Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(33): e2407465121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39102554

RESUMO

The persistence and size of the Greenland Ice Sheet (GrIS) through the Pleistocene is uncertain. This is important because reconstructing changes in the GrIS determines its contribution to sea level rise during prior warm climate periods and informs future projections. To understand better the history of Greenland's ice, we analyzed glacial till collected in 1993 from below 3 km of ice at Summit, Greenland. The till contains plant fragments, wood, insect parts, fungi, and cosmogenic nuclides showing that the bed of the GrIS at Summit is a long-lived, stable land surface preserving a record of deposition, exposure, and interglacial ecosystems. Knowing that central Greenland was tundra-covered during the Pleistocene informs the understanding of Arctic biosphere response to deglaciation.


Assuntos
Fósseis , Fungos , Camada de Gelo , Insetos , Plantas , Groenlândia , Camada de Gelo/microbiologia , Animais , Fungos/classificação , Plantas/microbiologia , Regiões Árticas , Ecossistema
2.
Proc Natl Acad Sci U S A ; 121(36): e2400434121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39186659

RESUMO

The oxygen isotope ratio 18O/16O (expressed as a δ18OVSMOW value) in marine sedimentary rocks has increased by ~8‰ from the early Paleozoic to modern times. Interpretation of this trend is hindered by ambiguities in the temperature of formation of the carbonate, the δ18Oseawater, and the effects of postdepositional diagenesis. Carbonate clumped isotope measurements, a temperature proxy, offer constraints on this problem. This thermometer is thermodynamically controlled in cases where carbonate achieves an equilibrium internal distribution of isotopes and is independent of the δ18O of the water from which the carbonate grew; therefore, it has a relatively rigorous chemical-physics foundation and can be applied to settings where the δ18O of the water is not known. We apply this technique to an exceptionally well-preserved Ordovician carbonate record from the Baltic Basin and present a framework for interpreting clumped isotope results and for reconstructing past δ18Oseawater. We find that the seawater in the Ordovician had lower δ18Oseawater values than previously estimated, highlighting the need to reassess climate records based on oxygen-isotopes, particularly where interpretations are based on assumptions regarding either the δ18Oseawater or the temperature of deposition or diagenesis. We argue that an increase in δ18Oseawater contributed to the long-term rise in the δ18O of marine sedimentary rocks since the early Paleozoic. This rise might have been driven by a change in the proportion of high- versus low-temperature water-rock interaction in the earth's hydrosphere as a whole.

3.
Proc Natl Acad Sci U S A ; 121(3): e2308994121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38190536

RESUMO

The relationship between initial Homo sapiens dispersal from Africa to East Asia and the orbitally paced evolution of the Asian summer monsoon (ASM)-currently the largest monsoon system-remains underexplored due to lack of coordinated synthesis of both Asian paleoanthropological and paleoclimatic data. Here, we investigate orbital-scale ASM dynamics during the last 280 thousand years (kyr) and their likely influences on early H. sapiens dispersal to East Asia, through a unique integration of i) new centennial-resolution ASM records from the Chinese Loess Plateau, ii) model-based East Asian hydroclimatic reconstructions, iii) paleoanthropological data compilations, and iv) global H. sapiens habitat suitability simulations. Our combined proxy- and model-based reconstructions suggest that ASM precipitation responded to a combination of Northern Hemisphere ice volume, greenhouse gas, and regional summer insolation forcing, with cooccurring primary orbital cycles of ~100-kyr, 41-kyr, and ~20-kyr. Between ~125 and 70 kyr ago, summer monsoon rains and temperatures increased in vast areas across Asia. This episode coincides with the earliest H. sapiens fossil occurrence at multiple localities in East Asia. Following the transcontinental increase in simulated habitat suitability, we suggest that ASM strengthening together with Southeast African climate deterioration may have promoted the initial H. sapiens dispersal from their African homeland to remote East Asia during the last interglacial.


Assuntos
Povo Asiático , Migração Humana , Tempo (Meteorologia) , Humanos , África , Ásia , Ásia Oriental
4.
Proc Natl Acad Sci U S A ; 121(34): e2320143121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39133850

RESUMO

Global warming during the Last Glacial Termination was interrupted by millennial-scale cool intervals such as the Younger Dryas and the Antarctic Cold Reversal (ACR). Although these events are well characterized at high latitudes, their impacts at low latitudes are less well known. We present high-resolution temperature and hydroclimate records from the tropical Andes spanning the past ~16,800 y using organic geochemical proxies applied to a sediment core from Laguna Llaviucu, Ecuador. Our hydroclimate record aligns with records from the western Amazon and eastern and central Andes and indicates a dominant long-term influence of changing austral summer insolation on the intensity of the South American Summer Monsoon. Our temperature record indicates a ~4 °C warming during the glacial termination, stable temperatures in the early to mid-Holocene, and slight, gradual warming since ~6,000 y ago. Importantly, we observe a ~1.5 °C cold reversal coincident with the ACR. These data document a temperature change pattern during the deglaciation in the tropical Andes that resembles temperatures at high southern latitudes, which are thought to be controlled by radiative forcing from atmospheric greenhouse gases and changes in ocean heat transport by the Atlantic meridional overturning circulation.

5.
Proc Natl Acad Sci U S A ; 121(21): e2319652121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739805

RESUMO

The last glacial period was punctuated by cold intervals in the North Atlantic region that culminated in extensive iceberg discharge events. These cold intervals, known as Heinrich Stadials, are associated with abrupt climate shifts worldwide. Here, we present CO2 measurements from the West Antarctic Ice Sheet Divide ice core across Heinrich Stadials 2 to 5 at decadal-scale resolution. Our results reveal multi-decadal-scale jumps in atmospheric CO2 concentrations within each Heinrich Stadial. The largest magnitude of change (14.0 ± 0.8 ppm within 55 ± 10 y) occurred during Heinrich Stadial 4. Abrupt rises in atmospheric CO2 are concurrent with jumps in atmospheric CH4 and abrupt changes in the water isotopologs in multiple Antarctic ice cores, the latter of which suggest rapid warming of both Antarctica and Southern Ocean vapor source regions. The synchroneity of these rapid shifts points to wind-driven upwelling of relatively warm, carbon-rich waters in the Southern Ocean, likely linked to a poleward intensification of the Southern Hemisphere westerly winds. Using an isotope-enabled atmospheric circulation model, we show that observed changes in Antarctic water isotopologs can be explained by abrupt and widespread Southern Ocean warming. Our work presents evidence for a multi-decadal- to century-scale response of the Southern Ocean to changes in atmospheric circulation, demonstrating the potential for dynamic changes in Southern Ocean biogeochemistry and circulation on human timescales. Furthermore, it suggests that anthropogenic CO2 uptake in the Southern Ocean may weaken with poleward strengthening westerlies today and into the future.

6.
Proc Natl Acad Sci U S A ; 120(39): e2304152120, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722047

RESUMO

Millennial-scale ice sheet variability (1-15 kyr periods) is well documented in the Quaternary, providing insight into critical atmosphere-ocean-cryosphere interactions that can inform the mechanism and pace of future climate change. Ice sheet variability at similar frequencies is comparatively less known and understood prior to the Quaternary during times, where higher atmospheric pCO2 and warmer climates prevailed, and continental-scale ice sheets were largely restricted to Antarctica. In this study, we evaluate a high-resolution clast abundance dataset (ice-rafted debris) that captures East Antarctic ice sheet variability in the western Ross Sea during the early Miocene. This dataset is derived from a 100 m-thick mudstone interval in the ANtarctic DRILLing (ANDRILL or AND) core 2A, which preserves a record of precession and eccentricity variability. The sedimentation rates are of appropriate resolution to also characterize the signature of robust, subprecession cyclicity. Strong sub-precession (~10 kyr) cyclicity is observed, with an amplitude modulation in lockstep with eccentricity, indicating a relationship between high-frequency Antarctic ice sheet dynamics and astronomical forcing. Bicoherence analysis indicates that many of the observed millennial-scale cycles (as short as 1.2 kyr) are associated with nonlinear interactions (combination or difference tones) between each other and the Milankovitch cycles. The presence of these cycles during the Miocene reveals the ubiquity of millennial-scale ice sheet variability and sheds light on the interactions between Earth's atmosphere, ocean, and ice in climates warmer than the Quaternary.

7.
Proc Natl Acad Sci U S A ; 120(7): e2208738120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745804

RESUMO

Founding populations of the first Americans likely occupied parts of Beringia during the Last Glacial Maximum (LGM). The timing, pathways, and modes of their southward transit remain unknown, but blockage of the interior route by North American ice sheets between ~26 and 14 cal kyr BP (ka) favors a coastal route during this period. Using models and paleoceanographic data from the North Pacific, we identify climatically favorable intervals when humans could have plausibly traversed the Cordilleran coastal corridor during the terminal Pleistocene. Model simulations suggest that northward coastal currents strengthened during the LGM and at times of enhanced freshwater input, making southward transit by boat more difficult. Repeated Cordilleran glacial-calving events would have further challenged coastal transit on land and at sea. Following these events, ice-free coastal areas opened and seasonal sea ice was present along the Alaskan margin until at least 15 ka. Given evidence for humans south of the ice sheets by 16 ka and possibly earlier, we posit that early people may have taken advantage of winter sea ice that connected islands and coastal refugia. Marine ice-edge habitats offer a rich food supply and traversing coastal sea ice could have mitigated the difficulty of traveling southward in watercraft or on land over glaciers. We identify 24.5 to 22 ka and 16.4 to 14.8 ka as environmentally favorable time periods for coastal migration, when climate conditions provided both winter sea ice and ice-free summer conditions that facilitated year-round marine resource diversity and multiple modes of mobility along the North Pacific coast.


Assuntos
Ecossistema , Água Doce , Humanos , América do Norte , Migração Humana , Oceanos e Mares , Camada de Gelo
8.
Proc Natl Acad Sci U S A ; 120(27): e2219489120, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364110

RESUMO

Most paleoclimate studies of Mainland Southeast Asia hydroclimate focus on the summer monsoon, with few studies investigating rainfall in other seasons. Here, we present a multiproxy stalagmite record (45,000 to 4,000 years) from central Vietnam, a region that receives most of its annual rainfall in autumn (September-November). We find evidence of a prolonged dry period spanning the last glacial maximum that is punctuated by an abrupt shift to wetter conditions during the deglaciation at ~14 ka. Paired with climate model simulations, we show that sea-level change drives autumn monsoon rainfall variability on glacial-orbital timescales. Consistent with the dry signal in the stalagmite record, climate model simulations reveal that lower glacial sea level exposes land in the Gulf of Tonkin and along the South China Shelf, reducing convection and moisture delivery to central Vietnam. When sea level rises and these landmasses flood at ~14 ka, moisture delivery to central Vietnam increases, causing an abrupt shift from dry to wet conditions. On millennial timescales, we find signatures of well-known Heinrich Stadials (HS) (dry conditions) and Dansgaard-Oeschger Events (wet conditions). Model simulations show that during the dry HS, changes in sea surface temperature related to meltwater forcing cause the formation of an anomalous anticyclone in the Western Pacific, which advects dry air across central Vietnam, decreasing autumn rainfall. Notably, sea level modulates the magnitude of millennial-scale dry and wet phases by muting dry events and enhancing wet events during periods of low sea level, highlighting the importance of this mechanism to autumn monsoon variability.

9.
Proc Natl Acad Sci U S A ; 120(29): e2301018120, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428924

RESUMO

The occurrence of sedimentary storm deposits around the Tethys Ocean during the early Toarcian hyperthermal (~183 Ma) suggests that intensified tropical cyclone (TC) activity occurred in response to CO2 rise and marked warming. However, this hypothesized linkage between extreme warmth and storm activity remains untested, and the spatial pattern of any changes in TCs is unclear. Here, model results show that there were two potential storm genesis centers over Tethys during the early Toarcian hyperthermal located around the northwestern and southeastern Tethys. The empirically determined doubling of CO2 concentration that accompanied the early Toarcian hyperthermal (~500 to ~1,000 ppmv) leads to increased probability of stronger storms over Tethys, in tandem with more favorable conditions for coastal erosion. These results match well with the geological occurrence of storm deposits during the early Toarcian hyperthermal and confirm that increased TC intensity would have accompanied global warming.

10.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042794

RESUMO

What was the nature of the Late Hesperian climate, warm and wet or cold and dry? Formulated this way the question leads to an apparent paradox since both options seem implausible. A warm and wet climate would have produced extensive fluvial erosion but few valley networks have been observed at the age of the Late Hesperian. A too cold climate would have kept any northern ocean frozen most of the time. A moderate cold climate would have transferred the water from the ocean to the land in the form of snow and ice. But this would prevent tsunami formation, for which there is some evidence. Here, we provide insights from numerical climate simulations in agreement with surface geological features to demonstrate that the Martian climate could have been both cold and wet. Using an advanced general circulation model (GCM), we demonstrate that an ocean can be stable, even if the Martian mean surface temperature is lower than 0 °C. Rainfall is moderate near the shorelines and in the ocean. The southern plateau is mostly covered by ice with a mean temperature below 0 °C and a glacier return flow back to the ocean. This climate is achieved with a 1-bar CO2-dominated atmosphere with 10% H2 Under this scenario of 3 Ga, the geologic evidence of a shoreline and tsunami deposits along the ocean/land dichotomy are compatible with ice sheets and glacial valleys in the southern highlands.

11.
Proc Natl Acad Sci U S A ; 119(29): e2122486119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858316

RESUMO

Body size is an important species trait, correlating with life span, fecundity, and other ecological factors. Over Earth's geological history, climate shifts have occurred, potentially shaping body size evolution in many clades. General rules attempting to summarize body size evolution include Bergmann's rule, which states that species reach larger sizes in cooler environments and smaller sizes in warmer environments, and Cope's rule, which poses that lineages tend to increase in size over evolutionary time. Tetraodontiform fishes (including pufferfishes, boxfishes, and ocean sunfishes) provide an extraordinary clade to test these rules in ectotherms owing to their exemplary fossil record and the great disparity in body size observed among extant and fossil species. We examined Bergmann's and Cope's rules in this group by combining phylogenomic data (1,103 exon loci from 185 extant species) with 210 anatomical characters coded from both fossil and extant species. We aggregated data layers on paleoclimate and body size from the species examined, and inferred a set of time-calibrated phylogenies using tip-dating approaches for downstream comparative analyses of body size evolution by implementing models that incorporate paleoclimatic information. We found strong support for a temperature-driven model in which increasing body size over time is correlated with decreasing oceanic temperatures. On average, extant tetraodontiforms are two to three times larger than their fossil counterparts, which otherwise evolved during periods of warmer ocean temperatures. These results provide strong support for both Bergmann's and Cope's rules, trends that are less studied in marine fishes compared to terrestrial vertebrates and marine invertebrates.


Assuntos
Evolução Biológica , Tamanho Corporal , Tetraodontiformes , Animais , Fósseis , Filogenia , Tetraodontiformes/anatomia & histologia , Tetraodontiformes/classificação , Tetraodontiformes/genética
12.
Proc Natl Acad Sci U S A ; 119(17): e2115346119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35446685

RESUMO

The Eocene­Oligocene Transition (∼33.9 Ma) marks the largest step transformation within the Cenozoic cooling trend and is characterized by a sudden growth of the Antarctic ice sheets, cooling of the interior ocean, and the establishment of strong meridional temperature gradients. Here we examine the climatic impact of oceanic gateway changes at the Eocene­Oligocene Transition by implementing detailed paleogeographic reconstructions with realistic paleobathymetric models for the Atlantic­Arctic basins in a state-of-the-art earth system model (the Norwegian Earth System Model [NorESM-F]). We demonstrate that the warm Eocene climate is highly sensitive to depth variations of the Greenland­Scotland Ridge and the proto­Fram Strait as they control the freshwater leakage from the Arctic to the North Atlantic. Our results, and proxy evidence, suggest that changes in these gateways controlled the ocean circulation and played a critical role in the growth of land-based ice sheets, alongside CO2-driven global cooling. Specifically, we suggest that a shallow connection between the Arctic and North Atlantic restricted the southward flow of fresh surface waters during the Late Eocene allowing for a North Atlantic overturning circulation. Consequently, the Southern Hemisphere cooled by several degrees paving the way for the glaciation of Antarctica. Shortly after, the connection to the Arctic deepened due to weakening dynamic support from the Iceland Mantle Plume. This weakened the North Atlantic overturning and cooled the Northern Hemisphere, thereby promoting glaciations there. Our study points to a controlling role of the Northeast Atlantic gateways and decreasing atmospheric CO2 in the onset of glaciations in both hemispheres.

13.
Proc Natl Acad Sci U S A ; 119(17): e2120015119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35446705

RESUMO

Uncertainty about the influence of anthropogenic radiative forcing on the position and strength of convective rainfall in the Intertropical Convergence Zone (ITCZ) inhibits our ability to project future tropical hydroclimate change in a warmer world. Paleoclimatic and modeling data inform on the timescales and mechanisms of ITCZ variability; yet a comprehensive, long-term perspective remains elusive. Here, we quantify the evolution of neotropical hydroclimate over the preindustrial past millennium (850 to 1850 CE) using a synthesis of 48 paleo-records, accounting for uncertainties in paleo-archive age models. We show that an interhemispheric pattern of precipitation antiphasing occurred on multicentury timescales in response to changes in natural radiative forcing. The conventionally defined "Little Ice Age" (1450 to 1850 CE) was marked by a clear shift toward wetter conditions in the southern neotropics and a less distinct and spatiotemporally complex transition toward drier conditions in the northern neotropics. This pattern of hydroclimatic change is consistent with results from climate model simulations indicating that a relative cooling of the Northern Hemisphere caused a southward shift in the thermal equator across the Atlantic basin and a southerly displacement of the ITCZ in the tropical Americas, with volcanic forcing as the principal driver. These findings are at odds with proxy-based reconstructions of ITCZ behavior in the western Pacific basin, where changes in ITCZ width and intensity, rather than mean position, appear to have driven hydroclimate transitions over the last millennium. This reinforces the idea that ITCZ responses to external forcing are region specific, complicating projections of the tropical precipitation response to global warming.

14.
Proc Natl Acad Sci U S A ; 119(16): e2107393119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412903

RESUMO

Understanding the climatic drivers of environmental variability (EV) during the Plio-Pleistocene and EV's influence on mammalian macroevolution are two outstanding foci of research in African paleoclimatology and evolutionary biology. The potential effects of EV are especially relevant for testing the variability selection hypothesis, which predicts a positive relationship between EV and speciation and extinction rates in fossil mammals. Addressing these questions is stymied, however, by 1) a lack of multiple comparable EV records of sufficient temporal resolution and duration, and 2) the incompleteness of the mammalian fossil record. Here, we first compile a composite history of Pan-African EV spanning the Plio-Pleistocene, which allows us to explore which climatic variables influenced EV. We find that EV exhibits 1) a long-term trend of increasing variability since ∼3.7 Ma, coincident with rising variability in global ice volume and sea surface temperatures around Africa, and 2) a 400-ky frequency correlated with seasonal insolation variability. We then estimate speciation and extinction rates for fossil mammals from eastern Africa using a method that accounts for sampling variation. We find no statistically significant relationship between EV and estimated speciation or extinction rates across multiple spatial scales. These findings are inconsistent with the variability selection hypothesis as applied to macroevolutionary processes.


Assuntos
Evolução Biológica , Clima , Extinção Biológica , Especiação Genética , Hominidae , África , Animais , Fósseis , Hominidae/genética
15.
New Phytol ; 242(2): 774-785, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38389217

RESUMO

C4 photosynthesis is a key innovation in land plant evolution, but its immediate effects on population demography are unclear. We explore the early impact of the C4 trait on the trajectories of C4 and non-C4 populations of the grass Alloteropsis semialata. We combine niche models projected into paleoclimate layers for the last 5 million years with demographic models based on genomic data. The initial split between C4 and non-C4 populations was followed by a larger expansion of the ancestral C4 population, and further diversification led to the unparalleled expansion of descendant C4 populations. Overall, C4 populations spread over three continents and achieved the highest population growth, in agreement with a broader climatic niche that rendered a large potential range over time. The C4 populations that remained in the region of origin, however, experienced lower population growth, rather consistent with local geographic constraints. Moreover, the posterior transfer of some C4-related characters to non-C4 counterparts might have facilitated the recent expansion of non-C4 populations in the region of origin. Altogether, our findings support that C4 photosynthesis provided an immediate demographic advantage to A. semialata populations, but its effect might be masked by geographic contingencies.


Assuntos
Fotossíntese , Poaceae , Poaceae/genética , Fenótipo , Demografia
16.
Mol Ecol ; : e17514, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39206888

RESUMO

Theropithecus gelada, the last surviving species of this genus, occupy a unique and highly specialised ecological niche in the Ethiopian highlands. A subdivision into three geographically defined populations (Northern, Central and Southern) has been tentatively proposed for this species on the basis of genetic analyses, but genomic data have been investigated only for two of these groups (Northern and Central). Here we combined newly generated whole genome sequences of individuals sampled from the population living south of the East Africa Great Rift Valley with available data from the other two gelada populations to reconstruct the evolutionary history of the species. Integrating genomic and paleoclimatic data we found that gene-flow across populations and with Papio species tracked past climate changes. The isolation and climatic conditions experienced by Southern geladas during the Holocene shaped local diversity and generated diet-related genomic signatures.

17.
Am J Bot ; 111(7): e16376, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39020509

RESUMO

PREMISE: The Aptian-Albian (121.4-100.5 Ma) was a greenhouse period with global temperatures estimated as 10-15°C warmer than pre-industrial conditions, so it is surprising that the most reliable CO2 estimates from this time are <1400 ppm. This low CO2 during a warm period implies a very high Earth-system sensitivity in the range of 6 to 9°C per CO2 doubling between the Aptian-Albian and today. METHODS: We applied a well-vetted paleo-CO2 proxy based on leaf gas-exchange principles (Franks model) to two Pseudotorellia species from three stratigraphically similar samples at the Tevshiin Govi lignite mine in central Mongolia (~119.7-100.5 Ma). RESULTS: Our median estimated CO2 concentration from the three respective samples was 2132, 2405, and 2770 ppm. The primary reason for the high estimated CO2 but with relatively large uncertainties is the very low stomatal density in both species, where small variations propagate to large changes in estimated CO2. Indeed, we found that at least 15 leaves are required before the aggregate estimated CO2 approaches that of the full data set. CONCLUSIONS: Our three CO2 estimates all exceeded 2000 ppm, translating to an Earth-system sensitivity (~3-5°C/CO2 doubling) that is more in keeping with the current understanding of the long-term climate system. Because of our large sample size, the directly measured inputs did not contribute much to the overall uncertainty in estimated CO2; instead, the inferred inputs were responsible for most of the overall uncertainty and thus should be scrutinized for their value choices.


Assuntos
Atmosfera , Dióxido de Carbono , Estômatos de Plantas , Dióxido de Carbono/análise , Mongólia , Estômatos de Plantas/fisiologia , Atmosfera/química , Isótopos de Carbono/análise , Fósseis , Isótopos de Oxigênio/análise , Folhas de Planta/química
18.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903256

RESUMO

Despite receiving just 30% of the Earth's present-day insolation, Mars had water lakes and rivers early in the planet's history, due to an unknown warming mechanism. A possible explanation for the >102-y-long lake-forming climates is warming by water ice clouds. However, this suggested cloud greenhouse explanation has proved difficult to replicate and has been argued to require unrealistically optically thick clouds at high altitudes. Here, we use a global climate model (GCM) to show that a cloud greenhouse can warm a Mars-like planet to global average annual-mean temperature ([Formula: see text]) ∼265 K, which is warm enough for low-latitude lakes, and stay warm for centuries or longer, but only if the planet has spatially patchy surface water sources. Warm, stable climates involve surface ice (and low clouds) only at locations much colder than the average surface temperature. At locations horizontally distant from these surface cold traps, clouds are found only at high altitudes, which maximizes warming. Radiatively significant clouds persist because ice particles sublimate as they fall, moistening the subcloud layer so that modest updrafts can sustain relatively large amounts of cloud. The resulting climates are arid (area-averaged surface relative humidity ∼25%). In a warm, arid climate, lakes could be fed by groundwater upwelling, or by melting of ice following a cold-to-warm transition. Our results are consistent with the warm and arid climate favored by interpretation of geologic data, and support the cloud greenhouse hypothesis.

19.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526667

RESUMO

The spatial coverage and temporal resolution of the Early Paleozoic paleoclimate record are limited, primarily due to the paucity of well-preserved skeletal material commonly used for oxygen-isotope paleothermometry. Bulk-rock [Formula: see text] datasets can provide broader coverage and higher resolution, but are prone to burial alteration. We assess the diagenetic character of two thick Cambro-Ordovician carbonate platforms with minimal to moderate burial by pairing clumped and bulk isotope analyses of micritic carbonates. Despite resetting of the clumped-isotope thermometer at both sites, our samples indicate relatively little change to their bulk [Formula: see text] due to low fluid exchange. Consequently, both sequences preserve temporal trends in [Formula: see text] Motivated by this result, we compile a global suite of bulk rock [Formula: see text] data, stacking overlapping regional records to minimize diagenetic influences on overall trends. We find good agreement of bulk rock [Formula: see text] with brachiopod and conodont [Formula: see text] trends through time. Given evidence that the [Formula: see text] value of seawater has not evolved substantially through the Phanerozoic, we interpret this record as primarily reflecting changes in tropical, nearshore seawater temperatures and only moderately modified by diagenesis. Focusing on the samples with the most enriched, and thus likely least-altered, [Formula: see text] values, we reconstruct Late Cambrian warming, Early Ordovician extreme warmth, and cooling around the Early-Middle Ordovician boundary. Our record is consistent with models linking the Great Ordovician Biodiversification Event to cooling of previously very warm tropical oceans. In addition, our high-temporal-resolution record suggests previously unresolved transient warming and climate instability potentially associated with Late Ordovician tectonic events.

20.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33593914

RESUMO

The earliest dinosaurs (theropods and sauropodomorphs) are found in fossiliferous early Late Triassic strata dated to about 230 million years ago (Ma), mainly in northwestern Argentina and southern Brazil in the Southern Hemisphere temperate belt of what was Gondwana in Pangea. Sauropodomorphs, which are not known for the entire Triassic in then tropical North America, eventually appear 15 million years later in the Northern Hemisphere temperate belt of Laurasia. The Pangea supercontinent was traversable in principle by terrestrial vertebrates, so the main barrier to be surmounted for dispersal between hemispheres was likely to be climatic; in particular, the intense aridity of tropical desert belts and unstable climate in the equatorial humid belt accompanying high atmospheric pCO2 that characterized the Late Triassic. We revisited the chronostratigraphy of the dinosaur-bearing Fleming Fjord Group of central East Greenland and, with additional data, produced a correlation of a detailed magnetostratigraphy from more than 325 m of composite section from two field areas to the age-calibrated astrochronostratigraphic polarity time scale. This age model places the earliest occurrence of sauropodomorphs (Plateosaurus) in their northernmost range to ∼214 Ma. The timing is within the 215 to 212 Ma (mid-Norian) window of a major, robust dip in atmospheric pCO2 of uncertain origin but which may have resulted in sufficiently lowered climate barriers that facilitated the initial major dispersal of the herbivorous sauropodomorphs to the temperate belt of the Northern Hemisphere. Indications are that carnivorous theropods may have had dispersals that were less subject to the same climate constraints.


Assuntos
Evolução Biológica , Dinossauros/fisiologia , Fósseis , Magnetismo , Paleontologia , África , Animais , Regiões Antárticas , Austrália , Brasil , Cronologia como Assunto , Groenlândia , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa