance were evaluated in response to 8Br-cAMP, PKA inhibition (H89), soluble adenylyl cyclase inhibition (KH7), and phosphodiesterase inhibition (IBMX; BAY60-7550). Adenosine diphosphate (ADP)-stimulated respiratory rates of cardiac fibers were reduced in septic mice. Compared with controls, stimulatory effects of 8Br-cAMP on respiration rates were enhanced in septic fibers, whereas inhibitory effects of H89 were reduced. Ser-58 phosphorylation of cytochrome c oxidase subunit IV-1 was reduced in septic hearts. In vitro, incubation of septic cardiac fibers with BAY60-7550 increased respiratory control ratio and improved cardiac MVO2 efficiency in isolated septic heart. In vivo, BAY60-7550 pre-treatment of septic mice have limited impact on myocardial function. Mitochondrial cAMP-PKA signaling is impaired in the septic myocardium. PDE2 phosphodiesterase inhibition by BAY60-7550 improves mitochondrial respiration and cardiac MVO2 efficiency in septic mice.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Sepse/metabolismo , Transdução de Sinais , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Western Blotting , Respiração Celular/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Imidazóis/farmacologia , Camundongos , Proteínas Mitocondriais/metabolismo , Contração Miocárdica/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Triazinas/farmacologia
10.
Cell Biochem Funct ; 32(6): 530-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25077445

RESUMO

Astrocytes play a key role in removing the synaptically released glutamate from the extracellular space and maintaining the glutamate below neurotoxic level in the brain. However, high concentration of glutamate leads to toxicity in astrocytes, and the underlying mechanisms are unclear. The purpose of this study was to investigate whether energy metabolism disorder, especially impairment of mitochondrial respiration, is involved in the glutamate-induced gliotoxicity. Exposure to 10-mM glutamate for 48 h stimulated glycolysis and respiration in astrocytes. However, the increased oxygen consumption was used for proton leak and non-mitochondrial respiration, but not for oxidative phosphorylation and ATP generation. When the exposure time extended to 72 h, glycolysis was still activated for ATP generation, but the mitochondrial ATP-linked respiration of astrocytes was reduced. The glutamate-induced astrocyte damage can be mimicked by the non-metabolized substrate d-aspartate but reversed by the non-selective glutamate transporter inhibitor TBOA. In addition, the glutamate toxicity can be partially reversed by vitamin E. These findings demonstrate that changes of bioenergetic profile occur in cultured cortical astrocytes exposed to high concentration of glutamate and highlight the role of mitochondria respiration in glutamate-induced gliotoxicity in cortical astrocytes.


Assuntos
Trifosfato de Adenosina/metabolismo , Astrócitos/efeitos dos fármacos , Córtex Cerebral/citologia , Ácido Glutâmico/toxicidade , Aerobiose , Animais , Ácido Aspártico/metabolismo , Astrócitos/metabolismo , Respiração Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Glicólise , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Cultura Primária de Células , Ratos Sprague-Dawley , Vitamina E/metabolismo
11.
Antioxidants (Basel) ; 12(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38136154

RESUMO

Traumatic brain injury (TBI) is a leading cause of morbidity and mortality in young adults, characterized by primary and secondary injury. Primary injury is the immediate mechanical damage, while secondary injury results from delayed neuronal death, often linked to mitochondrial damage accumulation. Hyperbaric oxygen therapy (HBOT) has been proposed as a potential treatment for modulating secondary post-traumatic neuronal death. However, the specific molecular mechanism by which HBOT modulates secondary brain damage through mitochondrial protection remains unclear. Spatial learning, reference memory, and motor performance were measured in rats before and after Controlled Cortical Impact (CCI) injury. The HBOT (2.5 ATA) was performed 4 h following the CCI and twice daily (12 h intervals) for four consecutive days. Mitochondrial functions were assessed via high-resolution respirometry on day 5 following CCI. Moreover, IHC was performed at the end of the experiment to evaluate cortical apoptosis, neuronal survival, and glial activation. The current result indicates that HBOT exhibits a multi-level neuroprotective effect. Thus, we found that HBOT prevents cortical neuronal loss, reduces the apoptosis marker (cleaved-Caspase3), and modulates glial cell proliferation. Furthermore, HBO treatment prevents the reduction in mitochondrial respiration, including non-phosphorylation state, oxidative phosphorylation, and electron transfer capacity. Additionally, a superior motor and spatial learning performance level was observed in the CCI group treated with HBO compared to the CCI group. In conclusion, our findings demonstrate that HBOT during the critical period following the TBI improves cognitive and motor damage via regulating glial proliferation apoptosis and protecting mitochondrial function, consequently preventing cortex neuronal loss.

12.
Tissue Eng Part A ; 28(17-18): 795-806, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35620911

RESUMO

Volumetric muscle loss (VML) injuries represent a majority of military service member casualties and are common in civilian populations following blunt and/or penetrating traumas. Characterized as a skeletal muscle injury with permanent functional impairments, there is currently no standard for rehabilitation, leading to lifelong disability. Toward developing rehabilitative strategies, previous research demonstrates that the remaining muscle after a VML injury lacks similar levels of plasticity or adaptability as healthy, uninjured skeletal muscle. This may be due, in part, to impaired innervation and vascularization of the remaining muscle, as well as disrupted molecular signaling cascades commonly associated with muscle adaptation. The primary objective of this study was to assess the ability of four pharmacological agents with a strong record of modulating muscle contractile and metabolic function to improve functional deficits in a murine model of VML injury. Male C57BL/6 mice underwent a 15% multimuscle VML injury of the posterior hindlimb and were randomized into drug treatment groups (formoterol [FOR], 5-aminoimidazole-4-carboxamide riboside [AICAR], pioglitazone [PIO], or sildenafil [SIL]) or untreated VML group. At the end of 60 days, the injury model was first validated by comparison to age-matched injury-naive mice. Untreated VML mice had 22% less gastrocnemius muscle mass, 36% less peak-isometric torque, and 27% less maximal mitochondrial oxygen consumption rate compared to uninjured mice (p < 0.01). Experimental drug groups were, then, compared to VML untreated, and there was minimal evidence of efficacy for AICAR, PIO, or SIL in improving contractile and metabolic functional outcomes. However, FOR-treated VML mice had 18% greater peak isometric torque (p < 0.01) and permeabilized muscle fibers had 36% greater State III mitochondrial oxygen consumption rate (p < 0.01) compared to VML untreated mice, suggesting an overall improvement in muscle condition. There was minimal evidence that these benefits came from greater mitochondrial biogenesis and/or mitochondrial complex protein content, but could be due to greater enzyme activity levels for complex I and complex II. These findings suggest that FOR treatment is candidate to pair with a rehabilitative approach to maximize functional improvements in VML-injured muscle. Impact statement Volumetric muscle loss (VML) injuries result in deficiencies in strength and mobility, which have a severe impact on patient quality of life. Despite breakthroughs in tissue engineering, there are currently no treatments available that can restore function to the affected limb. Our data show that treatment of VML injuries with clinically available and FDA-approved formoterol (FOR), a beta-agonist, significantly improves strength and metabolism of VML-injured muscle. FOR is therefore a promising candidate for combined therapeutic approaches (i.e., regenerative rehabilitation) such as pairing FOR with structured rehabilitation or cell-seeded biomaterials as it may provide greater functional improvements than either strategy alone.


Assuntos
Doenças Musculares , Regeneração , Animais , Fumarato de Formoterol , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/lesões , Doenças Musculares/tratamento farmacológico , Preparações Farmacêuticas , Qualidade de Vida , Regeneração/fisiologia
13.
Pharmaceutics ; 14(3)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35335940

RESUMO

Alpinumisoflavone is a prenylated isoflavonoid derived from the Cudrania tricuspidate fruit and Genista pichisermolliana. Alpinumisoflavone has anticancer properties in a variety of cancer cells, including colorectal, esophageal, renal and hepatocellular carcinoma. However, its mechanisms and effects in ovarian cancer remain unexplored. Our findings indicate that alpinumisoflavone triggers anti-proliferation in 2D- and 3D-cultured human ovarian cancer (ES2 and OV90) cells, including a reduction in the proliferating cell nuclear antigen expression and sub-G1 phase arrest of the cell cycle. Both alpinumisoflavone-treated ES2 and OV90 cells exhibited an augmentation in late apoptotic cells and the depolarization of mitochondrial membrane potential (MMP). We also observed a decrease in respiratory chain activity in ovarian cancer cells, owing to lower energy output by the alpinumisoflavone. In addition, combining cisplatin (a chemotherapeutic drug used in several malignancies) with alpinumisoflavone boosted apoptosis in ES2 and OV90 cells via a reduction in cell proliferation, induction of late apoptotic cells, and depolarization of MMP. Furthermore, alpinumisoflavone also regulated the PI3K/AKT, MAPK and endoplasmic reticulum (ER) stress regulatory signaling pathways, leading to cell death in both ES2 and OV90 cells. In general, our findings verified that alpinumisoflavone inhibited ovarian cancer cell growth via mitochondrial malfunction.

14.
ACS Appl Mater Interfaces ; 14(45): 50637-50648, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36326806

RESUMO

Photothermal therapy (PTT) has emerged as a promising alternative or supplement to cancer treatments. While PTT induces the ablation of solid tumors, its efficiency is hampered by self-recovery within impaired cancer cells through glycolysis and respiration metabolism. Based on this, the introduction of hydrogen sulfide (H2S)-mediated respiration inhibition is a good choice to make up for the PTT limitation. Herein, nanovesicles (NP1) are integrated by a hypoxia-responsive conjugated polymer (P1), polymetric H2S donor (P2), and near-infrared (NIR) light-harvesting aza-BODIPY dye (B1) for the delivery of H2S and synergistic H2S gas therapy/PTT. The scaffold of NP1 undergoes disassembly in the hypoxic environments, thus triggering the hydrolysis of P2 to continuously long-term release H2S. Dependent on the superior photothermal ability of B1, NP1 elicits high photothermal conversion efficiency (η = 19.9%) under NIR light irradiation for PTT. Moreover, NP1 serves as in situ H2S bombers in the hypoxic tumor environment and suppresses the mitochondrial respiration through inhibiting expression of cytochrome c oxidase (COX IV) and cutting off the adenosine triphosphate (ATP) generation. Both in vitro and in vivo results demonstrate good antitumor efficacy of H2S gas therapy/PTT, which will be recommended as an advanced strategy for cancer therapeutics.


Assuntos
Sulfeto de Hidrogênio , Nanopartículas , Neoplasias , Humanos , Fototerapia , Terapia Fototérmica , Sulfeto de Hidrogênio/farmacologia , Neoplasias/terapia , Hipóxia , Respiração , Hidrogênio , Sulfetos/farmacologia , Linhagem Celular Tumoral
15.
Exp Gerontol ; 163: 111770, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35314269

RESUMO

Chronic D-galactose administration induces accelerated aging in rodents. The aim of the study was to find by in vivo31P MRS suitable markers of early stages of brain degeneration on this metabolic model in rats. Additionally, we studied the therapeutic effect of antidiabetic drug metformin. The study has been extended by in vitro determination of mitochondrial function in brain, skeletal muscle and liver mitochondria, oxidative stress parameter thiobarbituric acid reactive substances (TBARS), and lipophilic antioxidants levels. In vivo31P MRS revealed lower intracellular pH (pHi) and lower inorganic phosphate to ATP ratio (Pi/ATP), with higher index of oxidative phosphorylation - phosphocreatine (PCr) to Pi ratio - in brain of rats chronically administered with D-galactose. The function of brain mitochondria was not affected. Administration of metformin diminished changes in brain pHi and plasma TBARS. The function of skeletal muscle mitochondria and their coenzyme Q (CoQ) content were considerably reduced after D-galactose administration. Metformin administered simultaneously with D-galactose did not prevent these changes. The results of in vivo31P MRS revealed evidence of early stage of neurodegeneration that may indicate pre-inflammation. Our data show different susceptibility of brain, skeletal muscle, and liver to the chronic exposure to D-galactose and metformin. The D-galactose model presented in the literature as a model for "age-related dementia" had much more devastating effects on skeletal muscle than on the brain.


Assuntos
Galactose , Metformina , Trifosfato de Adenosina/metabolismo , Envelhecimento/metabolismo , Animais , Encéfalo/metabolismo , Metabolismo Energético , Galactose/farmacologia , Fígado/metabolismo , Metformina/farmacologia , Músculo Esquelético/metabolismo , Estresse Oxidativo , Ratos , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
16.
Front Physiol ; 12: 697022, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335303

RESUMO

Living at high altitudes is extremely challenging as it entails exposure to hypoxia, low temperatures, and high levels of UV radiation. However, the Tibetan population has adapted to such conditions on both a physiological and genetic level over 30,000-40,000 years. It has long been speculated that fetal growth restriction is caused by abnormal placental development. We previously demonstrated that placentas from high-altitude Tibetans were protected from oxidative stress induced by labor compared to those of European descent. However, little is known about how placental mitochondria change during high-altitude adaptation. In this study, we aimed to uncover the mechanism of such adaptation by studying the respiratory function of the placental mitochondria of high-altitude Tibetans, lower-altitude Tibetans, and lower-altitude Chinese Han. We discovered that mitochondrial respiration was greater in high-altitude than in lower-altitude Tibetans in terms of OXPHOS via complexes I and I+II, ETSmax capacity, and non-phosphorylating respiration, whereas non-ETS respiration, LEAK/ETS, and OXPHOS via complex IV did not differ. Respiration in lower-altitude Tibetans and Han was similar for all tested respiratory states. Placentas from high-altitude Tibetan women were protected from acute ischemic/hypoxic insult induced by labor, and increased mitochondrial respiration may represent an acute response that induces mitochondrial adaptations.

17.
Neurotoxicology ; 82: 1-8, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33144179

RESUMO

General anesthesia induces changes in dendritic spine number and synaptic transmission in developing mice. These changes are rather disturbing, as similar changes are seen in animal models of neurodevelopmental disorders. We previously suggested that mTor-dependent upregulation of mitochondrial function may be involved in such changes. To further understand the significance of mitochondrial changes after general anesthesia during neurodevelopment, we exposed young mice to 2.5 % sevoflurane for 2 h followed by injection of rotenone, a mitochondrial complex I inhibitor. In postnatal day 17 (PND17) mice, intraperitoneal injection of rotenone not only blocked sevoflurane-induced increases in mitochondrial function, it also prevented sevoflurane-induced changes in excitatory synaptic transmission. Interestingly, similar changes were not observed in younger, neonatal mice (PND7). We next assessed whether the mitochondrial unfolded protein response (UPRmt) acted as a link between anesthetic exposure and mitochondrial function. Expression of UPRmt proteins, which help maintain protein-folding homeostasis and increase mitochondrial function, was increased 6 h after sevoflurane exposure. Our results show that a single, brief sevoflurane exposure induces age-dependent changes in mitochondrial function that constitute an important mechanism for the increase in excitatory synaptic transmission in late postnatal mice, and also suggest mitochondria and UPRmt as potential targets for preventing anesthesia toxicity.


Assuntos
Anestesia Geral/efeitos adversos , Anestésicos Inalatórios/efeitos adversos , Encéfalo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Sevoflurano/efeitos adversos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Fatores Etários , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Técnicas de Patch-Clamp , Rotenona/farmacologia , Sevoflurano/antagonistas & inibidores
18.
Methods Cell Biol ; 155: 181-197, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32183958

RESUMO

This review focuses on three independent and complementary approaches to obtain information on the combined function of respiratory complexes when present in different structural situations, either as individual complexes or when superassembled with other complexes. We review the utility of in-gel activity after blue native electrophoresis, integrated oxygen consumption of supercomplexes containing complex IV, and spectrophotometric activity measurements.


Assuntos
Técnicas Citológicas/métodos , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Transporte de Elétrons , Eletroforese em Gel de Poliacrilamida , Consumo de Oxigênio
19.
Neurobiol Aging ; 75: 1-10, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30504091

RESUMO

Mutations and deletions in PTEN-induced kinase 1 (PINK1) cause autosomal recessive Parkinson's disease (PD), the second most common neurodegenerative disorder. PINK1 is a nuclear-genome encoded Ser/Thr kinase in mitochondria. PINK1 deletion was reported to affect dopamine (DA) levels in the striatum and mitochondrial functions but with conflicting results. The role of PINK1 in mitochondrial function and in PD pathogenesis remains to be elucidated thoroughly. In this study, we measured DA release using fast-scan cyclic voltammetry in acute striatal slices from both PINK1 knockout (KO) and wild-type (WT) mice at different ages. We found that single pulse-evoked DA release in the dorsal striatum of PINK1 KO mice was decreased in an age-dependent manner. Furthermore, the decrease was because of less DA release instead of an alteration of DA transporter function or DA terminal degeneration. We also found that PINK1 KO striatal slices had significantly lower basal mitochondria respiration compared with that of WT controls, and this impairment was also age-dependent. These results suggest that the impaired DA release is most likely because of mitochondrial dysfunction and lower ATP production.


Assuntos
Fatores Etários , Corpo Estriado/metabolismo , Dopamina/metabolismo , Mitocôndrias/metabolismo , Proteínas Quinases/genética , Trifosfato de Adenosina/metabolismo , Animais , Dopamina/genética , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Doença de Parkinson/genética
20.
Aquat Toxicol ; 201: 66-72, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29879596

RESUMO

Phenols are classified as polar narcotics, which are thought to cause toxicity by non-specific mechanisms, possibly by disrupting membrane structure and function. Here we test three phenolic chemicals, phenol, 2,4-dichlorphenol and pentachlorophenol on embryo development, heartbeat rate and mitochondrial respiration in fathead minnow (Pimephales promelas). While these chemicals have been used on isolated mitochondria, they have not yet been used to verify respiration in intact embryos. Mitochondrial respiration in intact embryos was measured after optimizing the Seahorse XFe24 Extracellular Flux Analyzer. Heartbeat rate and mitochondrial respiration patterns of fathead minnow embryos at different developmental stages were also characterized. Exposures of embryos at developmental stage 20 occurred for 24 h with five concentrations of each phenolic compound ranging from 0.85 to 255 µM for phenol, 0.49 to 147 µM for 2,4-dichlorophenol and 0.3 to 90 µM for pentachlorophenol. Exposure to phenol at the concentrations tested had no effects on development, heartbeat or mitochondrial respiration. However, both 2,4-dichlorophenol and pentachlorophenol showed dose-dependent effects on development, heartbeat rate, and mitochondrial respiration, with the effects occurring at lower concentrations of pentachlorophenol, compared to 2,4-dichlorophenol, highlighting the higher toxicity of the more chlorinated phenols. Both 2,4-dichlorophenol and pentachlorophenol decreased basal mitochondrial respiration of embryos and ATP production. These results indicate that higher chlorinated phenolic chemicals cause developmental toxicity in fathead minnow embryos by decreasing mitochondrial respiration and heartbeat rate.


Assuntos
Cyprinidae/embriologia , Embrião não Mamífero/efeitos dos fármacos , Fenóis/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Respiração Celular/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa