Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38231972

RESUMO

In recent years, superhydrophobic coatings with self-cleaning abilities have attracted considerable attention. In this study, we introduced hydroxyl-terminated polydimethylsiloxane (OH-PDMS) into castor-oil-based waterborne polyurethanes and synthesized silicone-modified castor-oil-based UV-curable waterborne polyurethanes (SCWPU). Further, we identified the optimal amount of OH-PDMS to be added and introduced different amounts of micro- and nanoscale heptadecafluorodecyltrimethoxysilane-modified SiO2 particles (FAS-SiO2) to prepare rough-surface SCWPU coatings with dense micro- and nanostructures, thus realizing waterborne superhydrophobic coatings. The results show that when the OH-PDMS content was 11 wt% and the total addition of FAS-SiO2 particles was 50% (with a 1:1:1 ratio of 100 nm, 1 µm, and 10 nm particles), the coatings exhibited a self-cleaning ability and superhydrophobicity with a contact angle of (152.36 ± 2.29)° and a roll-off angle of (4.9 ± 1.0)°. This castor-oil-based waterborne superhydrophobic coating has great potential for waterproofing, anti-fouling, anti-corrosion, and other applications.

2.
J Biomed Mater Res A ; 102(10): 3649-65, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24265203

RESUMO

The resistance to oxidation and environmental stress cracking of poly(carbonate urethanes) (PCUs) has generated significant interest as potential replacements of poly(ether urethanes) in medical devices. Several in vitro models have been developed to screen segmented polyurethanes for oxidative stability. High concentrations of reactive oxygen intermediates produced by combining hydrogen peroxide and dissolved cobalt ions has frequently been used to predict long-term oxidative degradation with short-term testing. Alternatively, a 3% H2O2 concentration without metal ions is suggested within the ISO 10993-13 standard to simulate physiological degradation rates. A comparative analysis which evaluates the predictive capabilities of each test method has yet to be completed. To this end, we have utilized both systems to test three commercially available PCUs with low and high soft segment content: Bionate PCU and Bionate II PCUs, two materials with different soft segment chemistries, and CarboSil TSPCU, a thermoplastic silicone PCU. Bulk properties of all PCUs were retained with minor changes in molecular weight and tensile properties indicating surface oxidative degradation in the accelerated system after 36 days. Soft segment loss and surface damage were comparable to previous in vivo data. The 3% H2O2 method exhibited virtually no changes on the surface or in bulk properties after 12 months of treatment despite previous in vivo results. These results indicate the accelerated test method more effectively characterized the oxidative degradation profiles than the 3% H2O2 treatment system. The lack of bulk degradation in the 12-month study also supports the hydrolytic stability of these PCUs.


Assuntos
Teste de Materiais/métodos , Poliuretanos/química , Peróxido de Hidrogênio/análise , Microscopia Eletrônica de Varredura , Peso Molecular , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa