Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Lett ; 25(4): 716-728, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35099847

RESUMO

Most animals live in home ranges, and memory is thought to be an important process in their formation. However, a general memory-based model for characterising and predicting home range emergence has been lacking. Here, we use a mechanistic movement model to: (1) quantify the role of memory in the movements of a large mammal reintroduced into a novel environment, and (2) predict observed patterns of home range emergence in this experimental setting. We show that an interplay between memory and resource preferences is the primary process influencing the movements of reintroduced roe deer (Capreolus capreolus). Our memory-based model fitted with empirical data successfully predicts the formation of home ranges, as well as emergent properties of movement and spatial revisitation observed in the reintroduced animals. These results provide a mechanistic framework for combining memory-based movements, resource preferences, and the formation of home ranges in nature.


Assuntos
Cervos , Comportamento de Retorno ao Território Vital , Animais , Movimento
2.
J Anim Ecol ; 84(4): 1059-70, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25714592

RESUMO

Movement patterns offer a rich source of information on animal behaviour and the ecological significance of landscape attributes. This is especially useful for species occupying remote landscapes where direct behavioural observations are limited. In this study, we fit a mechanistic model of animal cognition and movement to GPS positional data of woodland caribou (Rangifer tarandus caribou; Gmelin 1788) collected over a wide range of ecological conditions. The model explicitly tracks individual animal informational state over space and time, with resulting parameter estimates that have direct cognitive and ecological meaning. Three biotic landscape attributes were hypothesized to motivate caribou movement: forage abundance (dietary digestible biomass), wolf (Canis lupus; Linnaeus, 1758) density and moose (Alces alces; Linnaeus, 1758) habitat. Wolves are the main predator of caribou in this system and moose are their primary prey. Resulting parameter estimates clearly indicated that forage abundance is an important driver of caribou movement patterns, with predator and moose avoidance often having a strong effect, but not for all individuals. From the cognitive perspective, our results support the notion that caribou rely on limited sensory inputs from their surroundings, as well as on long-term spatial memory, to make informed movement decisions. Our study demonstrates how sensory, memory and motion capacities may interact with ecological fitness covariates to influence movement decisions by free-ranging animals.


Assuntos
Comportamento Animal , Cognição , Rena/fisiologia , Rena/psicologia , Lobos/fisiologia , Animais , Ecossistema , Cadeia Alimentar , Sistemas de Informação Geográfica , Modelos Biológicos , Ontário , Comportamento Predatório , Comportamento Espacial
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa