Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 280: 116548, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850705

RESUMO

Podophyllotoxin (PPT) is a lignan derived from the roots and stems of the Podophyllum plant. However, its enterotoxicity restricts its clinical application. The underlying mechanisms by which PPT exerts its action remain largely elusive. This study aimed to evaluate the molecular mechanisms underlying PPT-induced enterotoxicity utilizing the concept of toxicological evidence chain. Changes in body weight, behavior, and histopathological and biochemical markers in rats were observed. Additionally, microbiome, metabolome, and transcriptome analyses were integrated to identify potential microorganisms, metabolic markers, and major pathways using a co-occurrence network. Our findings suggested that PPT induced pathological changes in rats, including weight loss, diarrhea, and inflammation accompanied by increased levels of IFN-γ, IL-5, IL-6, GRO/KC, and IL-12p70. The decrease in butyrate levels in the PPT group may be related to the enrichment of Firmicutes. The reduction of butyrate levels may impair the expression of PPARγ, subsequently promoting Escherichia-Shigella proliferation. Additionally, the suppression of PPARs pathway may result in the increased production of inflammatory factors, contributing to enterotoxicity. This study offers a novel understanding of the molecular mechanisms underlying PPT-induced enterotoxicity, making a significant contribution to developing strategies to mitigate PPT toxicity and prevent associated diseases.


Assuntos
Podofilotoxina , Animais , Podofilotoxina/toxicidade , Ratos , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , PPAR gama/metabolismo , Microbiota/efeitos dos fármacos
2.
Chem Biodivers ; : e202400929, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661022

RESUMO

In order to explore novel natural product-based insecticidal agent, two important intermediates (2 and 3) and 4-acyloxy-2'-bromo-6'-chloropodophyllotoxin derivatives (4 a-f and 5 a-f) were designed and prepared, and their structures were confirmed by 1H-NMR, 13C NMR, HRMS, ESI-MS, optical rotation and melting point (mp). The stereochemical configuration of compound 4 b was unambiguously confirmed by single-crystal X-ray diffraction. Moreover, we evaluated the insecticidal activity of target compounds 4 a-f and 5 a-f against a serious agricultural pest of Mythimna separata by using the leaf-dipping method. Among all tested compounds, compounds 4 d, 5 d and 5 f exhibited stronger insecticidal activity with a final mortality rate exceeding 60 %. Especially compound 5 d exhibited the best insecticidal activity, with a final mortality rate of 74.1 %. It has been proven that introducing bromine or chlorine atoms at the C-2', C-2' and C-6' positions of the E ring of podophyllotoxin can produce more potent compounds. In addition, the configuration of the C-4 position is important for insecticidal activity, and 4ß-configuration is optimal. This will pave the way for further design, structural modification, and development of derivatives of podophyllotoxin as insecticidal agents.

3.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892135

RESUMO

Podophyllotoxin (PPT) is an active pharmaceutical ingredient (API) with established antitumor potential. However, due to its systemic toxicity, its use is restricted to topical treatment of anogenital warts. Less toxic PPT derivatives (e.g., etoposide and teniposide) are used intravenously as anticancer agents. PPT has been exploited as a scaffold of new potential therapeutic agents; however, fewer studies have been conducted on the parent molecule than on its derivatives. We have undertaken a study of ultrastructural changes induced by PPT on HaCaT keratinocytes. We have also tracked the intracellular localization of PPT using its fluorescent derivative (PPT-FL). Moreover, we performed molecular docking of both PPT and PPT-FL to compare their affinity to various binding sites of tubulin. Using the Presto blue viability assay, we established working concentrations of PPT in HaCaT cells. Subsequently, we have used selected concentrations to determine PPT effects at the ultrastructural level. Dynamics of PPT distribution by confocal microscopy was performed using PPT-FL. Molecular docking calculations were conducted using Glide. PPT induces a time-dependent cytotoxic effect on HaCaT cells. Within 24 h, we observed the elongation of cytoplasmic processes, formation of cytoplasmic vacuoles, progressive ER stress, and shortening of the mitochondrial long axis. After 48 h, we noticed disintegration of the cell membrane, progressive vacuolization, apoptotic/necrotic vesicles, and a change in the cell nucleus's appearance. PPT-FL was detected within HaCaT cells after ~10 min of incubation and remained within cells in the following measurements. Molecular docking confirmed the formation of a stable complex between tubulin and both PPT and PPT-FL. However, it was formed at different binding sites. PPT is highly toxic to normal human keratinocytes, even at low concentrations. It promptly enters the cells, probably via endocytosis. At lower concentrations, PPT causes disruptions in both ER and mitochondria, while at higher concentrations, it leads to massive vacuolization with subsequent cell death. The novel derivative of PPT, PPT-FL, forms a stable complex with tubulin, and therefore, it is a useful tracker of intracellular PPT binding and trafficking.


Assuntos
Células HaCaT , Queratinócitos , Simulação de Acoplamento Molecular , Podofilotoxina , Tubulina (Proteína) , Humanos , Podofilotoxina/análogos & derivados , Podofilotoxina/farmacologia , Podofilotoxina/química , Tubulina (Proteína)/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Corantes Fluorescentes/química , Sítios de Ligação , Estresse do Retículo Endoplasmático/efeitos dos fármacos
4.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731850

RESUMO

When new antitumor therapy drugs are discovered, it is essential to address new target molecules from the point of view of chemical structure and to carry out efficient and systematic evaluation. In the case of natural products and derived compounds, it is of special importance to investigate chemomodulation to further explore antitumoral pharmacological activities. In this work, the compound podophyllic aldehyde, a cyclolignan derived from the chemomodulation of the natural product podophyllotoxin, has been evaluated for its viability, influence on the cell cycle, and effects on intracellular signaling. We used functional proteomics characterization for the evaluation. Compared with the FDA-approved drug etoposide (another podophyllotoxin derivative), we found interesting results regarding the cytotoxicity of podophyllic aldehyde. In addition, we were able to observe the effect of mitotic arrest in the treated cells. The use of podophyllic aldehyde resulted in increased cytotoxicity in solid tumor cell lines, compared to etoposide, and blocked the cycle more successfully than etoposide. High-throughput analysis of the deregulated proteins revealed a selective antimitotic mechanism of action of podophyllic aldehyde in the HT-29 cell line, in contrast with other solid and hematological tumor lines. Also, the apoptotic profile of podophyllic aldehyde was deciphered. The cell death mechanism is activated independently of the cell cycle profile. The results of these targeted analyses have also shown a significant response to the signaling of kinases, key proteins involved in signaling cascades for cell proliferation or metastasis. Thanks to this comprehensive analysis of podophyllic aldehyde, remarkable cytotoxic, antimitotic, and other antitumoral features have been discovered that will repurpose this compound for further chemical transformations and antitumoral analysis.


Assuntos
Ciclo Celular , Podofilotoxina , Proteômica , Humanos , Podofilotoxina/farmacologia , Podofilotoxina/análogos & derivados , Podofilotoxina/química , Proteômica/métodos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Etoposídeo/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Células HT29 , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
5.
Molecules ; 29(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611722

RESUMO

Podophyllotoxin, a cyclolignan natural product, has been the object of extensive chemomodulation to obtain better chemotherapeutic agents. Among the obtained podophyllotoxin derivatives, podophyllic aldehyde showed very interesting potency and selectivity against several tumoral cell lines, so it became our lead compound for further modifications, as described in this work, oriented toward the enlargement of the cyclolignan skeleton. Thus, modifications performed at the aldehyde function included nucleophilic addition reactions and the incorporation of the aldehyde carbon into several five-membered rings, such as thiazolidinones and benzo-fused azoles. The synthesized derivatives were evaluated against several types of cancer cells, and although some compounds were cytotoxic at the nanomolar range, most of them were less potent and less selective than the parent compound podophyllic aldehyde, with the most potent being those having the lactone ring of podophyllotoxin. In silico ADME evaluation predicted good druggability for most of them. The results indicate that the γ-lactone ring is important for potency, while the α,ß-unsaturated aldehyde is necessary to induce selectivity in these cyclolignans.


Assuntos
Antineoplásicos , Podofilotoxina , Humanos , Podofilotoxina/farmacologia , Esqueleto , Hipertrofia , Aldeídos , Lactonas , Compostos Radiofarmacêuticos
6.
Plant Cell Physiol ; 64(1): 124-147, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36412832

RESUMO

O-Methyltransferases (OMTs) play important roles in antitumor lignan biosynthesis. To date, six OMTs catalyzing the methylation of dibenzylbutyrolactone lignans as biosynthetic precursors of antitumor lignans have been identified. However, there is still no systematic understanding of the diversity and regularity of the biosynthetic mechanisms among various plant lineages. Herein, we report the characterization of two OMTs from Anthriscus sylvestris and Thujopsis dolabrata var. hondae [designated as AsSecoNorYatein (SNY) OMT and TdSNYOMT] together with the six known OMTs to evaluate their diversity and regularity. Although A. sylvestris 5-O-methylthujaplicatin (SecoNorYatein) and 4-O-demethylyatein (NorYatein) OMT (AsSNYOMT) and TdSNYOMT accept 5-O-methylthujaplicatin and 4-O-demethylyatein as substrates, phylogenetic analysis indicated that these two OMTs shared low amino acid sequence identity, 33.8%, indicating a signature of parallel evolution. The OMTs and the six previously identified OMTs were found to be diverse in terms of their substrate specificity, regioselectivity and amino acid sequence identity, indicating independent evolution in each plant species. Meanwhile, two-entropy analysis detected four amino acid residues as being specifically acquired by dibenzylbutyrolactone lignan OMTs. Site-directed mutation of AsSNYOMT indicated that two of them contributed specifically to 5-O-methylthujaplicatin methylation. The results provide a new example of parallel evolution and the diversity and regularity of OMTs in plant secondary (specialized) metabolism.


Assuntos
Lignanas , Metiltransferases , Animais , Bovinos , Metiltransferases/metabolismo , Petroselinum/metabolismo , Filogenia , Metilação , Especificidade por Substrato
7.
Plant Cell Physiol ; 64(12): 1436-1448, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37948767

RESUMO

Tetrahydrofuran ring formation from dibenzylbutyrolactone lignans is a key step in the biosynthesis of aryltetralin lignans including deoxypodophyllotoxin and podophyllotoxin. Previously, Fe(II)- and 2-oxoglutarate-dependent dioxygenase (2-ODD) from Podophyllum hexandrum (Himalayan mayapple, Berberidaceae) was found to catalyze the cyclization of a dibenzylbutyrolactone lignan, yatein, to give deoxypodophyllotoxin and designated as deoxypodophyllotoxin synthase (DPS). Recently, we reported that the biosynthesis of deoxypodophyllotoxin and podophyllotoxin evolved in a lineage-specific manner in phylogenetically unrelated plant species such as P. hexandrum and Anthriscus sylvestris (cow parsley, Apiaceae). Therefore, a comprehensive understanding of the characteristics of DPSs that catalyze the cyclization of yatein to deoxypodophyllotoxin in various plant species is important. However, for plant species other than P. hexandrum, the isolation of the DPS enzyme gene and the type of the enzyme, e.g. whether it is 2-ODD or another type of enzyme such as cytochrome P-450, have not been reported. In this study, we report the identification and characterization of A. sylvestris DPS (AsDPS). Phylogenetic analysis showed that AsDPS belonged to the 2-ODD superfamily and shared moderate amino acid sequence identity (40.8%) with P. hexandrum deoxypodophyllotoxin synthase (PhDPS). Recombinant protein assay indicated that AsDPS and PhDPS differ in terms of the selectivity of substrate enantiomers. Protein modeling using AlphaFold2 and site-directed mutagenesis indicated that the Tyr305 residue of AsDPS probably contributes to substrate recognition. This study advances our understanding of the podophyllotoxin biosynthetic pathway in A. sylvestris and provides new insight into 2-ODD involved in plant secondary (specialized) metabolism.


Assuntos
Apiaceae , Lignanas , Podofilotoxina/química , Filogenia , Lignanas/metabolismo , Apiaceae/química , Apiaceae/metabolismo
8.
Chembiochem ; 24(23): e202300582, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728423

RESUMO

(R)-ß-piperonyl-γ-butyrolactones are key building blocks for the synthesis of podophyllotoxin, which have demonstrated remarkable potential in cancer treatment. Baeyer-Villiger monooxygenases (BVMOs)-mediated asymmetric oxidation is a green approach to produce chiral lactones. While several BVMOs were able to oxidize the corresponding cyclobutanone, most BVMOs gave the (S) enantiomer while Cyclohexanone monooxygenase (CHMO) from Brevibacterium sp. HCU1 gave (R) enantiomer, but with a low enantioselectivity (75 % ee). In this study, we use a strategy called "focused rational iterative site-specific mutagenesis" (FRISM) at residues ranging from 6 Šfrom substrate. The mutations by using a restricted set of rationally chosen amino acids allow the formation of a small mutant library. By generating and screening less than 60 variants, we achieved a high ee of 96.8 %. Coupled with the cofactor regeneration system, 9.3 mM substrate was converted completely in a 100-mL scale reaction. Therefore, our work reveals a promising synthetic method for (R)-ß-piperonyl-γ-butyrolactone with the highest enantioselectivity, and provides a new opportunity for the chem-enzymatic synthesis of podophyllotoxin.


Assuntos
Oxigenases , Podofilotoxina , Oxigenases/metabolismo , Oxigenases de Função Mista/metabolismo , Oxirredução , Especificidade por Substrato
9.
Chemistry ; 29(43): e202300960, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37070241

RESUMO

A divergent synthesis of podophyllotoxin derivatives from simple and readily available starting materials through a late-stage functionalization strategy by rhodium catalysis is reported here. This strategy uses the ketone and oxime in substrates as directing groups. Four kinds of novel podophyllotoxin derivatives have been obtained without any erosion of the enantiopurity, thus indicating the broad substrate scope of this method. Additionally, by using the newly developed strategy, 9 aa, which exhibited excellent anticancer activity, can be prepared by a sequential transformation. In particularly, 9 aa suppressed HeLa cells with IC50 values of 74.5 nM, thus providing a promising lead compound for future drug discovery.

10.
BMC Cancer ; 23(1): 87, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36698167

RESUMO

BACKGROUND: Insulin-like growth factor-1 receptor (IGF-1R) promotes cell proliferation and migration and inhibitsapoptosis, all of which can contribute to the development of cancers. METHOD: This study investigated the effect and mechanism of IGF-1R in mediating the desensitization of hepatocellular carcinoma (HCC) to sorafenib. RESULTS: IGF-1R, highly expressed in the HCC cell lines SK-Hep1 and HepG2, promotes cell proliferation, migration, and anti-apoptosis through PI3K / Akt and RAS / Raf / ERK signaling pathways, resulting in HCC resistance to sorafenib. Knockdown of IGF-1R by RNA interference decreased proliferation and cell migration and upregulation of sorafenib-induced apoptosis of HCC cells. In vivo studies demonstrated that IGF-1R knockdown inhibited the growth of SK-Hep1 xenografts. CONCLUSION: These data are evidence that IGF-1R participates in regulating the survival and cell growth of HCC through the PI3K / Akt and RAS / Raf / ERK signaling pathways. Intervention in the expression of IGF-1R may increase the inhibitory effect of sorafenib on HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptor IGF Tipo 1 , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Sorafenibe/farmacologia
11.
Ecotoxicol Environ Saf ; 264: 115392, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37651795

RESUMO

Adverse reactions to traditional Chinese medicine have hindered the healthy development and internationalization process of the traditional Chinese medicine industry. The critical issue that needs to be solved urgently is to evaluate the safety of traditional Chinese medicine systematically and effectively. Podophyllotoxin (PPT) is a highly active compound extracted from plants of the genus Podophyllum such as Dysosma versipellis (DV). However, its high toxicity and toxicity to multiple target organs affect the clinical application, such as the liver and kidney. Based on the concurrent effects of PPT's medicinal activity and toxicity, it would be a good example to conduct a systematic review of its safety. Therefore, this study revolves around the Toxicological Evidence Chain (TEC) concept. Based on PPT as the main toxic constituent in DV, observe the objective toxicity impairment phenotype of animals. Evaluate the serum biochemical indicators and pathological tissue sections for substantial toxic damage results. Using metabolomics, lipidomics, and network toxicology to evaluate the nephrotoxicity of PPT from multiple perspectives systematically. The results showed that PPT-induced nephrotoxicity manifested as renal tubular damage, mainly affecting metabolic pathways such as glycerophospholipid metabolism and sphingolipid metabolism. PPT inhibits the autophagy process of kidney cells through the PI3K/Akt/mTOR and Nrf2/HO1 pathways and induces the activation of oxidative stress in the body, thereby causing nephrotoxic injury. This study fully verified the feasibility of the TEC concept for the safety and toxicity evaluation of traditional Chinese medicine. Provide a research template for systematically evaluating the safety of traditional Chinese medicine.


Assuntos
Medicamentos de Ervas Chinesas , Fator 2 Relacionado a NF-E2 , Podofilotoxina , Podophyllum , Animais , Ratos , Rim , Fosfatidilinositol 3-Quinases , Podofilotoxina/toxicidade , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Podophyllum/toxicidade , Medicamentos de Ervas Chinesas/toxicidade
12.
Molecules ; 28(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37570682

RESUMO

The purpose of this study was to evaluate L-cysteine-modified transfersomes as the topical carrier for enhanced epidermal delivery of podophyllotoxin (POD). L-cysteine-deoxycholic acid (LC-DCA) conjugate was synthesized via an amidation reaction. POD-loaded L-cysteine-modified transfersomes (POD-LCTs) were prepared via a thin membrane dispersion method and characterized for their particle size, zeta potential, morphology, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and in vitro release. Subsequently, in vitro skin permeation and retention, fluorescence distribution in the skin, hematoxylin-eosin staining and in vivo skin irritation were studied. The POD-LCTs formed spherical shapes with a particle size of 172.5 ± 67.2 nm and a zeta potential of -31.3 ± 6.7 mV. Compared with the POD-Ts, the POD-LCTs provided significantly lower drug penetration through the porcine ear skin and significantly increased the skin retention (p < 0.05). Meaningfully, unlike the extensive distribution of the POD-loaded transfersomes (POD-Ts) throughout the skin tissue, the POD-LCTs were mainly located in the epidermis. Moreover, the POD-LCTs did not induce skin irritation. Therefore, the POD-LCTs provided an enhanced epidermal delivery and might be a promising carrier for the topical delivery of POD.


Assuntos
Cisteína , Podofilotoxina , Animais , Suínos , Administração Cutânea , Podofilotoxina/farmacologia , Pele , Epiderme , Tamanho da Partícula , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos
13.
J Dtsch Dermatol Ges ; 21(6): 587-597, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37199262

RESUMO

BACKGROUND AND OBJECTIVES: Various interventions have been applied to treat molluscum contagiosum, but benefits and efficacy remain unclear. To assess the comparative efficacy and safety of interventions for molluscum contagiosum, a network meta-analysis was performed. PATIENTS AND METHODS: Embase, PubMed, and the Cochrane Library were searched for articles published between January 1, 1990, and November 31, 2020. Eligible studies were randomized clinical trials (RCTs) of interventions in immunocompetent children and adults with genital/non-genital molluscum contagiosum lesions. RESULTS: Twelve interventions from 25 RCTs including 2,123 participants were assessed. Compared with the placebo, ingenol mebutate had the most significant effect on complete clearance (odds ratio [OR] 117.42, 95% confidence interval [CI] 6.37-2164.88), followed by cryotherapy (OR 16.81, 95% CI 4.13-68.54), podophyllotoxin (OR 10.24, 95% CI 3.36-31.21), and potassium hydroxide (KOH) (OR 10.02, 95% CI 4.64-21.64). Data on adverse effects were too scarce for quantitative synthesis. CONCLUSIONS: Ingenol mebutate, cryotherapy, podophyllotoxin, and KOH were more effective than the other interventions in achieving complete clearance, but safety concerns regarding ingenol mebutate have recently been reported. Due to the possibility of spontaneous resolution, observation is also justified for asymptomatic infection. Factors including adverse effects, cost, patient preference, and medical accessibility should be considered.


Assuntos
Molusco Contagioso , Criança , Adulto , Humanos , Molusco Contagioso/tratamento farmacológico , Podofilotoxina/uso terapêutico , Metanálise em Rede , Crioterapia , Ensaios Clínicos Controlados Aleatórios como Assunto
14.
Mol Pharm ; 19(7): 2092-2104, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35533302

RESUMO

Because of the complexity of cancer ecosystems, the efficacy of single-agent chemotherapy is limited. Herein, we report the use of cationic nanoparticles (designated PPCNs) generated from a chemically modified form of the chemotherapeutic agent podophyllotoxin (PPT) to deliver both microRNA-424 (miR-424) and PPT to tumor cells, thus combining chemotherapy and gene therapy. We evaluated the optimal loading ratio of miR-424─which targets programmed cell death ligand 1 (PD-L1) mRNA and reduces PD-L1 production, thus promoting the attack of tumor cells by T cells─for effective delivery of miR-424 and PPCNs into nonsmall-cell lung cancer cells (H460). Because miR-424 can reverse chemotherapy resistance, treatment of the tumor cells with the combination of miR-424 and PPT enhanced their sensitivity to PPT. Because miR-424 and the PPCNs regulated PD-L1 production in different ways, the miR-424@PPCN complexes were significantly more efficacious than either miR-424 or PPCNs alone. We also demonstrated that treatment of tumor-bearing mice with these complexes significantly inhibited tumor growth and extended survival. Moreover, additional in vitro experiments revealed that the complexes could remodel the tumor immune microenvironment, relieve immunosuppression, and achieve immune normalization. This novel system for delivering a combination of PPT and miR-424 shows great potential for the multimodal treatment of lung cancer.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Animais , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Ecossistema , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , MicroRNAs/genética , Podofilotoxina/farmacologia , Microambiente Tumoral
15.
Bioorg Med Chem ; 67: 116815, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35598527

RESUMO

Butenolides and tetronic acids occupy a prominent position in synthetic chemistry due to their ubiquitous distribution in nature. This has stimulated investigations firstly in the synthesis of such systems and, laterly, the interest has turned to the understanding of the quantum structure of such systems, allowing a deeper understanding of the mechanism and reactivity of this cyclic scaffold. In contrast, tetronamides, which consist of compounds bearing a 4-aminofuran-2(5H)-one backbone, are relatively rare in nature and synthetic routes to such compounds are poorly explored. This review highlights both the importance of the tetronamide scaffold in medicinal chemistry and the most relevant recondite synthetic strategies for obtaining compounds of this class.


Assuntos
Agroquímicos , Química Farmacêutica
16.
Bioorg Chem ; 123: 105761, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35358823

RESUMO

Podophyllotoxin, as a natural lignan isolated from the dried rhizomes and roots of several plant species of Podophyllum family, exhibits potent activity of interfering polymerization of tubulin and causes cancer cell apoptosis. Structure-activity relationship research revealed that modification at 4-position was tolerable for its potency. In the present study, podophyllotoxin derivatives incorporating piperazinyl-cinnamic amide moieties at 4-position were designed and synthesized. Their structures were confirmed by 1H NMR, 13C NMR, and mass spectral data. ADMET analysis proposed that these compounds had a good distribution and high clearance profile with little toxicity. The cytotoxicity of these derivatives was evaluated against four human cancer cell lines (MCF-7, A549, HeLa and PC-3) by MTT assay. Among all the compounds, compound 6e exhibited the best anti-proliferative properties with an IC50 = 0.08 ± 0.01 µM against MCF-7 cancer cell line. Further cellular mechanism studies by cell colony formation, mitochondrial membrane potential assay, nuclear morphology analysis and western blot confirmed that compound 6e could inhibit cancer cell proliferation and induce mitochondria-associated apoptosis in MCF-7 cells. Meanwhile, immunofluorescence assay revealed that compound 6e could apparently disrupt tubulin network in MCF-7 cells, and molecular docking further supported that compound 6e was able to bind into the colchicine site of tubulin. The above results might lay a foundation for further investigation for drug discovery based on podophyllotoxin.


Assuntos
Antineoplásicos , Podofilotoxina , Amidas/farmacologia , Antineoplásicos/química , Apoptose , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Podofilotoxina/química , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina
17.
Bioorg Chem ; 126: 105906, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35661529

RESUMO

In this study, a series of potential candidate molecules with excellent antitumor activity targeting tubulin and PTEN/PI3K/Akt signaling pathway was synthesized by modifying the molecule structure of podophyllotoxin (PPT) at the C-4 position via a structure-guided drug design approach. MTT assay results indicated that compound 12c had stronger anti-proliferative activities against HGC-27, MCF-7 and H460 cell lines than etoposide (VP-16), especially for HGC-27 (12c: IC50 = 0.89 ± 0.023 µM; PPT: IC50 = 6.54 ± 0.69 µM, VP-16: IC50 = 2.66 ± 0.28 µM) with lower affect in healthy human cells (293 T and GES-1). Further pharmacological analysis exhibited that 12c could bind the tubulin at the colchicine site and disrupt the dynamic equilibrium of microtubules. Moreover, 12c also suppressed the expressions/activities of matrix metalloprotease (MMP)-2, vimentin and up-regulation E-cadherin suggesting that 12c could block the epithelial-mesenchymal transition (EMT). The increased cell survival and invasion/migration were associated with the inactivation of PTEN/PI3K/Akt, 12c could regulate this pathway and cascade influence on the mitochondrial pathway, eventually, leading to the cell apoptosis. Thus, 12c may have the potential to become a candidate molecule in gastric cancer clinical treatment.


Assuntos
Antineoplásicos , Podofilotoxina , Antineoplásicos/química , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Etoposídeo/farmacologia , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Podofilotoxina/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tubulina (Proteína)/metabolismo
18.
Bioorg Chem ; 128: 106066, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35964500

RESUMO

Podophyllotoxin's undifferentiated cytotoxicity and poor selectivity limit its clinical application. To improve above disadvantages, conjugation of bile acids with podophyllotoxin could improve cell line selectivity of liver cancer to achieve clinical translation further. Enlightened by the bile acids' moiety magic characters, thirty podophyllotoxin-linked bile acid derivatives had been designed and synthesized. The cytotoxicity of these compounds in vitro was evaluated on HepG2, HCT-116, A549 and MDCK cell lines. After conjunction with bile acids, most of the derivatives (IC50 = 0.066-0.831 µM) were more potent against above three types of tumor cells than Etoposide (VP-16, IC50 = 4.319-41.080 µM) and exhibited similar antitumor activity compared with doxorubicin (DOX, IC50 = 0.230-0.745 µM). Moreover, structure-activity relationship displayed the length of the linker chain between podophyllotoxin and bile acids affected the cytotoxicity. Especially, compound 23 exhibited strong activity against HepG2 cell lines (IC50 = 0.188 ± 0.01 µM) than MDCK cell lines (IC50 = 4.780 ± 0.50 µM) and its SI (IC50MDCK/IC50HepG2) value of compound 23 was 25.4. Further antitumor mechanism studies showed that compound 23 acted as Topo Ⅱ inhibition and induced cell apoptosis with S cell cycle arrest. In particular, compound 23 showed valid antitumor efficacy at 10 mg/kg by intraperitoneal administration with a tumor inhibition rate of 60.9% in the Hepa1-6 xenograft mice model. The current research displayed that introduction of bile acids contributed to improve selectivity and activity to cell, and compound 23 could be a promising anti-tumor candidate.


Assuntos
Antineoplásicos , Neoplasias , Animais , Antineoplásicos/farmacologia , Apoptose , Ácidos e Sais Biliares/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Etoposídeo/farmacologia , Glucosídeos/farmacologia , Humanos , Camundongos , Estrutura Molecular , Podofilotoxina , Relação Estrutura-Atividade
19.
Photodermatol Photoimmunol Photomed ; 38(4): 343-353, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34779024

RESUMO

BACKGROUND: Human papillomavirus (HPV) infection and related diseases are difficult clinical challenges. The efficacy of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) in treating condyloma acuminata is remarkable, with high virus clearance and low recurrence rates. Podophyllotoxin (POD) is the first-line drug with a significant therapeutic effect on condyloma acuminata. However, no studies have determined whether POD-combined ALA-PDT improves high-risk (HR)-HPV-infected cell killing. We aimed to investigate whether POD-combined ALA-PDT could promote HPV-infected cell death more effectively than the single treatment and explore the underlying mechanism. METHODS: In HeLa and SiHa cells, flow cytometry, EdU assay and LDH release test were used to detect apoptosis, cell proliferation change and necrosis, respectively. To investigate whether the combined therapy might activate apoptosis and induce endoplasmic reticulum (ER) stress, flow cytometry was used to determine intracellular levels of ROS and calcium, and Western blotting was used to determine the expression of related proteins. Mitochondrial membrane depolarization was detected by JC-1 assay. Immunofluorescence staining and Western blotting were used to detect the activation of autophagy. RESULTS: Podophyllotoxin -combined ALA-PDT inhibited the proliferation and promoted apoptosis and necrosis more effectively than the single treatment at the same intensity and concentration. The activation of the caspase-dependent apoptosis pathway, ER stress and autophagy was more substantial in POD-combined ALA-PDT than with single treatments. CONCLUSION: Podophyllotoxin -combined ALA-PDT effectively promoted cell death through several pathways in HeLa and SiHa cells. This combination might be a promising therapeutic strategy for the HR-HPV infection.


Assuntos
Condiloma Acuminado , Infecções por Papillomavirus , Fotoquimioterapia , Ácido Aminolevulínico/uso terapêutico , Apoptose , Morte Celular , Condiloma Acuminado/tratamento farmacológico , Humanos , Necrose/tratamento farmacológico , Infecções por Papillomavirus/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Podofilotoxina/farmacologia , Podofilotoxina/uso terapêutico
20.
J Oncol Pharm Pract ; 28(4): 1019-1023, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35037804

RESUMO

INTRODUCTION: Hypersensitivity reactions from intravenous (IV) etoposide have been rarely reported, with these being seen more commonly with etoposide than with etoposide phosphate. This is generally explained by the need for polysorbate 80, a known cause of hypersensitivity, as a solubiliser, in the etoposide formulation. CASE REPORT: We report a 22-year-old male, being treated with adjuvant BEP (bleomycin/etoposide phosphate/cisplatin) for a testicular germ cell tumour. Bleomycin and cisplatin were administered without incident. Within one minute of etoposide phosphate commencement he experienced a severe hypersensitivity reaction, consisting of widespread erythematous rash, facial swelling, and nausea. Observations included unrecordable blood pressure, tachycardia, hypoxia, and loss of consciousness, confirming a diagnosis of anaphylactic shock. MANAGEMENT AND OUTCOME: Etoposide phosphate was ceased immediately. He was successfully managed with IV hydrocortisone, IV promethazine, intramuscular adrenaline, IV fluids and oxygen. Following admission for observation, significant improvement occurred over 48 h. DISCUSSION: Hypersensitivity reactions to etoposide were first reported in the 1980s. Following reactions to etoposide, substituting etoposide phosphate into chemotherapy regimens has commonly allowed treatment to continue without incidence. Anaphylactic reactions to etoposide phosphate were first documented in 2012, with further cases reported subsequently. Unlike etoposide, etoposide phosphate is highly soluble in aqueous solutions and doesn't require adjuvants in the formulation. Hypersensitivity reactions to etoposide phosphate are therefore likely related to the etoposide drug molecule itself. Clinicians should be aware of this rare, but potentially life-threatening, toxicity when using etoposide-based treatments and have procedures in place to urgently manage any hypersensitivity reactions that may occur.


Assuntos
Cisplatino , Hipersensibilidade a Drogas , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Bleomicina , Hipersensibilidade a Drogas/diagnóstico , Hipersensibilidade a Drogas/tratamento farmacológico , Hipersensibilidade a Drogas/etiologia , Etoposídeo/efeitos adversos , Etoposídeo/análogos & derivados , Humanos , Masculino , Compostos Organofosforados , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa