Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Cardiovasc Magn Reson ; 24(1): 7, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34986847

RESUMO

BACKGROUND: Transthoracic echocardiography (TTE) is the diagnostic routine standard for assessing aortic stenosis (AS). However, its inaccuracies in determining stroke volume (SV) and aortic valve area (AVA) call for a more precise and dependable method. Phase-contrast cardiovascular magnetic resonance imaging (PC-CMR) is a promising tool to push these boundaries. Thus, the aim of this study was to validate a novel approach based on PC-CMR against the gold-standard of invasive determination of AVA in AS compared to TTE. METHODS: A total of 50 patients with moderate or severe AS underwent TTE, cardiac catheterization and CMR. AVA via PC-CMR was determined by plotting momentary flow across the valve against flow-velocity. SV by CMR was measured directly via PC-CMR and volumetrically using cine-images. Invasive SV and AVA were determined via Fick-principle and Gorlin-formula, respectively. TTE yielded SV and AVA using continuity equation. Gradients were calculated via the modified Bernoulli-equation. RESULTS: SV by PC-CMR (85 ± 31 ml) correlated strongly (r: 0.73, p < 0.001) with cine-CMR (85 ± 19 ml) without significant bias (lower and upper limits of agreement (LLoA and ULoA): - 41 ml and 44 ml, p = 0.83). In PC-CMR, mean pressure gradient correlated significantly with invasive determination (r: 0.36, p = 0.011). Mean AVA, as determined by PC-CMR during systole (0.78 ± 0.25 cm2), correlated moderately (r: 0.54, p < 0.001) with invasive AVA (0.70 ± 0.23 cm2), resulting in a small bias of 0.08 cm2 (LLoA and ULoA: - 0.36 cm2 and 0.55 cm2, p = 0.017). Inter-methodically, AVA by TTE (0.81 ± 0.23 cm2) compared to invasive determination showed similar correlations (r: 0.58, p < 0.001 with a bias of 0.11 cm2, LLoA and ULoA: - 0.30 and 0.52, p < 0.001) to PC-CMR. Intra- and interobserver reproducibility were excellent for AVA (intraclass-correlation-coefficients of 0.939 and 0.827, respectively). CONCLUSIONS: Our novel approach using continuous determination of flow-volumes and velocities with PC-CMR enables simple AVA measurement with no bias to invasive assessment. This approach highlights non-invasive AS grading through CMR, especially when TTE findings are inconclusive.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
2.
J Magn Reson Imaging ; 51(3): 885-896, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31332874

RESUMO

BACKGROUND: A reduction in scan time of 4D Flow MRI would facilitate clinical application. A recent study indicates that echo-planar imaging (EPI) 4D Flow MRI allows for a reduction in scan time and better data quality than the recommended k-space segmented spoiled gradient echo (SGRE) sequence. It was argued that the poor data quality of SGRE was related to the nonrecommended absence of respiratory motion compensation. However, data quality can also be affected by the background offset compensation. PURPOSE: To compare the data quality of respiratory motion-compensated SGRE and EPI 4D Flow MRI and their dependence on background correction (BC) order. STUDY TYPE: Retrospective. SUBJECTS: Eighteen healthy subjects (eight female, mean age 32 ± 5 years). FIELD STRENGTH AND SEQUENCE: 1.5 T. [Correction added on July 26, 2019, after first online publication: The preceding field strength was corrected.] SGRE and EPI-based 4D Flow MRI. ASSESSMENT: Data quality was investigated visually and by comparing flows through the cardiac valves and aorta. Measurements were obtained from transvalvular flow and pathline analysis. STATISTICAL TESTS: Linear regression and Bland-Altman analysis were used. Wilcoxon test was used for comparison of visual scoring. Student's t-test was used for comparison of flow volumes. RESULTS: No significant difference was found by visual inspection (P = 0.08). Left ventricular (LV) flows were strongly and very strongly associated with SGRE and EPI, respectively (R2 = 0.86-0.94 SGRE; 0.71-0.79 EPI, BC0-4). LV and right ventricular (RV) outflows and LV pathline flows were very strongly associated (R2 = 0.93-0.95 SGRE; 0.88-0.91 EPI, R2 = 0.91-0.95 SGRE; 0.91-0.93 EPI, BC1-4). EPI LV outflow was lower than the short-axis-based stroke volume. EPI RV outflow and proximal descending aortic flow were lower than SGREs. DATA CONCLUSION: Both sequences yielded good internal data consistency when an adequate background correction was applied. Second and first BC order were considered sufficient for transvalvular flow analysis in SGRE and EPI, respectively. Higher BC orders were preferred for particle tracing. Level of Evidence 4 Technical Efficacy Stage 1 J. Magn. Reson. Imaging 2020;51:885-896.


Assuntos
Confiabilidade dos Dados , Imagem Ecoplanar , Adulto , Feminino , Ventrículos do Coração , Humanos , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Estudos Retrospectivos
3.
J Cardiovasc Magn Reson ; 21(1): 65, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31638997

RESUMO

BACKGROUND: Three-dimensional time-resolved phase-contrast cardiovascular magnetic resonance (4D flow CMR) enables the quantification and visualisation of blood flow, but its clinical applicability remains hampered by its long scan time. The aim of this study was to evaluate the use of compressed sensing (CS) with on-line reconstruction to accelerate the acquisition and reconstruction of 4D flow CMR of the thoracic aorta. METHODS: 4D flow CMR of the thoracic aorta was acquired in 20 healthy subjects using CS with acceleration factors ranging from 4 to 10. As a reference, conventional parallel imaging (SENSE) with acceleration factor 2 was used. Flow curves, net flows, peak flows and peak velocities were extracted from six contours along the aorta. To measure internal data consistency, a quantitative particle trace analysis was performed. Additionally, scan-rescan, inter- and intraobserver reproducibility were assessed. Subsequently, 4D flow CMR with CS factor 6 was acquired in 3 patients with differing aortopathies. The flow patterns resulting from particle trace visualisation were qualitatively analysed. RESULTS: All collected data were successfully acquired and reconstructed on-line. The average acquisition time including respiratory navigator efficiency with CS factor 6 was 5:02 ± 2:23 min while reconstruction took approximately 9 min. For CS factors of 8 or less, mean differences in net flow, peak flow and peak velocity as compared to SENSE were below 2.2 ± 7.8 ml/cycle, 4.6 ± 25.2 ml/s and - 7.9 ± 13.0 cm/s, respectively. For a CS factor of 10 differences reached 5.4 ± 8.0 ml/cycle, 14.4 ± 28.3 ml/s and - 4.0 ± 12.2 cm/s. Scan-rescan analysis yielded mean differences in net flow of - 0.7 ± 4.9 ml/cycle for SENSE and - 0.2 ± 8.5 ml/cycle for CS factor of 6. CONCLUSIONS: A six- to eightfold acceleration of 4D flow CMR using CS is feasible. Up to a CS acceleration rate of 6, no statistically significant differences in measured flow parameters could be observed with respect to the reference technique. Acquisitions in patients with aortopathies confirm the potential to integrate the proposed method in a clinical routine setting, whereby its main benefits are scan-time savings and direct on-line reconstruction.


Assuntos
Aorta Torácica/diagnóstico por imagem , Doenças da Aorta/diagnóstico por imagem , Hemodinâmica , Angiografia por Ressonância Magnética , Imagem de Perfusão/métodos , Adulto , Aorta Torácica/fisiopatologia , Doenças da Aorta/fisiopatologia , Velocidade do Fluxo Sanguíneo , Estudos de Casos e Controles , Estudos de Viabilidade , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Fluxo Sanguíneo Regional , Reprodutibilidade dos Testes , Fatores de Tempo , Adulto Jovem
4.
J Cardiovasc Magn Reson ; 19(1): 35, 2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-28270219

RESUMO

BACKGROUND: Aortic stenosis (AS) is a common valvular disorder, and disease severity is currently assessed by transthoracic echocardiography (TTE). However, TTE results can be inconsistent in some patients, thus other diagnostic modalities such as cardiovascular magnetic resonance (CMR) are demanded. While traditional unidirectional phase-contrast CMR (1Dir PC-CMR) underestimates velocity if the imaging plane is misaligned to the flow direction, multi-directional acquisitions are expected to improve velocity measurement accuracy. Nonetheless, clinical use of multidirectional techniques has been hindered by long acquisition times. Our goal was to quantify flow parameters in patients using 1Dir PC-CMR and a faster multi-directional technique (3Dir PC-CMR), and compare to TTE. METHODS: Twenty-three patients were prospectively assessed with TTE and CMR. Slices above the aortic valve were acquired for both PC-CMR techniques and cine SSFP images were acquired to quantify left ventricular stroke volume. 3Dir PC-CMR implementation included a variable density sampling pattern with acceleration rate of 8 and a reconstruction method called ReVEAL, to significantly accelerate acquisition. 3Dir PC-CMR reconstruction was performed offline and ReVEAL-based image recovery was performed on the three (x, y, z) encoding pairs. 1Dir PC-CMR was acquired with GRAPPA acceleration rate of 2 and reconstructed online. CMR derived flow parameters and aortic valve area estimates were compared to TTE. RESULTS: ReVEAL based 3Dir PC-CMR derived parameters correlated better with TTE than 1Dir PC-CMR. Correlations ranged from 0.61 to 0.81 between TTE and 1Dir PC-CMR and from 0.61 to 0.87 between TTE and 3Dir-PC-CMR. The correlation coefficients between TTE, 1Dir and 3Dir PC-CMR Vpeakwere 0.81 and 0.87, respectively. In comparison to ReVEAL, TTE slightly underestimates peak velocities, which is not surprising as TTE is only sensitive to flow that is parallel to the acoustic beam. CONCLUSIONS: By exploiting structure unique to PC-CMR, ReVEAL enables multi-directional flow imaging in clinically feasible acquisition times. Results support the hypothesis that ReVEAL-based 3Dir PC-CMR provides better estimation of hemodynamic parameters in AS patients in comparison to 1Dir PC-CMR. While TTE can accurately measure velocity parallel to the acoustic beam, it is not sensitive to the other directions of flow. Therefore, multi-directional flow imaging, which encodes all three components of the velocity vector, can potentially outperform TTE in patients with eccentric or multiple jets.


Assuntos
Estenose da Valva Aórtica/diagnóstico por imagem , Valva Aórtica/diagnóstico por imagem , Ecocardiografia Doppler , Hemodinâmica , Imagem Cinética por Ressonância Magnética , Adulto , Idoso , Idoso de 80 Anos ou mais , Valva Aórtica/fisiopatologia , Estenose da Valva Aórtica/fisiopatologia , Velocidade do Fluxo Sanguíneo , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Índice de Gravidade de Doença
5.
J Cardiovasc Magn Reson ; 19(1): 19, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28183320

RESUMO

BACKGROUND: Conventional phase-contrast cardiovascular magnetic resonance (PC-CMR) employs cine-based acquisitions to assess blood flow condition, in which electro-cardiogram (ECG) gating and respiration control are generally required. This often results in lower acquisition efficiency, and limited utility in the presence of cardiovascular pathology (e.g., cardiac arrhythmia). Real-time PC-CMR, without ECG gating and respiration control, is a promising alternative that could overcome limitations of the conventional approach. But real-time PC-CMR involves image reconstruction from highly undersampled (k, t)-space data, which is very challenging. In this study, we present a novel model-based imaging method to enable high-resolution real-time PC-CMR with sparse sampling. METHODS: The proposed method captures spatiotemporal correlation among flow-compensated and flow-encoded image sequences with a novel low-rank model. The image reconstruction problem is then formulated as a low-rank matrix recovery problem. With proper temporal subspace modeling, it results in a convex optimization formulation. We further integrate this formulation with the SENSE-based parallel imaging model to handle multichannel acquisitions. The performance of the proposed method was systematically evaluated in 2D real-time PC-CMR with flow phantom experiments and in vivo experiments (with healthy subjects). Additionally, we performed a feasibility study of the proposed method on patients with cardiac arrhythmia. RESULTS: The proposed method achieves a spatial resolution of 1.8 mm and a temporal resolution of 18 ms for 2D real-time PC-CMR with one directional flow encoding. For the flow phantom experiments, both regular and irregular flow patterns were accurately captured. For the in vivo experiments with healthy subjects, flow dynamics obtained from the proposed method correlated well with those from the cine-based acquisitions. For the experiments with the arrhythmic patients, the proposed method demonstrated excellent capability of resolving the beat-by-beat flow variations, which cannot be obtained from the conventional cine-based method. CONCLUSION: The proposed method enables high-resolution real-time PC-CMR at 2D without ECG gating and respiration control. It accurately resolves beat-by-beat flow variations, which holds great promise for studying patients with irregular heartbeats.


Assuntos
Algoritmos , Arritmias Cardíacas/diagnóstico , Circulação Coronária , Interpretação de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Modelos Cardiovasculares , Imagem de Perfusão do Miocárdio/métodos , Modelagem Computacional Específica para o Paciente , Adulto , Idoso , Arritmias Cardíacas/fisiopatologia , Velocidade do Fluxo Sanguíneo , Estudos de Viabilidade , Feminino , Humanos , Imagem Cinética por Ressonância Magnética/instrumentação , Masculino , Imagens de Fantasmas , Valor Preditivo dos Testes , Fatores de Tempo , Adulto Jovem
6.
Eur Radiol ; 26(7): 1999-2008, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26385805

RESUMO

OBJECTIVES: Phase-contrast CMR (PC-CMR) might provide a fast and robust non-invasive determination of left ventricular function in patients after ST-segment elevation myocardial infarction (STEMI). METHODS: Cine sequences in the left-ventricular (LV) short-axis and free-breathing, retrospectively gated PC-CMR were performed in 90 patients with first acute STEMI and 15 healthy volunteers. Inter- and intra-observer agreement was determined. The correlations of clinical variables (age, gender, ejection fraction, NT pro-brain natriuretic peptide [NT-proBNP] with cardiac index (CI) were calculated. RESULTS: For CI, there was a strong agreement of cine CMR with PC-CMR in healthy volunteers (r: 0.82, mean difference: -0.14 l/min/m(2), error ± 23 %). Agreement was lower in STEMI patients (r: 0.61, mean difference: -0.17 l/min/m(2), error ± 32 %). In STEMI patients, CI measured with PC-CMR showed lower intra-observer (1 % vs. 9 %) and similar inter-observer variability (9 % vs. 12 %) compared to cine CMR. CI was significantly correlated with age, ejection fraction and NT-proBNP values in STEMI patients. DISCUSSION: The agreement of PC-CMR and cine CMR for the determination of CI is lower in STEMI patients than in healthy volunteers. After acute STEMI, CI measured with PC-CMR decreases with age, LV ejection fraction and higher NT-proBNP. KEY POINTS: • Cine CMR and PC-CMR correlate well in healthy volunteers. • Agreement is lower in STEMI patients. • Cardiac Output should be measured with one method longitudinally. • Cardiac output decreases with age after myocardial infarction.


Assuntos
Débito Cardíaco/fisiologia , Imagem Cinética por Ressonância Magnética/métodos , Infarto do Miocárdio com Supradesnível do Segmento ST/fisiopatologia , Adulto , Idoso , Aorta/fisiopatologia , Velocidade do Fluxo Sanguíneo/fisiologia , Meios de Contraste/administração & dosagem , Circulação Coronária/fisiologia , Feminino , Seguimentos , Frequência Cardíaca/fisiologia , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Infarto do Miocárdio com Supradesnível do Segmento ST/patologia , Função Ventricular Esquerda/fisiologia
7.
J Cardiovasc Magn Reson ; 18(1): 59, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27659876

RESUMO

BACKGROUND: Peak velocity measurements are used to evaluate the significance of stenosis in patients with transposition of the great arteries after the arterial switch operation (TGA after ASO). 4D flow cardiovascular magnetic resonance (CMR) provides 3-directional velocity encoding and full volumetric coverage of the great arteries and may thus improve the hemodynamic evaluation in these patients. The aim of this study was to compare peak velocities measured by 4D flow CMR with 2D phase contrast (PC) CMR and the gold standard Doppler echocardiography (echo) in patients with TGA after ASO. METHODS: Nineteen patients (mean age 13 ± 9 years, range 1-25 years) with TGA after ASO who underwent 2D PC CMR and 4D flow CMR were included in this study. Peak velocities were measured with 4D flow CMR in the aorta and pulmonary arteries and compared to peak velocities measured with 2D PC CMR and Doppler echo. 2D PC CMR data were available in the ascending aorta, main, right and left pulmonary arteries (AAO/MPA/RPA/LPA) for 19/18/17/17 scans, respectively, and Doppler echo data were available for 13/9/6/6 scans, respectively. Peak velocities were measured with: 1) a single cross section for 2D PC CMR, 2) velocity maximum intensity projections (MIPs) for 4D flow CMR and 3) Doppler echo. RESULTS: Significantly higher peak velocities were found with 4D flow CMR than 2D PC CMR in the AAO (p = 0.003), MPA (p = 0.002) and RPA (p = 0.005) but not in the LPA (p = 0.200). No difference in peak velocity was found between 4D flow CMR and Doppler echo (p > 0.46) or 2D PC CMR and echo (p > 0.11) for all analyzed vessel segments. CONCLUSIONS: 4D flow CMR evaluation of patients with TGA after ASO detected higher peak velocities than 2D PC CMR, indicating the potential of 4D flow CMR to provide improved stenosis assessment in these patients.

8.
J Clin Med ; 12(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37109295

RESUMO

OBJECTIVES: Four-dimensional (4D) flow cardiac magnetic resonance (CMR) represents an emerging technique for non-invasive evaluation of the aortic flow. The aim of this study was to investigate a 4D-flow CMR sequence for the assessment of thoracic aorta comparing different vendors and different magnetic fields of MR scanner in fifteen healthy volunteers. METHODS: CMR was performed on three different MRI scanners: one at 1.5 T and two at 3 T. Flow parameters and planar wall shear stress (WSS) were extracted from six transversal planes along the full thoracic aorta by three operators. Inter-vendor comparability as well as scan-rescan, intra- and interobserver reproducibility were examined. RESULTS: A high heterogeneity was found in the comparisons for each operator and for each scanner in the six transversal planes analysis (Friedman rank-sum test; p-value ≤ 0.05). Among all, the most reproducible measures were extracted for the sinotubular junction plane and for the flow parameters. CONCLUSIONS: Our results suggest that standardized procedures have to be defined to make more comparable and reproducible 4D-flow parameters and mainly, clinical impactfulness. Further studies on sequences development are needed to validate 4D-flow MRI assessment across vendors and magnetic fields also compared to a missing gold standard.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa