Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 47(11): 4188-4211, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38935876

RESUMO

In Chlamydomonas, the directly light-gated, plasma membrane-localized cation channels channelrhodopsins ChR1 and ChR2 are the primary photoreceptors for phototaxis. Their targeting and abundance is essential for optimal movement responses. However, our knowledge how Chlamydomonas achieves this is still at its infancy. Here we show that ChR1 internalization occurs via light-stimulated endocytosis. Prior or during endocytosis ChR1 is modified and forms high molecular mass complexes. These are the solely detectable ChR1 forms in extracellular vesicles and their abundance therein dynamically changes upon illumination. The ChR1-containing extracellular vesicles are secreted via the plasma membrane and/or the ciliary base. In line with this, ciliogenesis mutants exhibit increased ChR1 degradation rates. Further, we establish involvement of the cysteine protease CEP1, a member of the papain-type C1A subfamily. ΔCEP1-knockout strains lack light-induced ChR1 degradation, whereas ChR2 degradation was unaffected. Low light stimulates CEP1 expression, which is regulated via phototropin, a SPA1 E3 ubiquitin ligase and cyclic AMP. Further, mutant and inhibitor analyses revealed involvement of the small GTPase ARL11 and SUMOylation in ChR1 targeting to the eyespot and cilia. Our study thus defines the degradation pathway of this central photoreceptor of Chlamydomonas and identifies novel elements involved in its homoeostasis and targeting.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Endocitose , Proteólise , Luz , Channelrhodopsins/metabolismo , Channelrhodopsins/genética
2.
Insect Mol Biol ; 33(1): 81-90, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37815404

RESUMO

Insect odorant binding proteins (OBPs) were initially regarded as carriers of the odorants involved in chemosensation. However, it had been observed that a growing number of OBP genes exhibited broad expression patterns beyond chemosensory tissues. Here, an OBP gene (OBP31) was found to be highly expressed in the larval ventral nerve cord, adult brain and male reproductive organ of Spodoptera frugiperda. An OBP31 knockout strain (OBP31-/- ) was generated by CRISPR/Cas9 mutagenesis. For OBP31-/- , the larvae needed longer time to pupate, but there was no difference in the pupal weight between OBP31-/- and wild type (WT). OBP31-/- larvae showed stronger phototaxis than the WT larvae, indicating the importance of OBP31 in light perception. For mating rhythm of adults, OBP31-/- moths displayed an earlier second mating peak. In the cross-pairing of OBP31-/- and WT moths, the mating duration was longer, and hatchability was lower in OBP31-/- group and OBP31+/- ♂ group than that in the WT group. These results suggested that OBP31 played a vital role in larval light perception and male reproductive process and could provide valuable insights into understanding the biological functions of OBPs that were not specific in chemosensory tissues.


Assuntos
Mariposas , Receptores Odorantes , Masculino , Animais , Spodoptera/genética , Spodoptera/metabolismo , Fototaxia , Sequência de Aminoácidos , Mariposas/genética , Larva/genética , Larva/metabolismo , Reprodução , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
3.
J Exp Biol ; 227(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38699809

RESUMO

Mayflies are typically negatively phototactic during larval development, whereas the adults possess positive phototaxis. However, no extensive research has been done into the wavelength dependence of phototaxis in any mayfly larvae. We measured the repellency rate of Ephoron virgo larvae to light as a function of wavelength in the 368-743 nm spectral range. We established that the magnitude of repellence increased with decreasing wavelength and the maximal responses were elicited by 400 nm violet light. This wavelength dependence of phototaxis is similar to the recently reported spectral sensitivity of positive phototaxis of the twilight-swarming E. virgo adults. Negative phototaxis not only facilitates predation evasion: avoidance of the blue-violet spectral range could also promote the larvae to withdraw towards the river midline in the case of a drop in the water level, when the underwater light becomes enriched with shorter wavelengths as a result of the decreasing depth of overhead river water.


Assuntos
Larva , Luz , Fototaxia , Animais , Larva/fisiologia , Larva/crescimento & desenvolvimento , Fototaxia/fisiologia , Ephemeroptera/fisiologia
4.
J Exp Biol ; 227(18)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39155640

RESUMO

Understanding how internal states such as satiety are connected to animal behavior is a fundamental question in neuroscience. Hydra vulgaris, a freshwater cnidarian with only 12 neuronal cell types, serves as a tractable model system for studying state-dependent behaviors. We found that starved hydras consistently move towards light, while fed hydras do not. By modeling this behavior as a set of three sequences of head orientation, jump distance and jump rate, we demonstrate that the satiety state only affects the rate of the animal jumping to a new position, while the orientation and jump distance are unaffected. These findings yield insights into how internal states in a simple organism, Hydra, affect specific elements of a behavior, and offer general principles for studying the relationship between state-dependent behaviors and their underlying molecular mechanisms.


Assuntos
Hydra , Fototaxia , Animais , Hydra/fisiologia , Fototaxia/fisiologia , Comportamento Animal/fisiologia , Resposta de Saciedade/fisiologia
5.
Microb Ecol ; 87(1): 40, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351424

RESUMO

It has long been hypothesized that benthic motile pennate diatoms use phototaxis to optimize photosynthesis and minimize photoinhibitory damage by adjusting their position within vertical light gradients in coastal benthic sediments. However, experimental evidence to test this hypothesis remains inconclusive, mainly due to methodological difficulties in studying cell behavior and photosynthesis over realistic spatial microscale gradients of irradiance and cell position. In this study, a novel experimental approach was developed and used to test the hypothesis of photosynthesis optimization through motility, based on the combination of single-cell in vivo chlorophyll fluorometry and microfluidic chips. The approach allows the concurrent study of behavior and photosynthetic activity of individual cells of the epipelic diatom species Craspedostauros britannicus exposed to a light microgradient of realistic dimensions, simulating the irradiance and distance scales of light microgradients in benthic sediments. Following exposure to light, (i) cells explored their light environment before initiating light-directed motility; (ii) cells used motility to lower their light dose, when exposed to the highest light intensities; and (iii) motility was combined with reversible non-photochemical quenching, to allow cells to avoid photoinhibition. The results of this proof-of-concept study not only strongly support the photoprotective nature of photobehavior in the studied species but also revealed considerable variability in how individual cells reacted to a light microgradient. The experimental setup can be readily applied to study motility and photosynthetic light responses of other diatom species or natural assemblages, as well as other photoautotrophic motile microorganisms, broadening the toolset for experimental microbial ecology research.


Assuntos
Diatomáceas , Diatomáceas/fisiologia , Fotossíntese , Clorofila , Luz , Movimento Celular
6.
Med Vet Entomol ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044406

RESUMO

Blow flies (Diptera: Calliphoridae) are arguably the most important providers of an estimate of minimum post-mortem interval in forensic investigations. They usually undergo a post-feeding dispersal from the body. While previous studies have looked at dispersal of groups of larvae, recording the dispersal activity of individual larvae has not previously been demonstrated. A servosphere was used here to record the speed, directionality and phototaxis of individual post-feeding larvae of two species of blow fly on a smooth plastic surface over time. The servosphere rotates to compensate for the movement of an insect placed at its apex, thereby enabling its unimpeded locomotion in any direction to be studied and behavioural changes to external stimuli recorded. To our knowledge, the servosphere has not previously been used to study apodous insects. The objective of our study was to compare dispersal behaviour of Calliphora vicina Robineau-Desvoidy and Protophormia terraenovae (Robineau-Desvoidy), both common primary colonisers of human and animal cadavers, but showing different post-feeding dispersal strategies. Larvae of C. vicina generally disperse from the body while those of P. terraenovae remain on or close to the body. Our aims were to study (1) changes in dispersal speed over a 1-h period; (2) changes in dispersal speed once a day for 4 days, between the end of feeding and onset of pupariation; and (3) response of dispersing larvae to light. We demonstrated that (1) the movement of three C. vicina larvae tracked for 1 continuous hour on 1 day slowed from an average of 3 to <1.7 mms-1; (2) the average speed of 20 larvae of C. vicina (4.08 mms-1) recorded for 5 min once per day over a 4-day period between onset of dispersal and pupariation was significantly greater than that of P. terraenovae (2.36 mms-1; p < 0.0001), but that speed of both species increased slightly over the 4 days; (3) the responses of larvae of C. vicina to changes in light direction from the four cardinal directions of the compass, showed that they exhibited a strong negative phototactic response within 5 s, turning to move at approximately 180° away from the new light position. While conducted to observe larval calliphorid post-feeding behaviour, the results of this proof of concept study show that apodous insects can be studied on a servosphere to produce both qualitative and quantitative data.

7.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34349017

RESUMO

Many zooplankton and fishes vertically migrate on a diel cycle to avoid predation, moving from their daytime residence in darker, deep waters to prey-rich surface waters to feed at dusk and returning to depth before dawn. Vertical migrations also occur in response to other processes that modify local light intensity, such as storms, eclipses, and full moons. We observed rapid, high-frequency migrations, spanning up to 60 m, of a diel vertically migrating acoustic scattering layer with a daytime depth of 300 m in the subpolar Northeastern Pacific Ocean. The depth of the layer was significantly correlated, with an ∼5-min lag, to cloud-driven variability in surface photosynthetically available radiation. A model of isolume-following swimming behavior reproduces the observed layer depth and suggests that the high-frequency migration is a phototactic response to absolute light level. Overall, the cumulative distance traveled per day in response to clouds was at least 36% of the round-trip diel migration distance. This previously undescribed phenomenon has implications for the metabolic requirements of migrating animals while at depth and highlights the powerful evolutionary adaptation for visual predator avoidance.


Assuntos
Organismos Aquáticos , Ecossistema , Acústica , Migração Animal , Animais , Organismos Aquáticos/fisiologia , Luz , Modelos Teóricos , Oceano Pacífico , Natação , Zooplâncton/fisiologia
8.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34446551

RESUMO

Many G protein-coupled receptors and other signaling proteins localize to the ciliary membrane for regulating diverse cellular processes. The BBSome composed of multiple Bardet-Biedl syndrome (BBS) proteins is an intraflagellar transport (IFT) cargo adaptor essential for sorting signaling proteins in and/or out of cilia via IFT. Leucine zipper transcription factor-like 1 (LZTFL1) protein mediates ciliary signaling by controlling BBSome ciliary content, reflecting how LZTFL1 mutations could cause BBS. However, the mechanistic mechanism underlying this process remains elusive thus far. Here, we show that LZTFL1 maintains BBSome ciliary dynamics by finely controlling BBSome recruitment to the basal body and its reassembly at the ciliary tip simultaneously in Chlamydomonas reinhardtii LZTFL1 directs BBSome recruitment to the basal body via promoting basal body targeting of Arf-like 6 GTPase BBS3, thus deciding the BBSome amount available for loading onto anterograde IFT trains for entering cilia. Meanwhile, LZTFL1 stabilizes the IFT25/27 component of the IFT-B1 subcomplex in the cell body so as to control its presence and amount at the basal body for entering cilia. Since IFT25/27 promotes BBSome reassembly at the ciliary tip for loading onto retrograde IFT trains, LZTFL1 thus also directs BBSome removal out of cilia. Therefore, LZTFL1 dysfunction deprives the BBSome of ciliary presence and generates Chlamydomonas cells defective in phototaxis. In summary, our data propose that LZTFL1 maintains BBSome dynamics in cilia by such a dual-mode system, providing insights into how LZTFL1 mediates ciliary signaling through maintaining BBSome ciliary dynamics and the pathogenetic mechanism of the BBS disorder as well.


Assuntos
Chlamydomonas reinhardtii/fisiologia , Cílios/fisiologia , Fototaxia , Fatores de Transcrição/fisiologia , Síndrome de Bardet-Biedl , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligação Proteica , Transdução de Sinais
9.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33723073

RESUMO

Motility is ubiquitous in prokaryotic organisms including the photosynthetic cyanobacteria where surface motility powered by type 4 pili (T4P) is common and facilitates phototaxis to seek out favorable light environments. In cyanobacteria, chemotaxis-like systems are known to regulate motility and phototaxis. The characterized phototaxis systems rely on methyl-accepting chemotaxis proteins containing bilin-binding GAF domains capable of directly sensing light, and the mechanism by which they regulate the T4P is largely undefined. In this study we demonstrate that cyanobacteria possess a second, GAF-independent, means of sensing light to regulate motility and provide insight into how a chemotaxis-like system regulates the T4P motors. A combination of genetic, cytological, and protein-protein interaction analyses, along with experiments using the proton ionophore carbonyl cyanide m-chlorophenyl hydrazine, indicate that the Hmp chemotaxis-like system of the model filamentous cyanobacterium Nostoc punctiforme is capable of sensing light indirectly, possibly via alterations in proton motive force, and modulates direct interaction between the cyanobacterial taxis protein HmpF, and Hfq, PilT1, and PilT2 to regulate the T4P motors. Given that the Hmp system is widely conserved in cyanobacteria, and the finding from this study that orthologs of HmpF and T4P proteins from the distantly related model unicellular cyanobacterium Synechocystis sp. strain PCC6803 interact in a similar manner to their N. punctiforme counterparts, it is likely that this represents a ubiquitous means of regulating motility in response to light in cyanobacteria.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cianobactérias/fisiologia , Cianobactérias/efeitos da radiação , Fímbrias Bacterianas/fisiologia , Luz , Fototaxia , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Nostoc/fisiologia
10.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34654746

RESUMO

In nature, microorganisms could sense the intensity of the incident visible light and exhibit bidirectional (positive or negative) phototaxis. However, it is still challenging to achieve the similar biomimetic phototaxis for the artificial micro/nanomotor (MNM) counterparts with the size from a few nanometers to a few micrometers. In this work, we report a fuel-free carbon nitride (C3N4)/polypyrrole nanoparticle (PPyNP)-based smart MNM operating in water, whose behavior resembles that of the phototactic microorganism. The MNM moves toward the visible light source under low illumination and away from it under high irradiation, which relies on the competitive interplay between the light-induced self-diffusiophoresis and self-thermophoresis mechanisms concurrently integrated into the MNM. Interestingly, the competition between these two mechanisms leads to a collective bidirectional phototaxis of an ensemble of MNMs under uniform illuminations and a spinning schooling behavior under a nonuniform light, both of which can be finely controllable by visible light energy. Our results provide important insights into the design of the artificial counterpart of the phototactic microorganism with sophisticated motion behaviors for diverse applications.


Assuntos
Luz , Movimento (Física) , Fototaxia , Biomimética , Polímeros/metabolismo , Pirróis/metabolismo
11.
Mol Microbiol ; 117(4): 790-801, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34936151

RESUMO

Many prokaryotes show complex behaviors that require the intricate spatial and temporal organization of cellular protein machineries, leading to asymmetrical protein distribution and cell polarity. One such behavior is cyanobacterial phototaxis which relies on the dynamic localization of the Type IV pilus motor proteins in response to light. In the cyanobacterium Synechocystis, various signaling systems encompassing chemotaxis-related CheY- and PatA-like response regulators are critical players in switching between positive and negative phototaxis depending on the light intensity and wavelength. In this study, we show that PatA-type regulators evolved from chemosensory systems. Using fluorescence microscopy and yeast two-hybrid analysis, we demonstrate that they localize to the inner membrane, where they interact with the N-terminal cytoplasmic domain of PilC and the pilus assembly ATPase PilB1. By separately expressing the subdomains of the response regulator PixE, we confirm that only the N-terminal PATAN domain interacts with PilB1, localizes to the membrane, and is sufficient to reverse phototactic orientation. These experiments established that the PATAN domain is the principal output domain of PatA-type regulators which we presume to modulate pilus extension by binding to the pilus motor components.


Assuntos
Synechocystis , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas/metabolismo , Fototaxia , Synechocystis/metabolismo
12.
Plant Cell Environ ; 46(9): 2778-2793, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37381151

RESUMO

Oriented movement (phototaxis) is an efficient way to optimize light-driven processes and to avoid photodamage for motile algae. In Chlamydomonas the receptors for phototaxis are the channelrhodopsins ChR1 and ChR2. Both are directly light-gated, plasma membrane-localized cation channels. To optimally adjust its overall light-dependent responses, Chlamydomonas must tightly control the ChRs cellular abundance and integrate their activities into its general photoprotective network. How this is achieved is largely unknown. Here we show that the ChR1 protein level decreases upon illumination in a light-intensity and quality-dependent manner, whereas it is stable in prolonged darkness. Analysis of knockout strains of six major photoreceptors absorbing in the blue-violet range, which is most effective in evoking ChR1 degradation, revealed that only phototropin (PHOT) is involved. Notably, ChR2 degradation was normal in a ΔPHOT strain. Further, our results indicate that a COP1-SPA1 E3 ubiquitin ligase, the transcription factor Hy5 as well as changes in the cellular redox poise and cyclic nucleotide levels are additional components involved in this light acclimation response of Chlamydomonas. Our data highlight the presence of an adaptive framework connecting phototaxis with general photoprotective mechanisms via the use of overlapping signaling components already at the level of the primary photoreceptor.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Chlamydomonas reinhardtii/metabolismo , Luz , Chlamydomonas/genética , Transdução de Sinais/fisiologia , Canais Iônicos/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
13.
J Exp Biol ; 226(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37078618

RESUMO

Larval stomatopods have generally been described as having a typical larval crustacean compound eye, which lacks the visual pigment diversity and morphological specializations of the well-studied stomatopod adult eye. However, recent work has suggested that larval stomatopod eyes are more complex than previously described. In this study, we provide physiological and behavioral evidence of at least three distinct photoreceptor classes in three species of larval stomatopods: Gonodactylellus n. sp., Gonodactylaceus falcatus and Pullosquilla n. sp. First, electroretinogram recordings were used to measure the spectral sensitivity of each species. Evidence for at least three spectral classes were identified in each: an ultraviolet, peaking at 340-376 nm; a short-wavelength blue, peaking at 455-464 nm; and a long-wavelength orange, peaking at 576-602 nm. Next, the behavioral response to light was investigated. We found that each species demonstrated positive phototactic responses to monochromatic stimuli across the UV-visible spectrum. In wavelength preference trials, distinct preferences among species were identified when different colored light stimuli were presented simultaneously. All species displayed a strong response to the UV stimulus, as well as responses to blue and orange stimuli, although at different response strengths, but no response to green. The results of this study demonstrate that larval stomatopods not only have multiple physiologically active spectral classes but they also display clear and distinct responses to wavelengths across the spectrum. We propose that the spectral classes demonstrated in each are related to visually guided ecological tasks of the larvae, which may differ between species.


Assuntos
Olho , Células Fotorreceptoras de Invertebrados , Animais , Células Fotorreceptoras de Invertebrados/fisiologia , Larva/anatomia & histologia , Olho/anatomia & histologia , Crustáceos/fisiologia
14.
J Exp Biol ; 226(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37818736

RESUMO

Using the monarch butterfly (Danaus plexippus), we studied how animals can use cues from multiple sensory modalities for deriving directional information from their environment to display oriented movement. Our work focused on determining how monarchs use gravity as a cue for oriented movement and determined how cues from other sensory modalities, cues that by themselves also produce oriented movement (visual and magnetic directional cues), might modulate gravisensation. In two tests of gravisensation (movement in a vertical tube; righting behavior), we found that monarchs display negative gravitaxis only (movement opposite to the direction of gravity). Negative gravitaxis can be modulated by either visual (light) or magnetic field cues (inclination angle) that provide directional information. The modulation of gravity-mediated responses, however, depends on the relationship between cues when presented during trials, such as when cues are in accord or in conflict. For example, when light cues that elicit positive phototaxis conflicted with negative gravitaxis (light from below the monarch), monarch gravisensation was unaffected by directional light cues. We also found that the antennae play a role in gravity-mediated movement (righting), as, with antennae removed, monarch movement behavior was no longer the same as when the antennae were intact. Our results demonstrate that monarchs can use and integrate multiple, multimodal cues for oriented movement, but that the use of such cues can be hierarchical (that is, one cue dominant for movement), and the hierarchy of cues, and the responses towards them when found together, depends on the physical relationships between cues during movement.


Assuntos
Borboletas , Animais , Borboletas/fisiologia , Sinais (Psicologia) , Migração Animal/fisiologia , Campos Magnéticos
15.
Anim Cogn ; 26(6): 1817-1835, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37650997

RESUMO

Light provides a widely abundant energy source and valuable sensory cue in nature. Most animals exposed to light have photoreceptor cells and in addition to eyes, there are many extraocular strategies for light sensing. Here, we review how these simpler forms of detecting light can mediate rapid behavioural responses in animals. Examples of these behaviours include photophobic (light avoidance) or scotophobic (shadow) responses, photokinesis, phototaxis and wavelength discrimination. We review the cells and response mechanisms in these forms of elementary light detection, focusing on aquatic invertebrates with some protist and terrestrial examples to illustrate the general principles. Light cues can be used very efficiently by these simple photosensitive systems to effectively guide animal behaviours without investment in complex and energetically expensive visual structures.


Assuntos
Olho , Células Fotorreceptoras , Animais , Células Fotorreceptoras/fisiologia , Luz
16.
Bull Entomol Res ; 113(4): 529-536, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37350427

RESUMO

Light has a substantial effect on the behaviour and physiology of nocturnal moths. Ectropis grisescens is a major nocturnal tea pest in China, and light traps are commonly used to control geometrid moths because of their positive phototaxis. However, some moths gather around light traps and enter the light adaptation state, which decreases the efficacy of light traps in controlling this pest. We identified opsin genes and the spectral sensitivities of the photoreceptors of E. grisescens moths. We also determined the effects of several monochromatic lights on opsin gene expression and light adaptation. We detected three types of opsin genes and six spectral sensitive peaks (at 370, 390, 480, 530, 550, and 580 nm). We also observed significant changes in the diurnal rhythm of opsin gene expression under different light conditions. When active males were suddenly exposed to different monochromatic lights, they quickly entered the light adaptation state, and the adaptation time was negatively correlated with the light intensity. Males were most sensitive to 390 nm wavelengths, followed by 544 nm, 457 nm, and 593 nm. Red light (627 nm) did not affect the activity of E. grisescens males but had detectable physiological effects.


Assuntos
Mariposas , Opsinas , Masculino , Animais , Opsinas/genética , Mariposas/genética , China
17.
Biochem Biophys Res Commun ; 596: 97-103, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35121375

RESUMO

Reactive oxygen species (ROS) can both act as a poison causing cell death and important signaling molecules among various organisms. Photosynthetic organisms inevitably produce ROS, making the appropriate elimination of ROS an essential strategy for survival. Interestingly, the unicellular green alga Chlamydomonas reinhardtii expresses a mammalian form of thioredoxin reductase, TR1, which functions as a ROS scavenger in animal cells. To investigate the properties of TR1 in C. reinhardtii, we generated TR1 knockout strains using CRISPR/Cas9-based genome editing. We found a reduced tolerance to high-light and ROS stresses in the TR1 knockout strains compared to the parental strain. In addition, the regulation of phototactic orientation, known to be regulated by ROS, was affected in the knockout strains. These results suggest that TR1 contributes to a ROS-scavenging pathway in C. reinhardtii.


Assuntos
Proteínas de Algas/genética , Chlamydomonas reinhardtii/genética , Luz , Tolerância a Radiação/genética , Tiorredoxina Redutase 1/genética , Proteínas de Algas/metabolismo , Animais , Sistemas CRISPR-Cas , Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/efeitos da radiação , Edição de Genes/métodos , Técnicas de Inativação de Genes , Peróxido de Hidrogênio/farmacologia , Mamíferos/genética , Mamíferos/metabolismo , Oxidantes/farmacologia , Fotossíntese/genética , Fotossíntese/efeitos da radiação , Fototaxia/efeitos dos fármacos , Fototaxia/efeitos da radiação , RNA-Seq/métodos , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxina Redutase 1/metabolismo
18.
Appl Environ Microbiol ; 88(10): e0019622, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35499327

RESUMO

Phototrophic biofilms in most environments experience major changes in light levels throughout a diel cycle. Phototaxis can be a useful strategy for optimizing light exposure under these conditions, but little is known about its role in cyanobacteria from thermal springs. We examined two closely related Synechococcus isolates (Synechococcus OS-A dominates at 60 to 65°C and OS-B' at 50 to 55°C) from outflows of Octopus Spring in Yellowstone National Park. Both isolates exhibited phototaxis and photokinesis in white light, but with differences in speed and motility bias. OS-B' exhibited phototaxis toward UVA, blue, green, and red wavelengths, while OS-A primarily exhibited phototaxis toward red and green. OS-A also exhibited negative phototaxis under certain conditions. The repertoires of photoreceptors and signal transduction elements in both isolates were quite different from those characterized in other unicellular cyanobacteria. These differences in the photoresponses between OS-A and OS-B' in conjunction with in situ observations indicate that phototactic strategies may be quite versatile and finely tuned to the light and local environment. IMPORTANCE Optimizing light absorption is of paramount importance to photosynthetic organisms. Some photosynthetic microbes have evolved a sophisticated process called phototaxis to move toward or away from a light source. In many hot springs in Yellowstone National Park, cyanobacteria thrive in thick, laminated biofilms or microbial mats, where small movements can result in large changes in light exposure. We quantified the light-dependent motility behaviors in isolates representing two of the most abundant and closely related cyanobacterial species from these springs. We found that they exhibited unexpected differences in their speed, directionality, and responses to different intensities or qualities of light. An examination of their genomes revealed several variations from well-studied phototaxis-related genes. Studying these recently isolated cyanobacteria reveals that diverse phototactic strategies can exist even among close relatives in the same environment. It also provides insights into the importance of phototaxis for growth and survival in microbial biofilm communities.


Assuntos
Fontes Termais , Synechococcus , Biofilmes , Fontes Termais/microbiologia , Fotossíntese , Fototaxia/fisiologia , Synechococcus/genética
19.
Mol Ecol ; 31(9): 2752-2765, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35258140

RESUMO

Baculoviruses can induce climbing behaviour in their caterpillar hosts to ensure they die at elevated positions to enhance virus transmission, providing an excellent model to study parasitic manipulation of host behaviour. Here, we demonstrate that climbing behaviour occurred mostly during daylight hours, and that the height at death of Helicoverpa armigera single nucleopolyhedrovirus (HearNPV)-infected larvae increases with the height of the light source. Phototaxic and electroretinogram (ERG) responses were enhanced after HearNPV-infection in host larvae, and ablation of stemmata in infected larvae prevented both phototaxis and climbing behaviour. Through transcriptome and quantitative PCR, we confirmed that two opsin genes (a blue light-sensitive gene, HaBL; and a long wave-sensitive gene, HaLW) as well as the TRPL (transient receptor potential-like channel protein) gene, all integral to the host's visual perception pathway, were significantly upregulated after HearNPV infection. Knockout of HaBL, HaLW, or TRPL genes using the CRISPR/Cas9 system resulted in significantly reduced ERG responses, phototaxis, and climbing behaviour in HearNPV-infected larvae. These results reveal that HearNPV alters the expression of specific genes to hijack host visual perception at fundamental levels-photoreception and phototransduction-in order to induce climbing behaviour in host larvae.


Assuntos
Lepidópteros , Nucleopoliedrovírus , Animais , Baculoviridae , Larva/genética , Lepidópteros/fisiologia , Nucleopoliedrovírus/genética , Percepção Visual
20.
Proc Natl Acad Sci U S A ; 116(6): 2118-2123, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30670646

RESUMO

Reef-building corals thrive in nutrient-poor marine environments because of an obligate symbiosis with photosynthetic dinoflagellates of the genus Symbiodinium Symbiosis is established in most corals through the uptake of Symbiodinium from the environment. Corals are sessile for most of their life history, whereas free-living Symbiodinium are motile; hence, a mechanism to attract Symbiodinium would greatly increase the probability of encounter between host and symbiont. Here, we examined whether corals can attract free-living motile Symbiodinium by their green fluorescence, emitted by the excitation of endogenous GFP by purple-blue light. We found that Symbiodinium have positive and negative phototaxis toward weak green and strong purple-blue light, respectively. Under light conditions that cause corals to emit green fluorescence, (e.g., strong blue light), Symbiodinium were attracted toward live coral fragments. Symbiodinium were also attracted toward an artificial green fluorescence dye with similar excitation and emission spectra to coral-GFP. In the field, more Symbiodinium were found in traps painted with a green fluorescence dye than in controls. Our results revealed a biological signaling mechanism between the coral host and its potential symbionts.


Assuntos
Cnidários/metabolismo , Cnidários/microbiologia , Dinoflagellida/fisiologia , Fluorescência , Simbiose , Animais , Antozoários/metabolismo , Antozoários/microbiologia , Recifes de Corais , Dinoflagellida/classificação , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa