Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(3): e18099, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38164021

RESUMO

Our previous study found that miR-26a alleviates aldosterone-induced tubulointerstitial fibrosis (TIF). However, the effect of miR-26a on TIF in diabetic kidney disease (DKD) remains unclear. This study clarifies the role and possible mechanism of exogenous miR-26a in controlling the progression of TIF in DKD models. Firstly, we showed that miR-26a was markedly decreased in type 2 diabetic db/db mice and mouse tubular epithelial cells (mTECs) treated with high glucose (HG, 30 mM) using RT-qPCR. We then used adeno-associated virus carrying miR-26a and adenovirus miR-26a to enhance the expression of miR-26a in vivo and in vitro. Overexpressing miR-26a alleviated the TIF in db/db mice and the extracellular matrix (ECM) deposition in HG-stimulated mTECs. These protective effects were caused by reducing expression of protease-activated receptor 4 (PAR4), which involved in multiple pro-fibrotic pathways. The rescue of PAR4 expression reversed the anti-fibrosis activity of miR-26a. We conclude that miR-26a alleviates TIF in DKD models by directly targeting PAR4, which may provide a novel molecular strategy for DKD therapy.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , MicroRNAs , Animais , Camundongos , Nefropatias Diabéticas/metabolismo , Fibrose , MicroRNAs/metabolismo , Receptores de Trombina
2.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176005

RESUMO

Protease-activated receptors (PARs) are a class of integral membrane proteins that are cleaved by a variety of proteases, most notably thrombin, to reveal a tethered ligand and promote activation. PARs are critical mediators of platelet function in hemostasis and thrombosis, and therefore are attractive targets for anti-platelet therapies. Animal models studying platelet PAR physiology have relied heavily on genetically modified mouse strains, which have provided ample insight but have some inherent limitations. The current review aims to summarize the notable PAR expression and functional differences between the mouse and human, in addition to highlighting some recently developed tools to further study human physiology in mouse models.


Assuntos
Receptores Ativados por Proteinase , Receptores de Trombina , Humanos , Camundongos , Animais , Receptores Ativados por Proteinase/metabolismo , Receptores de Trombina/metabolismo , Especificidade da Espécie , Plaquetas/metabolismo , Trombina/metabolismo
3.
Biochem Biophys Res Commun ; 595: 47-53, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35093640

RESUMO

Brain death (BD) induces a systemic inflammatory response that influences donor liver quality. Protease-activated receptor 4 (PAR4) is a thrombin receptor that mediates platelet activation and is involved in inflammatory and apoptotic processes. Therefore, we investigated the role of PAR4 blockade in liver injury induced by BD and its associated mechanisms. In this study, we constructed a BD rat model and treated rats with TcY-NH2, a selective PAR4 antagonist, to block PAR4 signaling at the onset of BD induction. Our results revealed that PAR4 protein expression increased in the livers of rats with BD. PAR4 blockade alleviated liver injury induced by BD, as indicated by lower serum ALT/AST levels and an improvement in histomorphology. Blood platelet activation and hepatic platelet accumulation in BD rats were reduced by PAR4 blockade. Additionally, PAR4 blockade attenuated the inflammatory response and apoptosis in the livers of BD rats. Moreover, the activation of NF-κB and MAPK pathways induced by BD was inhibited by PAR4 blockade. Thus, our results suggest that PAR4 contributes to liver injury induced by BD by regulating inflammation and apoptosis through the NF-κB and MAPK pathways. Thus, PAR4 blockade may provide a feasible approach to improve the quality of organs from BD donors.


Assuntos
Morte Encefálica/metabolismo , Fígado/efeitos dos fármacos , Oligopeptídeos/farmacologia , Receptores de Trombina/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Morte Encefálica/fisiopatologia , Citocinas/genética , Citocinas/metabolismo , Expressão Gênica/efeitos dos fármacos , Inflamação/genética , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Fígado/metabolismo , Fígado/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , NF-kappa B/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores de Trombina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Platelets ; 33(7): 979-986, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-35343875

RESUMO

Protease-activated receptor 4 (PAR4) is a promising drug target to improve the efficacy/safety window of antiplatelet agents. The native peptide GYPGQV, and the more-potent peptide AYPGKF, are PAR4-specific activators. However, these PAR4 agonist peptides (APs) elicit an agonist response, for example, platelet aggregation, at concentrations of 50 to 1000 µM in platelet-function assays, thereby limiting their utility to monitor the pharmacodynamic effects of PAR4 antagonists over a wide concentration range. Improved pharmacodynamic assays are needed for clinical development of PAR4 antagonists. We attempted to identify potent PAR4 APs to aid development of robust assays for optimization of PAR4 antagonists. Using an AYPG-based biased phage-display peptide library approach followed by chemical peptide optimization, A-Phe(4-F)-PGWLVKNG was identified. This peptide demonstrated an EC50 value of 3.4 µM in a platelet-aggregation assay, which is 16-fold more potent than AYPGKF. Using this new PAR4 AP, a platelet-rich plasma-aggregation assay using light-transmission aggregometry was developed and validated in a series of precision and reproducibility tests. PAR4 antagonist responses to PAR4 AP A-Phe(4-F)-PGWLVKNG (12.5 µM to 100 µM) were subsequently evaluated in this assay in vitro and ex vivo in a human study using BMS-986120, a PAR4 antagonist that entered clinical studies.


Assuntos
Receptores de Trombina , Trombina , Plaquetas , Humanos , Peptídeos/farmacologia , Agregação Plaquetária , Receptor PAR-1 , Reprodutibilidade dos Testes , Trombina/farmacologia
5.
J Biol Chem ; 295(8): 2520-2540, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31892516

RESUMO

Proteinase-activated receptor (PAR)-4 is a member of the proteolytically-activated PAR family of G-protein-coupled receptors (GPCR) that represents an important target in the development of anti-platelet therapeutics. PARs are activated by proteolytic cleavage of their receptor N terminus by enzymes such as thrombin, trypsin, and cathepsin-G. This reveals the receptor-activating motif, termed the tethered ligand that binds intramolecularly to the receptor and triggers signaling. However, PARs are also activated by exogenous application of synthetic peptides derived from the tethered-ligand sequence. To better understand the molecular basis for PAR4-dependent signaling, we examined PAR4-signaling responses to a peptide library derived from the canonical PAR4-agonist peptide, AYPGKF-NH2, and we monitored activation of the Gαq/11-coupled calcium-signaling pathway, ß-arrestin recruitment, and mitogen-activated protein kinase (MAPK) pathway activation. We identified peptides that are poor activators of PAR4-dependent calcium signaling but were fully competent in recruiting ß-arrestin-1 and -2. Peptides that were unable to stimulate PAR4-dependent calcium signaling could not trigger MAPK activation. Using in silico docking and site-directed mutagenesis, we identified Asp230 in the extracellular loop-2 as being critical for PAR4 activation by both agonist peptide and the tethered ligand. Probing the consequence of biased signaling on platelet activation, we found that a peptide that cannot activate calcium signaling fails to cause platelet aggregation, whereas a peptide that is able to stimulate calcium signaling and is more potent for ß-arrestin recruitment triggered greater levels of platelet aggregation compared with the canonical PAR4 agonist peptide. These findings uncover molecular determinants critical for agonist binding and biased signaling through PAR4.


Assuntos
Receptores de Trombina/metabolismo , Transdução de Sinais , Trombina/metabolismo , Alanina/genética , Substituição de Aminoácidos , Cálcio/metabolismo , Sinalização do Cálcio , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Isomerismo , Sistema de Sinalização das MAP Quinases , Metilação , Simulação de Acoplamento Molecular , Proteínas Mutantes/metabolismo , Mutação/genética , Peptídeos/metabolismo , Fosforilação , Agregação Plaquetária , Receptores de Trombina/agonistas , Homologia Estrutural de Proteína , beta-Arrestinas/metabolismo
6.
Circulation ; 142(8): 758-775, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32489148

RESUMO

BACKGROUND: Cardiac rupture is a major lethal complication of acute myocardial infarction (MI). Despite significant advances in reperfusion strategies, mortality from cardiac rupture remains high. Studies suggest that cardiac rupture can be accelerated by thrombolytic therapy, but the relevance of this risk factor remains controversial. METHODS: We analyzed protease-activated receptor 4 (Par4) expression in mouse hearts with MI and investigated the effects of Par4 deletion on cardiac remodeling and function after MI by echocardiography, quantitative immunohistochemistry, and flow cytometry. RESULTS: Par4 mRNA and protein levels were increased in mouse hearts after MI and in isolated cardiomyocytes in response to hypertrophic and inflammatory stimuli. Par4-deficient mice showed less myocyte apoptosis, reduced infarct size, and improved functional recovery after acute MI relative to wild-type (WT). Conversely, Par4-/- mice showed impaired cardiac function, greater rates of myocardial rupture, and increased mortality after chronic MI relative to WT. Pathological evaluation of hearts from Par4-/- mice demonstrated a greater infarct expansion, increased cardiac hemorrhage, and delayed neutrophil accumulation, which resulted in impaired post-MI healing compared with WT. Par4 deficiency also attenuated neutrophil apoptosis in vitro and after MI in vivo and impaired inflammation resolution in infarcted myocardium. Transfer of Par4-/- neutrophils, but not of Par4-/- platelets, in WT recipient mice delayed inflammation resolution, increased cardiac hemorrhage, and enhanced cardiac dysfunction. In parallel, adoptive transfer of WT neutrophils into Par4-/- mice restored inflammation resolution, reduced cardiac rupture incidence, and improved cardiac function after MI. CONCLUSIONS: These findings reveal essential roles of Par4 in neutrophil apoptosis and inflammation resolution during myocardial healing and point to Par4 inhibition as a potential therapy that should be limited to the acute phases of ischemic insult and avoided for long-term treatment after MI.


Assuntos
Regulação da Expressão Gênica , Ruptura Cardíaca , Infarto do Miocárdio , Miocárdio/metabolismo , Receptores de Trombina/deficiência , Animais , Feminino , Ruptura Cardíaca/etiologia , Ruptura Cardíaca/genética , Ruptura Cardíaca/metabolismo , Ruptura Cardíaca/prevenção & controle , Inflamação/genética , Inflamação/metabolismo , Inflamação/prevenção & controle , Masculino , Camundongos , Camundongos Knockout , Infarto do Miocárdio/classificação , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/prevenção & controle , Receptores de Trombina/biossíntese
7.
Arterioscler Thromb Vasc Biol ; 39(4): 694-703, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30727756

RESUMO

Objective- PAR4 (protease-activated receptor 4), one of the thrombin receptors in human platelets, has emerged as a promising target for the treatment of arterial thrombotic disease. Previous studies implied that thrombin exosite II, known as a binding site for heparin, may be involved in thrombin-induced PAR4 activation. In the present study, a heparin octasaccharide analog containing the thrombin exosite II-binding domain of heparin was chemically synthesized and investigated for anti-PAR4 effect. Approach and Results- PAR4-mediated platelet aggregation was examined using either thrombin in the presence of a PAR1 antagonist or γ-thrombin, which selectively activates PAR4. SCH-28 specifically inhibits PAR4-mediated platelet aggregation, as well as the signaling events downstream of PAR4 in response to thrombin. Moreover, SCH-28 prevents thrombin-induced ß-arrestin recruitment to PAR4 but not PAR1 in Chinese Hamster Ovary-K1 cells using a commercial enzymatic complementation assay. Compared with heparin, SCH-28 is more potent in inhibiting PAR4-mediated platelet aggregation but has no significant anticoagulant activity. In an in vitro thrombosis model, SCH-28 reduces thrombus formation under whole blood arterial flow conditions. Conclusions- SCH-28, a synthetic small-molecular and nonanticoagulant heparin analog, inhibits thrombin-induced PAR4 activation by interfering with thrombin exosite II, a mechanism of action distinct from other PAR4 inhibitors that target the receptor. The characteristics of SCH-28 provide a new strategy for targeting PAR4 with the potential for the treatment of arterial thrombosis.


Assuntos
Antitrombinas/farmacologia , Heparina/química , Oligossacarídeos/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Receptores de Trombina/antagonistas & inibidores , Animais , Antitrombinas/síntese química , Células CHO , Sinalização do Cálcio/efeitos dos fármacos , Simulação por Computador , Cricetulus , Avaliação Pré-Clínica de Medicamentos , Humanos , Técnicas In Vitro , Modelos Moleculares , Proteínas Recombinantes/efeitos dos fármacos , Trombina/farmacologia , Trombose/prevenção & controle
8.
Cell Immunol ; 344: 103949, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31337508

RESUMO

PAR4 is expressed by a variety of cells, including platelets, cardiac, lung and immune cells. We investigated the contribution of PAR4 to viral infections of the heart and lung. Toll-like receptor (TLR) 3-dependent immune responses were analyzed after co-stimulation of PAR4 in murine bone-marrow derived macrophages, embryonic fibroblasts and embryonic cardiomyocytes. In addition, we analyzed Coxsackievirus B3 (CVB3) or H1N1 influenza A virus (H1N1 IAV) infection of PAR4-/- (ΔPAR4) and wild-type (WT) mice. Lastly, we investigated the effect of platelet inhibition on H1N1 IAV infection. In vitro experiments revealed that PAR4 stimulation enhances the expression of TLR3-dependent CXCL10 expression and decreases TLR3-dependent NFκB-mediated proinflammatory gene expression. Furthermore, CVB3-infected ΔPAR4 mice exhibited a decreased anti-viral response and increased viral genomes in the heart leading to more pronounced CVB3 myocarditis compared to WT mice. Similarly, H1N1 IAV-infected ΔPAR4 mice had increased immune cell numbers and inflammatory mediators in the lung, and increased mortality compared with infected WT controls. The study showed that PAR4 protects mice from viral infections of the heart and lung.


Assuntos
Infecções por Coxsackievirus/imunologia , Enterovirus Humano B/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/imunologia , Receptores de Trombina/imunologia , Animais , Plaquetas/metabolismo , Quimiocina CXCL10/metabolismo , Modelos Animais de Doenças , Feminino , Fibroblastos/imunologia , Fibroblastos/metabolismo , Genoma Viral , Imunoglobulina G/imunologia , Mediadores da Inflamação/metabolismo , Pneumopatias/imunologia , Pneumopatias/patologia , Pneumopatias/virologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocardite/imunologia , Miocardite/virologia , Receptores de Trombina/deficiência , Baço/citologia , Replicação Viral
9.
Arterioscler Thromb Vasc Biol ; 38(2): 448-456, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29269513

RESUMO

OBJECTIVE: BMS-986120 is a novel first-in-class oral PAR4 (protease-activated receptor 4) antagonist with potent and selective antiplatelet effects. We sought to determine for the first time, the effect of BMS-986120 on human ex vivo thrombus formation. APPROACH AND RESULTS: Forty healthy volunteers completed a phase 1 parallel-group PROBE trial (Prospective Randomized Open-Label Blinded End Point). Ex vivo platelet activation, platelet aggregation, and thrombus formation were measured at 0, 2, and 24 hours after (1) oral BMS-986120 (60 mg) or (2) oral aspirin (600 mg) followed at 18 hours with oral aspirin (600 mg) and oral clopidogrel (600 mg). BMS-986120 demonstrated highly selective and reversible inhibition of PAR4 agonist peptide (100 µM)-stimulated P-selectin expression, platelet-monocyte aggregates, and platelet aggregation (P<0.001 for all). Compared with pretreatment, total thrombus area (µm2/mm) at high shear was reduced by 29.2% (95% confidence interval, 18.3%-38.7%; P<0.001) at 2 hours and by 21.4% (9.3%-32.0%; P=0.002) at 24 hours. Reductions in thrombus formation were driven by a decrease in platelet-rich thrombus deposition: 34.8% (19.3%-47.3%; P<0.001) at 2 hours and 23.3% (5.1%-38.0%; P=0.016) at 24 hours. In contrast to aspirin alone, or in combination with clopidogrel, BMS-986120 had no effect on thrombus formation at low shear (P=nonsignificant). BMS-986120 administration was not associated with an increase in coagulation times or serious adverse events. CONCLUSIONS: BMS-986120 is a highly selective and reversible oral PAR4 antagonist that substantially reduces platelet-rich thrombus formation under conditions of high shear stress. Our results suggest PAR4 antagonism has major potential as a therapeutic antiplatelet strategy. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT02439190.


Assuntos
Benzofuranos/administração & dosagem , Plaquetas/efeitos dos fármacos , Fibrinolíticos/administração & dosagem , Imidazóis/administração & dosagem , Morfolinas/administração & dosagem , Inibidores da Agregação Plaquetária/administração & dosagem , Agregação Plaquetária/efeitos dos fármacos , Receptores de Trombina/antagonistas & inibidores , Tiazóis/administração & dosagem , Trombose/prevenção & controle , Administração Oral , Adulto , Aspirina/administração & dosagem , Benzofuranos/efeitos adversos , Benzofuranos/farmacocinética , Plaquetas/metabolismo , Clopidogrel/administração & dosagem , Feminino , Fibrinolíticos/efeitos adversos , Fibrinolíticos/farmacocinética , Voluntários Saudáveis , Humanos , Imidazóis/efeitos adversos , Imidazóis/farmacocinética , Masculino , Morfolinas/efeitos adversos , Morfolinas/farmacocinética , Inibidores da Agregação Plaquetária/efeitos adversos , Inibidores da Agregação Plaquetária/farmacocinética , Estudos Prospectivos , Receptores de Trombina/sangue , Escócia , Transdução de Sinais/efeitos dos fármacos , Tiazóis/efeitos adversos , Tiazóis/farmacocinética , Trombose/sangue , Trombose/diagnóstico , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
10.
Platelets ; 30(1): 126-135, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30560697

RESUMO

Human platelets express two protease-activated receptors (PARs), PAR1 (F2R) and PAR4 (F2RL3), which are activated by a number of serine proteases that are generated during pathological events and cause platelet activation. Recent interest has focused on PAR4 as a therapeutic target, given PAR4 seems to promote experimental thrombosis and procoagulant microparticle formation, without a broadly apparent role in hemostasis. However, it is not yet known whether PAR4 activity plays a role in platelet-leukocyte interactions, which are thought to contribute to both thrombosis and acute or chronic thrombo-inflammatory processes. We sought to determine whether PAR4 activity contributes to granule secretion from activated platelets and platelet-leukocyte interactions. We performed in vitro and ex vivo studies of platelet granule release and platelet-leukocyte interactions in the presence of PAR4 agonists including PAR4 activating peptide, thrombin, cathepsin G, and plasmin in combination with small-molecule PAR4 antagonists. Activation of human platelets with thrombin, cathepsin G, or plasmin potentiated platelet dense granule secretion that was specifically impaired by PAR4 inhibitors. Platelet-leukocyte interactions and platelet P-selectin exposure the following stimulation with PAR4 agonists were also impaired by activated PAR4 inhibition in either a purified system or in whole blood. These results indicate PAR4-specific promotion of platelet granule release and platelet-leukocyte aggregate formation and suggest that pharmacological control of PAR4 activity could potentially attenuate platelet granule release or platelet-leukocyte interaction-mediated pathological processes.


Assuntos
Plaquetas/metabolismo , Comunicação Celular , Grânulos Citoplasmáticos/metabolismo , Leucócitos/metabolismo , Receptores de Trombina/metabolismo , Animais , Biomarcadores , Citometria de Fluxo , Humanos , Masculino , Papio , Ativação Plaquetária , Agregação Plaquetária
11.
Am J Physiol Renal Physiol ; 314(6): F1077-F1086, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357418

RESUMO

Bladder pain is a prominent symptom of interstitial cystitis/painful bladder syndrome. Hydrogen sulfide (H2S) generated by cystathionine ß-synthase (CBS) or cystathionine γ-lyase (CSE) facilitates bladder hypersensitivity. We assessed involvement of the H2S pathway in protease-activated receptor 4 (PAR4)-induced bladder pain. A bladder pain model was induced by intravesical instillation of PAR4-activating peptide in mice. The role of H2S in this model was evaluated by intraperitoneal preadministration of d,l-propargylglycine (PAG), aminooxyacetic acid (AOAA), or S-adenosylmethionine or the preintravesical administration of NaHS. SV-HUC-1 cells were treated in similar manners. Assessments of CBS, CSE, and macrophage migration inhibitory factor (MIF) expression, bladder voiding function, bladder inflammation, H2S production, and referred bladder pain were performed. The CSE and CBS pathways existed in both mouse bladders and SV-HUC-1 cells. H2S signaling was upregulated in PAR4-induced bladder pain models, and H2S-generating enzyme activity was upregulated in human bladders, mouse bladders, and SV-HUC-1 cells. Pretreatment with AOAA or NaHS inhibited or promoted PAR4-induced mechanical hyperalgesia, respectively; however, PAG only partially inhibited PAR4-induced bladder pain. Treatment with PAG or AOAA decreased H2S production in both mouse bladders and SV-HUC-1 cells. Pretreatment with AOAA increased MIF protein levels in bladder tissues and cells, whereas pretreatment with NaHS lowered MIF protein levels. Bladder pain triggered by the H2S pathway was not accompanied by inflammation or altered micturition behavior. Thus endogenous H2S generated by CBS or CSE caused referred hyperalgesia mediated through MIF in mice with PAR4-induced bladder pain, without causing bladder injury or altering micturition behavior.


Assuntos
Cistite Intersticial/metabolismo , Sulfeto de Hidrogênio/metabolismo , Hiperalgesia/metabolismo , Limiar da Dor , Receptores de Trombina/metabolismo , Bexiga Urinária/metabolismo , Alcinos/farmacologia , Ácido Amino-Oxiacético/farmacologia , Analgésicos/farmacologia , Animais , Linhagem Celular , Cistationina gama-Liase/antagonistas & inibidores , Cistationina gama-Liase/metabolismo , Cistite Intersticial/patologia , Cistite Intersticial/fisiopatologia , Cistite Intersticial/prevenção & controle , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Feminino , Glicina/análogos & derivados , Glicina/farmacologia , Humanos , Hiperalgesia/patologia , Hiperalgesia/fisiopatologia , Hiperalgesia/prevenção & controle , Oxirredutases Intramoleculares/metabolismo , Ligantes , Liases/antagonistas & inibidores , Liases/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Limiar da Dor/efeitos dos fármacos , Transdução de Sinais , Sulfetos/farmacologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/patologia , Bexiga Urinária/fisiopatologia
12.
Int J Urol ; 25(10): 887-893, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30112848

RESUMO

OBJECTIVES: To develop a rodent model of persistent non-inflammatory bladder pain and to test macrophage migration inhibitory factor and high mobility box group 1 as mediators of bladder pain. METHODS: Female C57BL/6 mice received intravesical instillations of protease activated receptor 4 (100 µmol/L, for 1 h) three times every other day and abdominal mechanical hypersensitivity (50% mechanical threshold) was tested on day 0 (baseline), and at days 1, 2, 3, 4, 7 and 9 after the first protease-activated receptor 4 injection. At the end of the experiment, micturition changes were measured and bladders were examined for histological changes. Macrophage migration inhibitory factor antagonist (MIF098; 40 mg/kg i.p. b.i.d.) or high mobility group box 1 inhibitor (glycyrrhizin; 50 mg/kg i.p. daily) was administered from day 2 until day 8. RESULTS: There was a significant and persistent decrease in abdominal mechanical threshold starting from day 3 in the protease-activated receptor 4-treated group that persisted until day 9 (5 days post-last instillation), but not in the control group. Glycyrrhizin fully reversed while MIF098 partially reversed abdominal mechanical hypersensitivity in protease-activated receptor 4-treated mice. The changes started on day 3 after the first protease-activated receptor 4 instillation, and analgesic effects lasted throughout the rest of the testing period. None of the groups had significant micturition changes or overt bladder histological changes. CONCLUSIONS: Repeated intravesical protease activated receptor 4 instillations produce persistent bladder pain without inflammation. Macrophage migration inhibitory factor and high mobility group box 1 are possible effective target molecules for bladder pain alleviation.


Assuntos
Modelos Animais de Doenças , Proteína HMGB1/metabolismo , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Dor Pélvica/patologia , Receptores de Trombina/administração & dosagem , Administração Intravesical , Animais , Feminino , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/uso terapêutico , Proteína HMGB1/antagonistas & inibidores , Humanos , Oxirredutases Intramoleculares/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Dor Pélvica/induzido quimicamente , Dor Pélvica/tratamento farmacológico , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/patologia
13.
Int J Mol Sci ; 19(2)2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29443899

RESUMO

Cardiovascular diseases (CVDs) are currently among the leading causes of death worldwide. Platelet aggregation is a key cellular component of arterial thrombi and major cause of CVDs. Protease-activated receptors (PARs), including PAR1, PAR2, PAR3 and PAR4, fall within a subfamily of seven-transmembrane G-protein-coupled receptors (GPCR). Human platelets express PAR1 and PAR4, which contribute to the signaling transduction processes. In association with CVDs, PAR4 not only contributes to platelet activation but also is a modulator of cellular responses that serve as hallmarks of inflammation. Although several antiplatelet drugs are available on the market, they have many side effects that limit their use. Emerging evidence shows that PAR4 targeting is a safer strategy for preventing thrombosis and consequently may improve the overall cardiac safety profile. Our present review summarizes the PAR4 structural characteristics, activation mechanism, role in the pathophysiology of diseases and understanding the association of PAR4 targeting for improved cardiac protection. Conclusively, this review highlights the importance of PAR4 antagonists and its potential utility in different CVDs.


Assuntos
Anti-Inflamatórios/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Inibidores da Agregação Plaquetária/uso terapêutico , Receptores de Trombina/antagonistas & inibidores , Animais , Anti-Inflamatórios/farmacologia , Doenças Cardiovasculares/prevenção & controle , Humanos , Lipopeptídeos/farmacologia , Lipopeptídeos/uso terapêutico , Inibidores da Agregação Plaquetária/farmacologia , Receptores de Trombina/química , Receptores de Trombina/metabolismo
14.
Arterioscler Thromb Vasc Biol ; 36(5): 952-60, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26966273

RESUMO

OBJECTIVE: Protease-activated receptor 4 (PAR4) is a key regulator of platelet reactivity and is encoded by F2RL3, which has abundant rare missense variants. We aimed to provide proof of principle that rare F2LR3 variants potentially affect platelet reactivity and responsiveness to PAR1 antagonist drugs and to explore underlying molecular mechanisms. APPROACH AND RESULTS: We identified 6 rare F2RL3 missense variants in 236 cardiac patients, of which the variant causing a tyrosine 157 to cysteine substitution (Y157C) was predicted computationally to have the greatest effect on PAR4 structure. Y157C platelets from 3 cases showed reduced responses to PAR4-activating peptide and to α-thrombin compared with controls, but no reduction in responses to PAR1-activating peptide. Pretreatment with the PAR1 antagonist vorapaxar caused lower residual α-thrombin responses in Y157C platelets than in controls, indicating greater platelet inhibition. HEK293 cells transfected with a PAR4 Y157C expression construct had reduced PAR4 functional responses, unchanged total PAR4 expression but reduced surface expression. PAR4 Y157C was partially retained in the endoplasmic reticulum and displayed an expression pattern consistent with defective N-glycosylation. Mutagenesis of Y322, which is the putative hydrogen bond partner of Y157, also reduced PAR4 surface expression in HEK293 cells. CONCLUSIONS: Reduced PAR4 responses associated with Y157C result from aberrant anterograde surface receptor trafficking, in part, because of disrupted intramolecular hydrogen bonding. Characterization of PAR4 Y157C establishes that rare F2RL3 variants have the potential to markedly alter platelet PAR4 reactivity particularly after exposure to therapeutic PAR1 antagonists.


Assuntos
Plaquetas/metabolismo , Ativação Plaquetária , Receptores de Trombina/metabolismo , Idoso , Plaquetas/efeitos dos fármacos , Estudos de Casos e Controles , Simulação por Computador , Relação Dose-Resposta a Droga , Retículo Endoplasmático/metabolismo , Inglaterra , Feminino , Genótipo , Glicosilação , Células HEK293 , Humanos , Ligação de Hidrogênio , Lactonas/farmacologia , Masculino , Modelos Moleculares , Mutação de Sentido Incorreto , Peptídeos/farmacologia , Fenótipo , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária , Inibidores da Agregação Plaquetária/farmacologia , Polimorfismo de Nucleotídeo Único , Conformação Proteica , Transporte Proteico , Piridinas/farmacologia , Receptor PAR-1/efeitos dos fármacos , Receptor PAR-1/metabolismo , Receptores de Trombina/química , Receptores de Trombina/efeitos dos fármacos , Receptores de Trombina/genética , Relação Estrutura-Atividade , Trombina/farmacologia , Transfecção
15.
Arterioscler Thromb Vasc Biol ; 34(12): 2644-50, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25278289

RESUMO

OBJECTIVE: Black individuals are at an increased risk of myocardial infarction and stroke, 2 vascular diseases with strong thrombotic components. Platelet activation is a key step in platelet clot formation leading to myocardial infarction and stroke, and recent work supports a racial difference in platelet aggregation through the thrombin protease-activated receptors (PARs). The underlying mechanism for this racial difference, however, has not been established. Determining where in the signaling cascade these racial differences emerge will aid in understanding why individuals of differing racial ancestry may possess an inherent difference in their responsiveness to antiplatelet therapies. APPROACH AND RESULTS: Washed human platelets from black volunteers were hyperaggregable in response to PAR4-mediated platelet stimulation compared with whites. Interestingly, the racial difference in PAR4-mediated platelet aggregation persisted in platelets treated ex vivo with aspirin and 2MeSAMP (2-methylthioadenosine 5'-monophosphate triethylammonium salt hydrate), suggesting that the racial difference is independent of secondary feedback. Furthermore, stimulation of platelets from black donors with PAR4-activating peptide showed a potentiated level of activation through the Gq pathway compared with platelets from white donors. Differences in signaling included increased Ca(2+) mobilization, Rap1 (Ras-related protein 1) activation, and integrin αIIbß3 activation with no observed difference in platelet protein expression between the groups tested. CONCLUSIONS: Our study is the first to demonstrate that the Gq pathway is differentially regulated by race after PAR4 stimulation in human platelets. Furthermore, the racial difference in PAR4-mediated platelet aggregation persisted in the presence of cyclooxygenase and P2Y12 receptor dual inhibition, suggesting that current antiplatelet therapy may provide less protection to blacks than whites.


Assuntos
População Negra , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/sangue , Ativação Plaquetária/fisiologia , Receptores de Trombina/sangue , População Branca , Adulto , Sinalização do Cálcio , Inibidores de Ciclo-Oxigenase/farmacologia , Feminino , Humanos , Masculino , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/fisiologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Prostaglandina-Endoperóxido Sintases/sangue , Proteína Quinase C/sangue , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y12/sangue , Complexo Shelterina , Transdução de Sinais , Proteínas de Ligação a Telômeros/sangue
16.
Arterioscler Thromb Vasc Biol ; 34(12): 2563-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25278288

RESUMO

OBJECTIVE: Current antiplatelet strategies to prevent myocardial infarction and stroke are limited by bleeding risk. A better understanding of the roles of distinct platelet-activating pathways is needed. We determined whether platelet activation by 2 key primary activators, thrombin and collagen, plays distinct, redundant, or interacting roles in tail bleeding and carotid thrombosis in mice. APPROACH AND RESULTS: Platelets from mice deficient for the thrombin receptor protease-activated receptor-4 (Par4) and the collagen receptor glycoprotein VI protein (GPVI) lack responses to thrombin and collagen, respectively. We examined tail bleeding and FeCl3-induced carotid artery occlusion in mice lacking Par4, GPVI, or both. We also examined a series of Par mutants with increasing impairment of thrombin signaling in platelets. Ablation of thrombin signaling alone by Par4 deficiency increased blood loss in the tail bleeding assay and impaired occlusive thrombus formation in the carotid occlusion assay. GPVI deficiency alone had no effect. Superimposing GPVI deficiency on Par4 deficiency markedly increased effect size in both assays. In contrast to complete ablation of thrombin signaling, 9- and 19-fold increases in EC50 for thrombin-induced platelet activation had only modest effects. CONCLUSIONS: The observation that loss of Par4 uncovered large effects of GPVI deficiency implies that Par4 and GPVI made independent, partially redundant contributions to occlusive thrombus formation in the carotid and to hemostatic clot formation in the tail under the experimental conditions examined. At face value, these results suggest that thrombin- and collagen-induced platelet activation can play partially redundant roles, despite important differences in how these agonists are made available to platelets.


Assuntos
Trombose das Artérias Carótidas/sangue , Colágeno/sangue , Hemorragia/sangue , Ativação Plaquetária/fisiologia , Trombina/metabolismo , Animais , Plaquetas/metabolismo , Trombose das Artérias Carótidas/etiologia , Hemorragia/etiologia , Hemostasia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glicoproteínas da Membrana de Plaquetas/deficiência , Glicoproteínas da Membrana de Plaquetas/genética , Receptores Ativados por Proteinase/sangue , Receptores Ativados por Proteinase/deficiência , Receptores Ativados por Proteinase/genética , Receptores de Trombina/sangue , Receptores de Trombina/deficiência , Receptores de Trombina/genética , Cauda
17.
Platelets ; 26(1): 2-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24433221

RESUMO

Platelets upon activation change their shape, aggregate and secrete alpha and dense granule contents among which ADP acts as a feedback activator. Different Protein Kinase C (PKC) isoforms have specific non-redundant roles in mediating platelet responses including secretion and thrombus formation. Murine platelets lacking specific PKC isoforms have been used to evaluate the isoform specific functions. Novel PKC isoform δ has been shown to play an important role in some pathological processes. Lack of specific inhibitors for PKCδ has restricted analysis of its role in various cells. The current study was carried out to evaluate a novel small molecule PKCδ inhibitor, CGX1037 in platelets. Platelet aggregation, dense granule secretion and western blotting experiments were performed to evaluate CGX1037. In human platelets, CGX1037 inhibited PAR4-mediated phosphorylation on PKD2, a PKCδ-specific substrate. Pre-treatment of human or murine platelets with CGX1037 inhibited PAR4-mediated dense granule secretion whereas it potentiated GPVI-mediated dense granule secretion similar to the responses observed in murine platelets lacking PKCδ· Furthermore, pre-treatment of platelets from PKCδ(-/-) mice with CGX1037 had no significant additive effect on platelet responses suggesting the specificity of CGX1037. Hence, we show that CGX1037 is a selective small molecule inhibitor of PKCδ in platelets.


Assuntos
Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Proteína Quinase C-delta/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Glicoproteínas da Membrana de Plaquetas/metabolismo , Proteína Quinase C-delta/genética , Proteína Quinase C-delta/metabolismo , Proteína Quinase D2 , Proteínas Quinases/metabolismo , Transporte Proteico , Vesículas Secretórias/metabolismo
18.
Bioorg Med Chem Lett ; 24(19): 4708-4713, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25176330

RESUMO

Herein we report the discovery and SAR of an indole-based protease activated receptor-4 (PAR-4) antagonist scaffold derived from a similarity search of the Vanderbilt HTS collection, leading to MLPCN probe ML354 (VU0099704). Using a novel PAC-1 fluorescent αIIbß3 activation assay this probe molecule antagonist was found to have an IC50 of 140nM for PAR-4 with 71-fold selectivity versus PAR-1 (PAR-1IC50=10µM).


Assuntos
Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Descoberta de Drogas , Indóis/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Relação Dose-Resposta a Droga , Humanos , Indóis/síntese química , Indóis/química , Estrutura Molecular , Relação Estrutura-Atividade
19.
J Thromb Haemost ; 22(6): 1715-1726, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508397

RESUMO

BACKGROUND: Protease-activated receptor 4 (PAR4) mediates thrombin signaling on platelets and other cells. Our recent structural studies demonstrated that a single nucleotide polymorphism in extracellular loop 3 and PAR4-P310L (rs2227376) leads to a hyporeactive receptor. OBJECTIVES: The goal of this study was to determine how the hyporeactive PAR4 variant in extracellular loop 3 impacts platelet function in vivo using a novel knock-in mouse model (PAR4-322L). METHODS: A point mutation was introduced into the PAR4 gene F2rl3 via CRISPR/Cas9 to create PAR4-P322L, the mouse homolog to human PAR4-P310L. Platelet response to PAR4 activation peptide (AYPGKF), thrombin, ADP, and convulxin was monitored by αIIbß3 integrin activation and P-selectin translocation using flow cytometry or platelet aggregation. In vivo responses were determined by the tail bleeding assay and the ferric chloride-induced carotid artery injury model. RESULTS: PAR4-P/L and PAR4-L/L platelets had a reduced response to AYPGKF and thrombin measured by P-selectin translocation or αIIbß3 activation. The response to ADP and convulxin was unchanged among genotypes. In addition, both PAR4-P/L and PAR4-L/L platelets showed a reduced response to thrombin in aggregation studies. There was an increase in the tail bleeding time for PAR4-L/L mice. The PAR4-P/L and PAR4-L/L mice both showed an extended time to arterial thrombosis. CONCLUSION: PAR4-322L significantly reduced platelet responsiveness to AYPGKF and thrombin, which is in agreement with our previous structural and cell signaling studies. In addition, PAR4-322L had prolonged arterial thrombosis time. Our mouse model provides a foundation to further evaluate the role of PAR4 in other pathophysiological contexts.


Assuntos
Plaquetas , Camundongos Endogâmicos C57BL , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas , Receptores de Trombina , Trombina , Animais , Plaquetas/metabolismo , Receptores de Trombina/genética , Receptores de Trombina/metabolismo , Trombina/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Modelos Animais de Doenças , Venenos de Crotalídeos/farmacologia , Venenos de Crotalídeos/toxicidade , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Selectina-P/metabolismo , Selectina-P/genética , Mutação Puntual , Técnicas de Introdução de Genes , Transdução de Sinais , Trombose/genética , Trombose/sangue , Masculino , Cloretos , Camundongos , Ativação Plaquetária , Sistemas CRISPR-Cas , Humanos , Fenótipo , Compostos Férricos , Oligopeptídeos , Lectinas Tipo C , Receptores Ativados por Proteinase
20.
J Neurosci Res ; 91(12): 1551-62, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24105611

RESUMO

Accumulating evidence demonstrates that nociceptor activation evokes a rapid change in mRNA and protein levels of calcitonin gene-related peptide (CGRP) in dorsal root ganglion (DRG) neurons. Although the colocalization of CGRP and protease-activated receptor-4 (PAR4), a potent modulator of pain processing and inflammation, was detected in DRG neurons, the role of PAR4 activation in the expression of CGRP has not been investigated. In the present study, the expression of CGRP and activation (phosphorylation) of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in rat DRG neurons were measured by immunofluorescence, real-time PCR, and Western blotting after AYPGKF-NH2 (selective PAR4-activating peptide; PAR4-AP) intraplantar injection or treatment of cultured DRG neurons. The expression of CGRP in cultured DRG neurons was also assessed after treatment with AYPGKF-NH2 with preaddition of PD98059 (an inhibitor for ERK1/2 pathway). Results showed that PAR4-AP intraplantar injection or treatment of cultured DRG neurons evoked significant increases in DRG cells displaying CGRP immunoreactivity and cytoplasmic and nuclear staining for phospho-ERK1/2 (p-ERK1/2). Percentages of total DRG neurons expressing both CGRP and PAR4 or p-ERK1/2 also increased significantly at 2 hr after PAR4-AP treatment. Real-time PCR and Western blotting showed that PAR4-AP treatment significantly increased expression of CGRP mRNA and protein levels in DRG neurons. The PAR4 activation-evoked CGRP expression both at mRNA and at protein levels was significantly inhibited after p-ERK1/2 was inhibited by PD98059. These results provide evidence that activation of PAR4 upregulates the expression of CGRP mRNA and protein levels in DRG neurons via the p-ERK1/2 signal pathway.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/biossíntese , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica , Neuralgia/metabolismo , Neurônios/metabolismo , Receptores de Trombina/metabolismo , Animais , Western Blotting , Imuno-Histoquímica , Sistema de Sinalização das MAP Quinases , Masculino , RNA Mensageiro/biossíntese , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa