Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioessays ; 46(5): e2300193, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38449346

RESUMO

Inner membranes of mitochondria are extensively folded, forming cristae. The observed overall correlation between efficient eukaryotic ATP generation and the area of internal mitochondrial inner membranes both in unicellular organisms and metazoan tissues seems to explain why they evolved. However, the crucial use of molecular oxygen (O2) as final acceptor of the electron transport chain is still not sufficiently appreciated. O2 was an essential prerequisite for cristae development during early eukaryogenesis and could be the factor allowing cristae retention upon loss of mitochondrial ATP generation. Here I analyze illuminating bacterial and unicellular eukaryotic examples. I also discuss formative influences of intracellular O2 consumption on the evolution of the last eukaryotic common ancestor (LECA). These considerations bring about an explanation for the many genes coming from other organisms than the archaeon and bacterium merging at the start of eukaryogenesis.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Oxigênio , Oxigênio/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Membranas Mitocondriais/metabolismo , Animais , Eucariotos/metabolismo , Eucariotos/genética , Trifosfato de Adenosina/metabolismo , Evolução Biológica , Células Eucarióticas/metabolismo
2.
Small ; 20(30): e2310163, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38389176

RESUMO

The oxygen reduction reaction (ORR) catalyzed by transition-metal single-atom catalysts (SACs) is promising for practical applications in energy-conversion devices, but great challenges still remain due to the sluggish kinetics of O═O cleavage. Herein, a kind of high-density iron network-like sites catalysts are constructed with optimized intermetallic distances on an amino-functionalized carbon matrix (Fe-HDNSs). Quasi-in situ soft X-ray absorption spectroscopy and in situ synchrotron infrared characterizations demonstrate that the optimized intermetallic distances in Fe-HDNSs can in situ activate the molecular oxygen by fast electron compensation through the hybridized Fe 3d‒O 2p, which efficiently facilitates the cleavage of the O═O bond to *O species and highly suppresses the side reactions for an accelerated kinetics of the 4e- ORR. As a result, the well-designed Fe-HDNSs catalysts exhibit superior performances with a half-wave potential of 0.89 V versus reversible hydrogen electrode (RHE) and a kinetic current density of 72 mA cm-2@0.80 V versus RHE, exceeding most of the noble-metal-free ORR catalysts. This work offers some new insights into the understanding of 4e- ORR kinetics and reaction pathways to boost electrochemical performances of SACs.

3.
Small ; : e2403336, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39221547

RESUMO

In the quest for efficient and stable oxygen evolution catalysts (OECs) for photoelectrochemical water splitting, the surface modification of BiVO4 is a crucial step. In this study, a novel and robust OEC, based on 3-(bis(pyridin-2-ylmethyl) amino) propanoic acid bifunctional linker known as dipicolyl alanine acid (DPAA) and cobalt ions, is prepared and fully characterized. The DPAA is anchored to the surface of BiVO4 and utilized to tether cobalt ions. The Co-DPAA/BiVO4 photoanode exhibits remarkable stability and efficiency toward photoelectrochemical water oxidation. Specifically, it showed anodic photocurrent increase of 7.1, 5.0, 3.0, and 1.3-fold at 1.23 VRHE as compared to pristine BiVO4, DPAA/BiVO4, Co-BiVO4, and Co-Pi/BiVO4 photoanodes, respectively. The photoelectrochemical and IMPS studies revealed that the Co-DPAA/BiVO4 photoanode exhibits a longer transient decay time for surface-trapped holes, higher charge transfer kinetics, and charge separation efficiency compared to Co-Pi/BiVO4 and pristine BiVO4 photoelectrodes. This indicates that the Co-DPAA effectively reduces surface recombination and facilitates charge transfer. Moreover, at 1.23 VRHE, the Co-DPAA/BiVO4 photoanode achieved a faradic efficiency of 92% for oxygen evolution reaction and could retain a turnover frequency of 3.65 s-1. The- exhibited effeciency is  higher than most of the efficient molecular oxygen evolution catalyst based on Ru.

4.
Environ Sci Technol ; 58(2): 1378-1389, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38179651

RESUMO

It has been reported that tripolyphosphate (TPP) can enhance the oxygenation of natural Fe(II)-containing minerals to produce reactive oxygen species (ROS). However, the molecular structure of the TPP-Fe(II) mineral surface complex and the role of this complex in the generation and transformation of ROS have not been fully characterized. In the present study, a heterogeneous magnetite (Fe3O4)/O2/TPP system was developed for the degradation of p-nitrophenol (PNP). The results showed that the addition of TPP significantly accelerated the removal of PNP in the Fe3O4/O2 system and extended the range of effective pH to neutral. Experiments combined with density functional theory calculations revealed that the activation of O2 mainly occurs on the surface of Fe3O4 induced by a structural Fe(II)-TPP complex, where the generated O2•- (intermediate active species) can be rapidly converted into H2O2, and then the •OH generated by the Fenton reaction is released into the solution. This increases the concentration of •OH produced and the efficiency of •OH produced relative to Fe(II) consumed, compared with the homogeneous system. Furthermore, the binding of TPP to the surface of Fe3O4 led to stretching and even cleavage of the Fe-O bonds. Consequently, more Fe(II)/(III) atoms are exposed to the solvation environment and are available for the binding of active O2 and O2•-. This study demonstrates how common iron minerals and O2 in the natural environment can be combined to yield a green remediation technology.


Assuntos
Peróxido de Hidrogênio , Ferro , Polifosfatos , Espécies Reativas de Oxigênio , Ferro/química , Peróxido de Hidrogênio/química , Oxirredução , Minerais , Compostos Ferrosos , Oxigênio
5.
Environ Res ; 249: 118497, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38365054

RESUMO

Developing a photoelectric cathode capable of efficiently activating molecular oxygen to degrade pollutants is a coveted yet challenging goal. In pursuit of this, we synthesize a Fe doped porous carbon nitride catalyst (Fe-CN) using an ionothermal strategy and subsequently loaded it on the hydrophobic carbon felt (CF) to fabricate the Fe-CN/CF photoelectric cathode. This cathode benefits from the synergistic effects between the porous CN support and the highly dispersed Fe species, which enhance O2 absorption and activation. Additionally, the hydrophobic CF serves as a gas diffusion layer, accelerating O2 mass transfer. These features enable the Fe-CN/CF cathode to demonstrate notable photoelectrocatalytic (PEC) degradation efficiency. Specifically, under optimal conditions (cathodic bias of -0.3 VAg/AgCl, pH 7, and a catalyst loading of 3 mg/cm2), the system achieves a 76.4% removal rate of tetracycline (TC) within 60 min. The general application potential of this system is further underscored by its ability to remove approximately 98% of 4-chlorophenol (4-CP) and phenol under identical conditions. Subsequent investigations into the active species and degradation pathways reveal that 1O2 and h+ play dominant role during the PEC degradation process, leading to gradually breakdown of TC into less toxicity, smaller molecular intermediates. This work presents a straightforward yet effective strategy for constructing efficient PEC systems that leverage molecular oxygen activation to degrade pollutants.


Assuntos
Carbono , Ferro , Nitrilas , Oxigênio , Nitrilas/química , Oxigênio/química , Carbono/química , Ferro/química , Catálise , Poluentes Químicos da Água/química , Porosidade , Interações Hidrofóbicas e Hidrofílicas , Eletrodos , Técnicas Eletroquímicas/métodos
6.
Angew Chem Int Ed Engl ; 63(36): e202405876, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39031750

RESUMO

Strategic design for the construction of contiguous tetrasubstituted carbon centers represents a daunting challenge in synthetic organic chemistry. Herein, we report a combined experimental and computational investigation aimed at developing catalytic aerobic carbooxygenation, involving the intramolecular addition of tertiary radicals to geminally disubstituted alkenes, followed by aerobic oxygenation. This reaction provides a straightforward route to various α,α,ß,ß-tetrasubstituted γ-lactones, which can be readily transformed into hexasubstituted γ-lactones through allylation/translactonization. Computational analysis reveals that the key mechanistic foundation for achieving the developed aerobic carbooxygenation involves the design of endothermic (energetically uphill) C-C bond formation followed by exothermic (energetically downhill) oxygenation. Furthermore, we highlight a unique fluorine-induced stereoelectronic effect that stabilizes the endothermic stereodetermining transition state.

7.
Angew Chem Int Ed Engl ; 63(29): e202405476, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38706228

RESUMO

Despite the pivotal role of molecular oxygen (O2) activation in artificial photosynthesis, the activation efficiency is often restricted by sluggish exciton dissociation and charge transfer kinetics within polymer photocatalysts. Herein, we propose two tetrathiafulvalene (TTF)-based imine-linked covalent organic frameworks (COFs) with tailored donor-acceptor (D-A) structures, TTF-PDI-COF and TTF-TFPP-COF, to promote O2 activation. Because of enhanced electron push-pull interactions that facilitated charge separation and transfer behavior, TTF-PDI-COF exhibited superior photocatalytic activity in electron-induced O2 activation reactions over TTF-TFPP-COF under visible light irradiation, including the photosynthesis of (E)-3-amino-2-thiocyano-α,ß-unsaturated compounds and H2O2. These findings highlight the significant potential of the rational design of COFs with D-A configurations as suitable candidates for advanced photocatalytic applications.

8.
Chemistry ; 29(51): e202301700, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37390122

RESUMO

Aerobic oxidative cross-coupling represents one of the most straightforward and atom-economic methods for construction of C-C and C-X (X=N, O, S, or P) bonds using air as a sustainable external oxidant. The oxidative coupling of C-H bonds in heterocyclic compounds can effectively increase their molecular complexity by introducing new functional groups through C-H bond activation, or by formation of new heterocyclic structures through cascade construction of two or more sequential chemical bonds. This is very useful as it can increase the potential applications of these structures in natural products, pharmaceuticals, agricultural chemicals, and functional materials. This is a representative overview of recent progress since 2010 on green oxidative coupling reactions of C-H bond using O2 or air as internal oxidant focus on Heterocycles. It aims to provide a platform for expanding the scope and utility of air as green oxidant, together with a brief discussion on research into the mechanisms behind it.

9.
Environ Sci Technol ; 57(45): 17404-17414, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37920955

RESUMO

Electrochemical advanced oxidation process (EAOP) is a promising technology for decentralized water decontamination but is subject to parasitic anodic oxygen evolution and formation of toxic chlorinated byproducts in the presence of Cl-. To address this issue, we developed a novel electrolytic process by water flow-driven coupling of anodic oxygen evolution reaction (OER) and cathodic molecular oxygen activation (MOA). When water flows from anode to cathode, O2 produced from OER is carried by water through convection, followed by being activated by atomic hydrogen (H*) on Pd cathode to produce •OH. The water flow-driven OER/MOA process enables the anode to be polarized at low potential (1.7 V vs SHE) that is lower than that of conventional EAOP whose •OH is produced from direct water oxidation (>2.3 V vs SHE). At a flow rate of 30 mL min-1, the process could achieve 94.8% removal of 2,4-dichlorophenol (2,4-DCP) and 71.5% removal of chemical oxygen demand (COD) within 45 min at an anode potential of 1.7 V vs SHE and cathode potential of -0.5 V vs SHE. To achieve the comparable 2,4-DCP removal performance, 4.3-fold higher energy consumption was needed for the conventional EAOP with titanium suboxide anode (anode potential of 2.9 V vs SHE), but current efficiency declined by 3.5 folds. Unlike conventional EAOP, chlorate and perchlorate were not detected in the OER/MOA process, because low anode potential <2.0 V vs SHE was thermodynamically unfavorable for the formation of chlorinated byproducts by anodic oxidation, indicated by theoretical calculations and experimental data. This study provides a proof-in-concept demonstration of water flow-driven OER/MOA process, representing a paradigm shift of electrochemical technology for water decontamination and prevention of chlorinated byproducts, making electrochemical water decontamination more efficient, more economic, and more sustainable.


Assuntos
Poluentes Químicos da Água , Água , Oxigênio , Descontaminação , Eletrólise , Oxirredução , Eletrodos , Poluentes Químicos da Água/química
10.
Environ Sci Technol ; 57(15): 6052-6062, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37011016

RESUMO

Oxidizing triplet excited states of organic matter (3C*) drive numerous reactions in fog/cloud drops and aerosol liquid water (ALW). Quantifying oxidizing triplet concentrations in ALW is difficult because 3C* probe loss can be inhibited by the high levels of dissolved organic matter (DOM) and copper in particle water, leading to an underestimate of triplet concentrations. In addition, illuminated ALW contains high concentrations of singlet molecular oxygen (1O2*), which can interfere with 3C* probes. Our overarching goal is to find a triplet probe that has low inhibition by DOM and Cu(II) and low sensitivity to 1O2*. To this end, we tested 12 potential probes from a variety of compound classes. Some probes are strongly inhibited by DOM, while others react rapidly with 1O2*. One of the probe candidates, (phenylthiol)acetic acid (PTA), seems well suited for ALW conditions, with mild inhibition and fast rate constants with triplets, but it also has weaknesses, including a pH-dependent reactivity. We evaluated the performance of both PTA and syringol (SYR) as triplet probes in aqueous extracts of particulate matter. While PTA is less sensitive to inhibition than SYR, it results in lower triplet concentrations, possibly because it is less reactive with weakly oxidizing triplets.


Assuntos
Oxigênio Singlete , Água , Oxigênio , Aerossóis , Oxirredução
11.
Molecules ; 28(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36903648

RESUMO

Oxygenase activity of the flavin-dependent enzyme RutA is commonly associated with the formation of flavin-oxygen adducts in the enzyme active site. We report the results of quantum mechanics/molecular mechanics (QM/MM) modeling of possible reaction pathways initiated by various triplet state complexes of the molecular oxygen with the reduced flavin mononucleotide (FMN) formed in the protein cavities. According to the calculation results, these triplet-state flavin-oxygen complexes can be located at both re-side and si-side of the isoalloxazine ring of flavin. In both cases, the dioxygen moiety is activated by electron transfer from FMN, stimulating the attack of the arising reactive oxygen species at the C4a, N5, C6, and C8 positions in the isoalloxazine ring after the switch to the singlet state potential energy surface. The reaction pathways lead to the C(4a)-peroxide, N(5)-oxide, or C(6)-hydroperoxide covalent adducts or directly to the oxidized flavin, depending on the initial position of the oxygen molecule in the protein cavities.


Assuntos
Oxigenases de Função Mista , Ruta , Oxigenases de Função Mista/metabolismo , Ruta/metabolismo , Peróxidos/química , Flavinas/química , Oxigênio/química , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/metabolismo , Oxirredução
12.
Molecules ; 28(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894598

RESUMO

This review article describes a historical perspective of elucidation of the nature of the chemical bonds of the high-valent transition metal oxo (M=O) and peroxo (M-O-O) compounds in chemistry and biology. The basic concepts and theoretical backgrounds of the broken-symmetry (BS) method are revisited to explain orbital symmetry conservation and orbital symmetry breaking for the theoretical characterization of four different mechanisms of chemical reactions. Beyond BS methods using the natural orbitals (UNO) of the BS solutions, such as UNO CI (CC), are also revisited for the elucidation of the scope and applicability of the BS methods. Several chemical indices have been derived as the conceptual bridges between the BS and beyond BS methods. The BS molecular orbital models have been employed to explain the metal oxyl-radical character of the M=O and M-O-O bonds, which respond to their radical reactivity. The isolobal and isospin analogy between carbonyl oxide R2C-O-O and metal peroxide LFe-O-O has been applied to understand and explain the chameleonic chemical reactivity of these compounds. The isolobal and isospin analogy among Fe=O, O=O, and O have also provided the triplet atomic oxygen (3O) model for non-heme Fe(IV)=O species with strong radical reactivity. The chameleonic reactivity of the compounds I (Cpd I) and II (Cpd II) is also explained by this analogy. The early proposals obtained by these theoretical models have been examined based on recent computational results by hybrid DFT (UHDFT), DLPNO CCSD(T0), CASPT2, and UNO CI (CC) methods and quantum computing (QC).

13.
Angew Chem Int Ed Engl ; 62(23): e202303807, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37062701

RESUMO

Molecular oxygen (O2 ) activation technology is of great significance in environmental purification due to its eco-friendly operation and cost-effective nature. However, the activation of O2 is limited by spin-forbidden transitions, and efficient molecular oxygen activation depends on electronic behavior and surface adsorption. Herein, we prepared cationic defect-rich Bi4 Ti3 O12 (BTO-MV2) catalysts containing Ti vacancies (VTi ) for O2 activation in water purification. The VTi on BTO nanosheets can induce electron spin polarization, increasing the number of spin-down photogenerated electrons and reducing the recombination of electron-hole pairs. An active surface VTi is also formed, serving as a center for adsorbing O2 and extracting electrons, effectively generating ⋅OH, O2 ⋅- and 1 O2 . The degradation rate constant of tetracycline achieved by BTO-MV2 is 3.3 times faster than BTO, indicating a satisfactory prospect for practical application. This work provides an efficient pathway to activate molecular oxygen by constructing new active sites through cationic vacancy modification technology.

14.
Angew Chem Int Ed Engl ; 62(22): e202301483, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36890120

RESUMO

Efficient molecular oxygen activation (MOA) is the key to environmentally friendly catalytic oxidation reactions. In the last decade, single-atomic-site catalysts (SASCs) with nearly 100 % atomic utilization and unique electronic structure have been widely investigated for MOA. However, the single active site makes the activation effect unsatisfactory and difficult to deal with complex catalytic reactions. Recently, dual-atomic-site catalysts (DASCs) have provided a new idea for the effective activation of molecular oxygen (O2 ) due to more diverse active sites and synergetic interactions among adjacent atoms. In this review, we systematically summarized the recent research progress of DASCs for MOA in heterogeneous thermo- and electrocatalysis. Finally, we look forward to the challenges and application prospects in the construction of DASCs for MOA.

15.
Small ; 18(41): e2202551, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36089652

RESUMO

The development of probes for early monitoring tumor therapy response may greatly benefit the promotion of photodynamic therapy (PDT) efficacy. Singlet oxygen (1 O2 ) generation is a typical indicator for evaluating PDT efficacy in cancer. However, most existing probes cannot quantitatively detect 1 O2 in vivo due to the high reactivity and transient state, and thus have a poor correlation with PDT response. Herein, a 1 O2 -responsive theranostic platform comprising thiophene-based small molecule (2SeFT-PEG) and photosensitizer Chlorin e6 (Ce6) micelles for real-time monitoring PDT efficacy is developed. After laser irradiation, the Ce6-produced 1 O2 could simultaneously kill cancer and trigger 2SeFT-PEG to produce increased chemiluminescence (CL) and decreased fluorescence (FL) signals variation at 1050 nm in the second near-infrared (NIR-II, 950-1700 nm) window. Significantly, the ratiometric NIR-II CL/FL imaging at 1050 nm could effectively quantify and monitor the concentration of 1 O2 and O2 consumption or recovery, so as to evaluate the therapeutic efficacy of PDT in vivo. Hence, this 1 O2 activated NIR-II CL/FL probe provides an efficient ratiometric optical imaging platform for real-time evaluating PDT effect and precisely guiding the PDT process in vivo.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Linhagem Celular Tumoral , Micelas , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Oxigênio Singlete , Tiofenos
16.
Chemphyschem ; 23(16): e202200334, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35678180

RESUMO

The aerobic oxidation of propylene to selectively achieve propylene oxide (PO) is a challenging reaction in catalysis. Therefore, an active catalyst which shows enhanced PO selectivity is extremely desired. In the present investigation, an attempt has been made to explore the catalytic activity of a mono-atomically thin two-dimensional (2D) hexagonal (HX) Cu layer for selective propylene epoxidation using molecular O2 with the aid of density functional theory calculations. The results reveal that the conversion of propylene to PO via Eley-Rideal mechanism is an exoergic and barrierless reaction on the O2 pre-adsorbed Cu monolayer. The Pauli energy component plays a decisive role for barrierless reaction whereas the electrostatic and orbital contribution governs the energetic stability of PO. Car-Parrinello molecular dynamics (CPMD) simulation reinforces the outcomes of climbing image nudged elastic band (CI-NEB) calculation. Further, the formation of oxametallacycle OMC-2 (0.47 eV) is kinetically favourable over OMC-1 (0.87 eV) and AHS (0.50 eV) on O pre-adsorbed 2D HX Cu. Interestingly, the energy barrier for the conversion of OMC-2 to PO (0.70 eV) is considerably low in comparison with the acetone formation (0.90 eV). Therefore, it is worth to mention that the 2D HX Cu surface provides a promising platform for selective propylene epoxidation.

17.
Environ Sci Technol ; 56(12): 7924-7934, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35587516

RESUMO

Oxygen vacancies play a vital role in the catalytic activity of layered double hydroxide (LDH) catalysts in wastewater treatment. However, the mechanism of oxygen vacancy-mediated LDH-activated oxygen to produce reactive oxygen species (ROS) still lacks a reasonable explanation. In this work, a tartrate-modified CuCoFe-LDH (CuCoFe/Tar-LDH) with abundant oxygen vacancies was designed, which can efficiently degrade nitrobenzene (NB) under room conditions. The technical energy consumption is 0.011 kW h L-1. According to the characterization and calculation results, it is proposed that oxygen vacancies are formed because of the oxygen deficiency which is caused by the reduction of the energy between the metal ion and oxygen, and the metal ion transitions to a lower state. Compared with CuCoFe-LDH, the oxygen vacancy formation energy of CuCoFe/Tar-LDH decreased from 1.98 to 1.13 eV. The O2 bond length adsorbed on the oxygen vacancy is 1.27 Å, close to the theoretical length of superoxide radicals (•O2-) (1.26 Å). Radical trapping experiments and electron spin-resonance spectroscopy spectrum prove that •O2- is an important precursor of •OH. This work is dedicated to the in-depth exploration of the oxygen vacancy-mediated CuCoFe/Tar-LDH catalyst activation mechanism for molecular oxygen and the conversion relationship between ROS.


Assuntos
Oxigênio , Superóxidos , Hidróxidos/química , Nitrobenzenos , Oxigênio/química , Espécies Reativas de Oxigênio , Tartaratos
18.
Environ Sci Technol ; 56(16): 11878-11887, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35938447

RESUMO

Dark formation of hydroxyl radicals (•OH) from soil/sediment oxygenation has been increasingly reported, and solid Fe(II) is considered as the main electron donor for O2 activation. However, the role of solid organic matter (SOM) in •OH production is not clear, although it represents an important electron pool in the subsurface. In this study, •OH production from oxygenation of reduced solid humic acid (HAred) was investigated at pH 7.0. •OH production is linearly correlated with the electrons released from HAred suspension. Solid HAred transferred electrons rapidly to O2 via the surface-reduced moieties (hydroquinone groups), which was fueled by the slow electron transfer from the reduced moieties inside solid HA. Cycling of dissolved HA between oxidized and reduced states could mediate the electron transfer from solid HAred to O2 for •OH production enhancement. Modeling results predicted that reduced SOM played an important or even dominant role in •OH production for the soils and sediments possessing high molar ratios of SOC/Fe(II) (e.g., >39). The significant contribution of SOM was further validated by the modeling results for oxygenation of 88 soils/sediments in the literature. Therefore, reduced SOM should be considered carefully to comprehensively understand •OH production in SOM-rich subsurface environments.


Assuntos
Substâncias Húmicas , Radical Hidroxila , Compostos Ferrosos , Oxirredução , Solo
19.
Environ Sci Technol ; 56(7): 4367-4376, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35275631

RESUMO

Tripolyphosphate (TPP) has many advantages as a ligand for the optimization of the Fe2+/O2 system in environmental remediation applications. However, the relationship between remediation performance and the Fe2+/TPP ratio in the system has not been previously described. In this study, we report that the degradation mechanism of p-nitrophenol (PNP) in Fe2+/O2 systems is regulated by the Fe2+/TPP ratio under neutral conditions. The results showed that although PNP was effectively degraded at different Fe2+/TPP ratios, the results of specific reactive oxygen species (ROS) scavenging experiments and the determination of PNP degradation products showed that the mechanism of PNP degradation varies with the Fe2+/TPP ratio. When CFe2+ ≥ CTPP, the initially formed O2•- is converted to •OH and the •OH degrades PNP by oxidation. However, when CFe2+ < CTPP, the O2•- persists long enough to degrade PNP by reduction. Density functional theory (DFT) calculations revealed that the main reactive species of Fe2+ in the system include [Fe(TPP)(H2O)3]- and [Fe(TPP)2]4-, whose content in the solution is the key to achieve system regulation. Consequently, by controlling the Fe2+/TPP ratio in the solution, the degradation pathways of PNP can be selected. Our study proposed a new strategy to regulate the oxidation/reduction removal of pollutants by simply varying the Fe2+/TPP ratio of the Fe2+/O2 system.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Peróxido de Hidrogênio , Ferro , Oxirredução , Oxigênio , Polifosfatos , Espécies Reativas de Oxigênio , Poluentes Químicos da Água/análise
20.
Environ Res ; 215(Pt 2): 114297, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096169

RESUMO

The oxygen-vacancy-rich La/Co@TiO2 nanospheres for the photo catalytic degradation of tetracycline were prepared by a simple two-step method. 3 wt%La/Co@TiO2 nanospheres had better photocatalytic performance of the degradation of tetracycline than that of the other catalysts under visible light may be due to the synergistic effect between La/Co and TiO2 and nano-confined effect. The catalytic experimental results showed the degradation ratio of tetracycline (40 mg/L) were 100% for 90 min. XPS, Raman, and photoelectrochemical results showed appropriate number of oxygen vacancies existed on the surface of TiO2, which could improve the activation efficiency of dissolved oxygen in tetracycline solution because they accelerated the electron transfer rate in the system and inhibited the photoelectron-hole pair recombination under visible light. The EPR and radical scavenger tests showed h+, O2-, and ·OH were the main active species for the degradation of tetracycline. Also, the possible mechanism and intermediates of the tetracycline degradation process were speculated under the visible light. La/Co@TiO2 nanospheres would be a promising photocatalyst for wastewater treatment.


Assuntos
Nanosferas , Antibacterianos , Catálise , Luz , Oxigênio , Tetraciclina , Titânio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa