Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 976
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
EMBO J ; 42(24): e113941, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38054357

RESUMO

The long noncoding RNA (lncRNA) AUXIN-REGULATED PROMOTER LOOP (APOLO) recognizes a subset of target loci across the Arabidopsis thaliana genome by forming RNA-DNA hybrids (R-loops) and modulating local three-dimensional chromatin conformation. Here, we show that APOLO regulates shade avoidance syndrome by dynamically modulating expression of key factors. In response to far-red (FR) light, expression of APOLO anti-correlates with that of its target BRANCHED1 (BRC1), a master regulator of shoot branching in Arabidopsis thaliana. APOLO deregulation results in BRC1 transcriptional repression and an increase in the number of branches. Accumulation of APOLO transcription fine-tunes the formation of a repressive chromatin loop encompassing the BRC1 promoter, which normally occurs only in leaves and in a late response to far-red light treatment in axillary buds. In addition, our data reveal that APOLO participates in leaf hyponasty, in agreement with its previously reported role in the control of auxin homeostasis through direct modulation of auxin synthesis gene YUCCA2, and auxin efflux genes PID and WAG2. We show that direct application of APOLO RNA to leaves results in a rapid increase in auxin signaling that is associated with changes in the plant response to far-red light. Collectively, our data support the view that lncRNAs coordinate shade avoidance syndrome in A. thaliana, and reveal their potential as exogenous bioactive molecules. Deploying exogenous RNAs that modulate plant-environment interactions may therefore become a new tool for sustainable agriculture.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , RNA Longo não Codificante , Arabidopsis/genética , Arabidopsis/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Epigênese Genética , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Fatores de Transcrição/metabolismo
2.
EMBO J ; 42(8): e111472, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36912149

RESUMO

For shade-intolerant plants, changes in light quality through competition from neighbors trigger shade avoidance syndrome (SAS): a series of morphological and physiological adaptations that are ultimately detrimental to plant health and crop yield. Phytochrome-interacting factor 7 (PIF7) is a major transcriptional regulator of SAS in Arabidopsis; however, how it regulates gene expression is not fully understood. Here, we show that PIF7 directly interacts with the histone chaperone anti-silencing factor 1 (ASF1). The ASF1-deprived asf1ab mutant showed defective shade-induced hypocotyl elongation. Histone regulator homolog A (HIRA), which mediates deposition of the H3.3 variant into chromatin, is also involved in SAS. RNA/ChIP-sequencing analyses identified the role of ASF1 in the direct regulation of a subset of PIF7 target genes. Furthermore, shade-elicited gene activation is accompanied by H3.3 enrichment, which is mediated by the PIF7-ASF1-HIRA regulatory module. Collectively, our data reveal that PIF7 recruits ASF1-HIRA to increase H3.3 incorporation into chromatin to promote gene transcription, thus enabling plants to effectively respond to environmental shade.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fator VII/genética , Fitocromo/genética , Cromatina/metabolismo , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Proteínas de Ligação a DNA/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(42): e2320187121, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39382994

RESUMO

Canopy shade enhances the activity of PHYTOCHROME INTERACTING FACTORs (PIFs) to boost auxin synthesis in the cotyledons. Auxin, together with local PIFs and their positive regulator CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), promotes hypocotyl growth to facilitate access to light. Whether shade alters the cellular redox status thereby affecting growth responses, remains unexplored. Here, we show that, under shade, high auxin levels increased reactive oxygen species and nitric oxide accumulation in the hypocotyl of Arabidopsis. This nitroxidative environment favored the promotion of hypocotyl growth by COP1 under shade. We demonstrate that COP1 is S-nitrosylated, particularly under shade. Impairing this redox regulation enhanced COP1 degradation by the proteasome and diminished the capacity of COP1 to interact with target proteins and to promote hypocotyl growth. Disabling this regulation also generated transversal asymmetries in hypocotyl growth, indicating poor coordination among different cells, which resulted in random hypocotyl bending and predictably low ability to compete with neighbors. These findings highlight the significance of redox signaling in the control of diffuse growth during shade avoidance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hipocótilo , Espécies Reativas de Oxigênio , Ubiquitina-Proteína Ligases , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Espécies Reativas de Oxigênio/metabolismo , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Óxido Nítrico/metabolismo , Ácidos Indolacéticos/metabolismo , Luz , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Oxirredução , Transdução de Sinais
4.
Proc Natl Acad Sci U S A ; 121(30): e2315778121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39012827

RESUMO

For plants adapted to bright light, a decrease in the amount of light received can be detrimental to their growth and survival. Consequently, in response to shade from surrounding vegetation, they initiate a suite of molecular and morphological changes known as the shade avoidance response through which stems and petioles elongate in search for light. Under sunlight-night cycles, the plant's responsiveness to shade varies across the day, being maximal at dusk time. While a role for the circadian clock in this regulation has long been proposed, mechanistic understanding of how it is achieved is incomplete. Here, we show that the clock component GIGANTEA (GI) directly interacts with the transcriptional regulator PHYTOCHROME INTERACTING FACTOR 7 (PIF7), a key player in the response to shade. GI represses PIF7 transcriptional activity and the expression of its target genes in response to shade, thereby fine-tuning the magnitude of the response to limiting light conditions. We find that under light/dark cycles, this function of GI is required to adequately modulate the gating of the response to shade at dusk. Importantly, we also show that this circuit primarily operates in epidermal cells, highlighting the relevance of tissue-specific clock-output connections for the regulation of plant development in resonance with the environment.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Regulação da Expressão Gênica de Plantas , Luz , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ritmo Circadiano/fisiologia , Relógios Circadianos/fisiologia , Relógios Circadianos/genética , Proteínas de Ligação a DNA
5.
Proc Natl Acad Sci U S A ; 120(39): e2304513120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37725643

RESUMO

Nitrate supply is fundamental to support shoot growth and crop performance, but the associated increase in stem height exacerbates the risks of lodging and yield losses. Despite their significance for agriculture, the mechanisms involved in the promotion of stem growth by nitrate remain poorly understood. Here, we show that the elongation of the hypocotyl of Arabidopsis thaliana, used as a model, responds rapidly and persistently to upshifts in nitrate concentration, rather than to the nitrate level itself. The response occurred even in shoots dissected from their roots and required NITRATE TRANSPORTER 1.1 (NRT1.1) in the phosphorylated state (but not NRT1.1 nitrate transport capacity) and NIN-LIKE PROTEIN 7 (NLP7). Nitrate increased PHYTOCHROME INTERACTING FACTOR 4 (PIF4) nuclear abundance by posttranscriptional mechanisms that depended on NRT1.1 and phytochrome B. In response to nitrate, PIF4 enhanced the expression of numerous SMALL AUXIN-UP RNA (SAUR) genes in the hypocotyl. The growth response to nitrate required PIF4, positive and negative regulators of its activity, including AUXIN RESPONSE FACTORs, and SAURs. PIF4 integrates cues from the soil (nitrate) and aerial (shade) environments adjusting plant stature to facilitate access to light.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Nitratos/farmacologia , Fitocromo B , Arabidopsis/genética , Ácidos Indolacéticos , Transportadores de Nitrato , RNA , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
6.
Plant J ; 117(6): 1893-1913, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38289877

RESUMO

Shade avoidance syndrome (SAS) is triggered by a low ratio of red (R) to far-red (FR) light (R/FR ratio), which is caused by neighbor detection and/or canopy shade. In order to compete for the limited light, plants elongate hypocotyls and petioles by deactivating phytochrome B (phyB), a major R light photoreceptor, thus releasing its inhibition of the growth-promoting transcription factors PHYTOCHROME-INTERACTING FACTORs. Under natural conditions, plants must cope with abiotic stresses such as drought, soil salinity, and extreme temperatures, and biotic stresses such as pathogens and pests. Plants have evolved sophisticated mechanisms to simultaneously deal with multiple environmental stresses. In this review, we will summarize recent major advances in our understanding of how plants coordinately respond to shade and environmental stresses, and will also discuss the important questions for future research. A deep understanding of how plants synergistically respond to shade together with abiotic and biotic stresses will facilitate the design and breeding of new crop varieties with enhanced tolerance to high-density planting and environmental stresses.


Assuntos
Proteínas de Arabidopsis , Fitocromo , Luz , Melhoramento Vegetal , Plantas , Estresse Fisiológico
7.
Plant J ; 119(5): 2375-2384, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39024389

RESUMO

Weeds in agricultural settings continually adapt to stresses from ecological and anthropogenic sources, in some cases leading to resistant populations. However, consequences of repeated sub-lethal exposure of these stressors on fitness and stress "memory" over generations remain poorly understood. We measured plant performance over a transgenerational experiment with Arabidopsis thaliana where plants were exposed to sub-lethal stress induced by the herbicides glyphosate or trifloxysulfuron, stresses from clipping or shading in either one (G1) or four successive generations (G1-G4), and control plants that never received stress. We found that fourth-generation (G4) plants that had been subjected to three generations of glyphosate or trifloxysulfuron stress produced higher post-stress biomass, seed weight, and rosette area as compared to that produced by plants that experienced stress only in the first generation (G1). By the same measure, clipping and shade were more influential on floral development time (shade) and seed weight (clipping) but did not show responsive phenotypes for vegetative metrics after multiple generations. Overall, we found that plants exhibited more rapid transgenerational vegetative "stress memory" to herbicides while reproductive plasticity was stressor dependent and similar between clipping/shade and anthropogenic stressors. Our study suggests that maternal plant stress memory aids next-generation plants to respond and survive better under the same stressors.


Assuntos
Arabidopsis , Herbicidas , Herbivoria , Fenótipo , Estresse Fisiológico , Arabidopsis/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Herbicidas/farmacologia , Herbicidas/toxicidade , Glicina/análogos & derivados , Glicina/farmacologia , Glicina/toxicidade , Glifosato
8.
EMBO J ; 40(1): e104273, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33264441

RESUMO

Shade caused by the proximity of neighboring vegetation triggers a set of acclimation responses to either avoid or tolerate shade. Comparative analyses between the shade-avoider Arabidopsis thaliana and the shade-tolerant Cardamine hirsuta revealed a role for the atypical basic-helix-loop-helix LONG HYPOCOTYL IN FR 1 (HFR1) in maintaining the shade tolerance in C. hirsuta, inhibiting hypocotyl elongation in shade and constraining expression profile of shade-induced genes. We showed that C. hirsuta HFR1 protein is more stable than its A. thaliana counterpart, likely due to its lower binding affinity to CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), contributing to enhance its biological activity. The enhanced HFR1 total activity is accompanied by an attenuated PHYTOCHROME INTERACTING FACTOR (PIF) activity in C. hirsuta. As a result, the PIF-HFR1 module is differently balanced, causing a reduced PIF activity and attenuating other PIF-mediated responses such as warm temperature-induced hypocotyl elongation (thermomorphogenesis) and dark-induced senescence. By this mechanism and that of the already-known of phytochrome A photoreceptor, plants might ensure to properly adapt and thrive in habitats with disparate light amounts.


Assuntos
Aclimatação/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Transcrição Gênica/genética , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipocótilo/genética , Fitocromo/genética
9.
Development ; 149(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35088829

RESUMO

A long-standing view in the field of evo-devo is that insect forewings develop without any Hox gene input. The Hox gene Antennapedia (Antp), despite being expressed in the thoracic segments of insects, has no effect on wing development. This view has been obtained from studies in two main model species: Drosophila and Tribolium. Here, we show that partial loss of function of Antp resulted in reduced and malformed adult wings in Bombyx, Drosophila and Tribolium. Antp mediates wing growth in Bombyx by directly regulating the ecdysteriod biosynthesis enzyme gene (shade) in the wing tissue, which leads to local production of the growth hormone 20-hydroxyecdysone. Additional targets of Antp are wing cuticular protein genes CPG24, CPH28 and CPG9, which are essential for wing development. We propose, therefore, that insect wing development occurs in an Antp-dependent manner. This article has an associated 'The people behind the papers' interview.


Assuntos
Proteínas de Homeodomínio/metabolismo , Proteínas de Insetos/metabolismo , Asas de Animais/embriologia , Animais , Bombyx , Drosophila , Ecdisterona/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Insetos/genética , Mutação com Perda de Função , Morfogênese , Tribolium , Asas de Animais/metabolismo
10.
Plant Physiol ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140970

RESUMO

After perception of vegetation proximity by phytochrome photoreceptors, shade-avoider plants initiate a set of responses known as the Shade Avoidance Syndrome (SAS). Shade perception by the phytochrome B (phyB) photoreceptor unleashes the PHYTOCHROME INTERACTING FACTORs (PIFs) and initiates SAS responses. In Arabidopsis (Arabidopsis thaliana) seedlings, shade perception involves rapid and massive changes in gene expression, increases auxin production, and promotes hypocotyl elongation. Other components, such as phyA and ELONGATED HYPOCOTYL 5 (HY5), also participate in the shade regulation of the hypocotyl elongation response by repressing it. However, why and how so many regulators with either positive or negative activities modulate the same response remain unclear. Our physiological, genetic, cellular, and transcriptomic analyses showed that (1) these components are organized into two main branches or modules and (2) the connection between them is dynamic and changes with the time of shade exposure. We propose a model for the regulation of shade-induced hypocotyl elongation in which the temporal and spatial functional importance of the various SAS regulators analyzed here helps to explain the co-existence of differentiated regulatory branches with overlapping activities.

11.
EMBO Rep ; 24(5): e56105, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36970931

RESUMO

Shade avoidance syndrome (SAS) commonly occurs in plants experiencing vegetative shade, triggering a series of morphological and physiological changes for the plants to reach more light. A number of positive regulators, such as PHYTOCHROME-INTERACTING 7 (PIF7), and negative regulators, such as PHYTOCHROMES, are known to ensure appropriate SAS. Here, we identify 211 shade-regulated long non-coding RNAs (lncRNAs) in Arabidopsis. We further characterize PUAR (PHYA UTR Antisense RNA), a lncRNA produced from the intron of the 5' UTR of the PHYTOCHROME A (PHYA) locus. PUAR is induced by shade and promotes shade-induced hypocotyl elongation. PUAR physically associates with PIF7 and represses the shade-mediated induction of PHYA by blocking the binding of PIF7 to the 5' UTR of PHYA. Our findings highlight a role for lncRNAs in SAS and provide insight into the mechanism of PUAR in regulating PHYA gene expression and SAS.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , RNA Longo não Codificante , Regiões 5' não Traduzidas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Hipocótilo/metabolismo , Luz , Fitocromo/genética , Fitocromo/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(32): e2118866119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914140

RESUMO

Exotic plant invaders pose a serious threat to native plants. However, despite showing inferior competitive ability and decreased performance, native species often subsist in invaded communities. The decline of native populations is hypothesized to be halted and eventually reversed if adaptive evolutionary changes can keep up with the environmental stress induced by invaders, that is, when population extinction is prevented by evolutionary rescue (ER). Nevertheless, evidence for the role of ER in postinvasion persistence of native flora remains scarce. Here, I explored the population density of a native forb, Veronica chamaedrys, and evaluated the changes in the shade-responsive traits of its populations distributed along the invasion chronosequence of an exotic transformer, Heracleum mantegazzianum, which was replicated in five areas. I found a U-shaped population trajectory that paralleled the evolution of plasticity to shade. Whereas V. chamaedrys genotypes from intact, more open sites exhibited a shade-tolerance strategy (pronounced leaf area/mass ratio), reduced light availability at the invaded sites selected for a shade-avoidance strategy (greater internode elongation). Field experiments subsequently confirmed that the shifts in shade-response strategies were adaptive and secured postinvasion population persistence, as indicated by further modeling. Alternative ecological mechanisms (habitat improvement or arrival of immigrants) were less likely explanations than ER for the observed population rebound, although the contribution of maternal effects cannot be dismissed. These results suggest that V. chamaedrys survived because of adaptive evolutionary changes operating on the same timescale as the invasion-induced stress, but the generality of ER for postinvasion persistence of native plants remains unknown.


Assuntos
Evolução Biológica , Extinção Biológica , Espécies Introduzidas , Plantas , Veronica , Ecossistema , Heracleum/crescimento & desenvolvimento , Heracleum/efeitos da radiação , Fenótipo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Plantas/efeitos da radiação , Luz Solar , Veronica/crescimento & desenvolvimento , Veronica/efeitos da radiação
13.
Plant J ; 115(5): 1394-1407, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37243898

RESUMO

Reductions in red to far-red ratio (R:FR) provide plants with an unambiguous signal of vegetational shade and are monitored by phytochrome photoreceptors. Plants integrate this information with other environmental cues to determine the proximity and density of encroaching vegetation. Shade-sensitive species respond to reductions in R:FR by initiating a suite of developmental adaptations termed shade avoidance. These include the elongation of stems to facilitate light foraging. Hypocotyl elongation is driven by increased auxin biosynthesis promoted by PHYTOCHROME INTERACTING FACTORs (PIF) 4, 5 and 7. UV-B perceived by the UV RESISTANCE LOCUS 8 (UVR8) photoreceptor rapidly inhibits shade avoidance, in part by suppressing PIF4/5 transcript accumulation and destabilising PIF4/5 protein. Here, we show that longer-term inhibition of shade avoidance is sustained by ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOGUE (HYH), which regulate transcriptional reprogramming of genes involved in hormone signalling and cell wall modification. HY5 and HYH are elevated in UV-B and suppress the expression of XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE (XTH) genes involved in cell wall loosening. They additionally increase expression GA2-OXIDASE1 (GA2ox1) and GA2ox2, encoding gibberellin catabolism enzymes that act redundantly to stabilise the PIF-inhibiting DELLA proteins. UVR8 therefore regulates temporally distinct signalling pathways to first rapidly inhibit and subsequently maintain suppression of shade avoidance following UV-B exposure.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transdução de Sinais/fisiologia , Plantas/metabolismo , Fitocromo/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
14.
Plant J ; 116(3): 804-822, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37522556

RESUMO

Vegetative shade causes an array of morphological changes in plants called shade avoidance syndrome, which includes hypocotyl and petiole elongation, leaf hyponasty, reduced leaf growth, early flowering and rapid senescence. Here, we show that loss-of-function mutations in HISTONE DEACETYLASE 9 (HDA9) attenuated the shade-induced hypocotyl elongation in Arabidopsis. However, the hda9 cotyledons and petioles under shade were not significantly different from those in wild-type, suggesting a specific function of HDA9 in hypocotyl elongation in response to shade. HDA9 expression levels were stable under shade and its protein was ubiquitously detected in cotyledon, hypocotyl and root. Organ-specific transcriptome analysis unraveled that shade induced a set of auxin-responsive genes, such as SMALL AUXIN UPREGULATED RNAs (SAURs) and AUXIN/INDOLE-3-ACETIC ACIDs (AUX/IAAs) and their induction was impaired in hda9-1 hypocotyls. In addition, HDA9 binding to loci of SAUR15/65, IAA5/6/19 and ACS4 was increased under shade. The genetic and organ-specific gene expression analyses further revealed that HDA9 may cooperate with PHYTOCHROME-INTERACTING FACTOR 4/7 in the regulation of shade-induced hypocotyl elongation. Furthermore, HDA9 and PIF7 proteins were found to interact together and thus it is suggested that PIF7 may recruit HDA9 to regulate the shade/auxin responsive genes in response to shade. Overall, our study unravels that HDA9 can work as one component of a hypocotyl-specific transcriptional regulatory machinery that activates the auxin response at the hypocotyl leading to the elongation of this organ under shade.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hipocótilo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Proteínas de Ligação a DNA/genética
15.
BMC Genomics ; 25(1): 802, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39183275

RESUMO

BACKGROUND: Plant long non-coding RNAs (lncRNAs) have important regulatory roles in responses to various biotic and abiotic stresses, including light quality. However, no lncRNAs have been specifically linked to the Shade Avoidance Response (SAS). RESULTS: To better understand the involvement of lncRNAs in shade avoidance, we examined RNA-seq libraries for lncRNAs with the potential to function in the neighbor proximity phenomenon in Arabidopsis thaliana (A. thaliana). Using transcriptomes generated from seedlings exposed to high and low red/far-red (R/FR) light conditions, we identified 13 lncRNA genes differentially expressed in cotyledons and 138 in hypocotyls. To infer possible functions for these lncRNAs, we used a 'guilt-by-association' approach to identify genes co-expressed with lncRNAs in a weighted gene co-expression network. Of 34 co-expression modules, 10 showed biological functions related to differential growth. We identified three potential lncRNAs co-regulated with genes related to SAS. T-DNA insertions in two of these lncRNAs were correlated with morphological differences in seedling responses to increased FR light, supporting our strategy for computational identification of lncRNAs involved in SAS. CONCLUSIONS: Using a computational approach, we identified multiple lncRNAs in Arabidopsis involved in SAS. T-DNA insertions caused altered phenotypes under low R/FR light, suggesting functional roles in shade avoidance. Further experiments are needed to determine the specific mechanisms of these lncRNAs in SAS.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Luz , RNA Longo não Codificante , Arabidopsis/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Redes Reguladoras de Genes , Perfilação da Expressão Gênica , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação , Transcriptoma , Cotilédone/genética
16.
BMC Plant Biol ; 24(1): 675, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009992

RESUMO

Responses of turfgrass to shade vary in individual species, and the degree and quality of low light; therefore, the selection of low light tolerant cultivars of turfgrass is important and beneficial for turf management rather than other practices. The stolons of thirteen bermudagrass genotypes were planted with two treatments and three replications of each treatment to establish for one month in the Yangzhou University Jiangsu China greenhouse. The established plants were transferred outside of the greenhouse, and 50% shading was applied to them with a black net. After 30 days of stress treatment, the morpho-physiological and biochemical analyses were performed. The expression of genes such as HEMA, HY5, PIF4, and Cu/ZnSOD was assessed. Cynodon dactylon is a C4, and perennial that grows as lawn grass and is used as forage. Based on different indicator measurements, the most shade-tolerant germplasm was L01 and L06 along the longitudes and L09 and L10 along the latitudes. At the same time, L02 and L08 were more susceptible, respectively. However, germplasm showed greater tolerance in higher latitudes while longitudinal plants showed less stress response. The current study aimed (1) to screen out the most shade-tolerant Cynodon dactylon genotype among 13 along longitudinal and latitudinal gradients in China. (2) to examine morpho-physiological indicators of different bermudagrassgenotypes; (3) to evaluate if and how differences in various indicators of bermudagrass correlated with geographic region. This study will significantly advance the use of Cynodon germplasm in breeding, genomics, management, nomenclature, and phylogeographical study. It will decisively define whether natural selection and migration can drive evolutionary responses for populations to adapt to their new environments effectively.


Assuntos
Cynodon , Cynodon/genética , Cynodon/fisiologia , China , Genótipo , Adaptação Fisiológica/genética
17.
BMC Plant Biol ; 24(1): 591, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902617

RESUMO

BACKGROUND: Light deficit in shaded environment critically impacts the growth and development of turf plants. Despite this fact, past research has predominantly concentrated on shade avoidance rather than shade tolerance. To address this, our study examined the photosynthetic adjustments of Bermudagrass when exposed to varying intensities of shade to gain an integrative understanding of the shade response of C4 turfgrass. RESULTS: We observed alterations in photosynthetic pigment-proteins, electron transport and its associated carbon and nitrogen assimilation, along with ROS-scavenging enzyme activity in shaded conditions. Mild shade enriched Chl b and LHC transcripts, while severe shade promoted Chl a, carotenoids and photosynthetic electron transfer beyond QA- (ET0/RC, φE0, Ψ0). The study also highlighted differential effects of shade on leaf and root components. For example, Soluble sugar content varied between leaves and roots as shade diminished SPS, SUT1 but upregulated BAM. Furthermore, we observed that shading decreased the transcriptional level of genes involving in nitrogen assimilation (e.g. NR) and SOD, POD, CAT enzyme activities in leaves, even though it increased in roots. CONCLUSIONS: As shade intensity increased, considerable changes were noted in light energy conversion and photosynthetic metabolism processes along the electron transport chain axis. Our study thus provides valuable theoretical groundwork for understanding how C4 grass acclimates to shade tolerance.


Assuntos
Aclimatação , Cynodon , Fotossíntese , Folhas de Planta , Cynodon/fisiologia , Cynodon/genética , Cynodon/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/genética , Transporte de Elétrons , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Raízes de Plantas/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Clorofila/metabolismo
18.
New Phytol ; 243(5): 1810-1822, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38970467

RESUMO

Shoot branching is determined by a balance between factors that promote axillary bud dormancy and factors that release buds from the quiescent state. The TCP family of transcription factors is classified into two classes, Class I and Class II, which usually play different roles. While the role of the Class II TCP BRANCHED1 (BRC1) in suppressing axillary bud development in Arabidopsis thaliana has been widely explored, the function of Class I TCPs in this process remains unknown. We analyzed the role of Class I TCP14 and TCP15 in axillary branch development in Arabidopsis through a series of genetic and molecular studies. In contrast to the increased branch number shown by brc1 mutants, tcp14 tcp15 plants exhibit a reduced number of branches compared with wild-type. Our findings provide evidence that TCP14 and TCP15 act by counteracting BRC1 function through two distinct mechanisms. First, they indirectly reduce BRC1 expression levels. Additionally, TCP15 directly interacts with BRC1 decoying it from chromatin and thereby preventing the transcriptional activation of a set of BRC1-dependent genes. We describe a molecular mechanism by which Class I TCPs physically antagonize the action of the Class II TCP BRC1, aligning with their opposite roles in axillary bud development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Cromatina/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética
19.
Plant Cell Environ ; 47(6): 2058-2073, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38404129

RESUMO

Plants adjust their growth and development in response to changing light caused by canopy shade. The molecular mechanisms underlying shade avoidance responses have been widely studied in Arabidopsis and annual crop species, yet the shade avoidance signalling in woody perennial trees remains poorly understood. Here, we first showed that PtophyB1/2 photoreceptors serve conserved roles in attenuating the shade avoidance syndrome (SAS) in poplars. Next, we conducted a systematic identification and characterization of eight PtoPIF genes in Populus tomentosa. Knocking out different PtoPIFs led to attenuated shade responses to varying extents, whereas overexpression of PtoPIFs, particularly PtoPIF3.1 and PtoPIF3.2, led to constitutive SAS phenotypes under normal light and enhanced SAS responses under simulated shade. Notably, our results revealed that distinct from Arabidopsis PIF4 and PIF5, which are major regulators of SAS, the Populus homologues PtoPIF4.1 and PtoPIF4.2 seem to play a minor role in controlling shade responses. Moreover, we showed that PtoPIF3.1/3.2 could directly activate the expression of the auxin biosynthetic gene PtoYUC8 in response to shade, suggesting a conserved PIF-YUC-auxin pathway in modulating SAS in tree. Overall, our study provides insights into shared and divergent functions of PtoPIF members in regulating various aspects of the SAS in Populus.


Assuntos
Regulação da Expressão Gênica de Plantas , Fitocromo , Proteínas de Plantas , Populus , Populus/genética , Populus/efeitos da radiação , Populus/metabolismo , Populus/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitocromo/metabolismo , Fitocromo/genética , Luz , Ácidos Indolacéticos/metabolismo , Plantas Geneticamente Modificadas , Árvores/fisiologia , Árvores/genética , Árvores/metabolismo
20.
Plant Cell Environ ; 47(8): 2936-2953, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38629324

RESUMO

Plants use light as a resource and signal. Photons within the 400-700 nm waveband are considered photosynthetically active. Far-red photons (FR, 700-800 nm) are used by plants to detect nearby vegetation and elicit the shade avoidance syndrome. In addition, FR photons have also been shown to contribute to photosynthesis, but knowledge about these dual effects remains scarce. Here, we study shoot-architectural and photosynthetic responses to supplemental FR light during the photoperiod in several rice varieties. We observed that FR enrichment only mildly affected the rice transcriptome and shoot architecture as compared to established model species, whereas leaf formation, tillering and biomass accumulation were clearly promoted. Consistent with this growth promotion, we found that CO2-fixation in supplemental FR was strongly enhanced, especially in plants acclimated to FR-enriched conditions as compared to control conditions. This growth promotion dominates the effects of FR photons on shoot development and architecture. When substituting FR enrichment with an end-of-day FR pulse, this prevented photosynthesis-promoting effects and elicited shade avoidance responses. We conclude that FR photons can have a dual role, where effects depend on the environmental context: in addition to being an environmental signal, they are also a potent source of harvestable energy.


Assuntos
Regulação da Expressão Gênica de Plantas , Luz , Oryza , Fotossíntese , Brotos de Planta , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/efeitos da radiação , Oryza/fisiologia , Fotossíntese/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos da radiação , Brotos de Planta/genética , Folhas de Planta/efeitos da radiação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/fisiologia , Dióxido de Carbono/metabolismo , Fotoperíodo , Biomassa , Transcriptoma , Luz Vermelha
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa