Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(5): e2204427120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36693105

RESUMO

Physical inactivity is a scourge to human health, promoting metabolic disease and muscle wasting. Interestingly, multiple ecological niches have relaxed investment into physical activity, providing an evolutionary perspective into the effect of adaptive physical inactivity on tissue homeostasis. One such example, the Mexican cavefish Astyanax mexicanus, has lost moderate-to-vigorous activity following cave colonization, reaching basal swim speeds ~3.7-fold slower than their river-dwelling counterpart. This change in behavior is accompanied by a marked shift in body composition, decreasing total muscle mass and increasing fat mass. This shift persisted at the single muscle fiber level via increased lipid and sugar accumulation at the expense of myofibrillar volume. Transcriptomic analysis of laboratory-reared and wild-caught cavefish indicated that this shift is driven by increased expression of pparγ-the master regulator of adipogenesis-with a simultaneous decrease in fast myosin heavy chain expression. Ex vivo and in vivo analysis confirmed that these investment strategies come with a functional trade-off, decreasing cavefish muscle fiber shortening velocity, time to maximal force, and ultimately maximal swimming speed. Despite this, cavefish displayed a striking degree of muscular endurance, reaching maximal swim speeds ~3.5-fold faster than their basal swim speeds. Multi-omic analysis suggested metabolic reprogramming, specifically phosphorylation of Pgm1-Threonine 19, as a key component enhancing cavefish glycogen metabolism and sustained muscle contraction. Collectively, we reveal broad skeletal muscle changes following cave colonization, displaying an adaptive skeletal muscle phenotype reminiscent to mammalian disuse and high-fat models while simultaneously maintaining a unique capacity for sustained muscle contraction via enhanced glycogen metabolism.


Assuntos
Characidae , Animais , Humanos , Characidae/genética , Evolução Biológica , Glicogênio , Músculos , México , Cavernas , Mamíferos
2.
J Biol Chem ; : 107855, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39369989

RESUMO

Thioesterase superfamily member 2 (Them2), a long-chain fatty acyl-CoA thioesterase that is highly expressed in oxidative tissues, interacts with phosphatidylcholine transfer protein (PC-TP) to regulate hepatic lipid and glucose metabolism and to suppress insulin signaling. High-fat diet (HFD)-fed mice lacking Them2 globally or specifically in skeletal muscle, but not liver, exhibit reduced hepatic steatosis and insulin resistance. Here, we report that the capacity of Them2 in skeletal muscle to promote hepatic steatosis and insulin resistance depends on both its catalytic activity and interaction with PC-TP. Two residues of Them2 catalytic site were mutated (N50A/D65A) to produce the inactive enzyme while maintaining its homotetrameric structure and interaction with PC-TP. Restoration of skeletal muscle expression in Them2-/- mice using recombinant adeno-associated virus revealed that wild-type (WT), but not N50A/D65A Them2, promoted HFD-induced weight gain and hepatic steatosis. This was accompanied by greater impairment of insulin sensitivity in WT compared with N50A/D65A Them2. Pharmacological inhibition or genetic ablation of PC-TP attenuated these effects. In reductionist experiments, conditioned medium collected from WT primary cultured myotubes promoted excess lipid accumulation in oleic acid-treated primary cultured hepatocytes relative to Them2-/- myotubes, which was attributable to secreted extracellular vesicles (EV). Reconstitution of Them2 expression in Them2-/- myotubes affirmed the requirements for catalytic activity and PC-TP interactions for EV to promote lipid accumulation in hepatocytes. These studies provide valuable mechanistic insights whereby Them2 in skeletal muscle promotes hepatic steatosis and establish both Them2 and PC-TP as represent attractive targets for managing metabolic dysfunction-associated steatotic liver disease.

3.
J Transl Med ; 22(1): 675, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039509

RESUMO

BACKGROUND: Effects of preoperative drinks on muscle metabolism are unclear despite general recommendations. The aim of the present study was therefore to compare metabolic effects of a preoperative oral nutrition drink, recommended by protocols for enhanced recovery after surgery (ERAS), compared to overnight preoperative peripheral total parenteral nutrition (PPN) on skeletal muscle metabolism in patients aimed at major gastrointestinal cancer surgery. METHODS: Patients were randomized, based on diagnosis and clinical characteristics, to receive either a commercial carbohydrate-rich nutrition drink (Drink); or overnight (12 h) peripheral parenteral nutrition (PPN) as study regimens; compared to isotone Ringer-acetate as Control regimen. Arterial blood- and abdominal muscle tissue specimens were collected at start of surgery. Blood chemistry included substrate- and hormone concentrations. Muscle mRNA transcript analyses were performed by microarray and evaluated for changes in gene activities by Gene Ontology algorithms. RESULTS: Patient groups were comparable in all measured preoperative assessments. The Nutrition Drink had significant metabolic alterations on muscle glucose metabolism (p < 0.05), without any significant effects on amino acid- and protein metabolism. PPN showed similar significant effects on glucose metabolism as Drinks (p < 0.05), but indicated also major positive effects on amino acid- (p < 0.001) and protein anabolism (p < 0.05), particularly by inhibition of muscle protein degradation, related to both ubiquitination of proteins and autophagy/lysosome pathways (p < 0.05). CONCLUSION: Conventional overnight preoperative PPN seems effective to induce and support improved muscle protein metabolism in patients aimed at major cancer surgery while preoperative oral carbohydrate loading, according to ERAS-protocols, was ineffective to improve skeletal muscle catabolism and should therefore not be recommended before major cancer surgery. Trial registration Clinical trials.gov: NCT05080816, Registered June 10th 2021- Retrospectively registered. https://clinicaltrials.gov/study/NCT05080816.


Assuntos
Glucose , Músculo Esquelético , Humanos , Músculo Esquelético/metabolismo , Masculino , Feminino , Glucose/metabolismo , Idoso , Pessoa de Meia-Idade , Cuidados Pré-Operatórios , Ontologia Genética , Pesquisa Translacional Biomédica , Dieta da Carga de Carboidratos , Proteínas Musculares/metabolismo , Neoplasias/cirurgia , Nutrição Parenteral Total , Administração Oral
4.
Cell Mol Life Sci ; 79(6): 321, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35622133

RESUMO

BACKGROUND: Skeletal muscles (SkM) are mechanosensitive, with mechanical unloading resulting in muscle-devastating conditions and altered metabolic properties. However, it remains unexplored whether these atrophic conditions affect SkM mechanosensors and molecular clocks, both crucial for their homeostasis and consequent physiological metabolism. METHODS: We induced SkM atrophy through 14 days of hindlimb suspension (HS) in 10 male C57BL/6J mice and 10 controls (CTR). SkM histology, gene expressions and protein levels of mechanosensors, molecular clocks and metabolism-related players were examined in the m. Gastrocnemius and m. Soleus. Furthermore, we genetically reduced the expression of mechanosensors integrin-linked kinase (Ilk1) and kindlin-2 (Fermt2) in myogenic C2C12 cells and analyzed the gene expression of mechanosensors, clock components and metabolism-controlling genes. RESULTS: Upon hindlimb suspension, gene expression levels of both core molecular clocks and mechanosensors were moderately upregulated in m. Gastrocnemius but strongly downregulated in m. Soleus. Upon unloading, metabolism- and protein biosynthesis-related genes were moderately upregulated in m. Gastrocnemius but downregulated in m. Soleus. Furthermore, we identified very strong correlations between mechanosensors, metabolism- and circadian clock-regulating genes. Finally, genetically induced downregulations of mechanosensors Ilk1 and Fermt2 caused a downregulated mechanosensor, molecular clock and metabolism-related gene expression in the C2C12 model. CONCLUSIONS: Collectively, these data shed new lights on mechanisms that control muscle loss. Mechanosensors are identified to crucially control these processes, specifically through commanding molecular clock components and metabolism.


Assuntos
Relógios Biológicos , Mecanorreceptores , Músculo Esquelético , Atrofia Muscular , Animais , Relógios Biológicos/genética , Relógios Biológicos/fisiologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Expressão Gênica , Elevação dos Membros Posteriores , Masculino , Mecanorreceptores/metabolismo , Mecanotransdução Celular/genética , Mecanotransdução Celular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Doenças Musculares/genética , Doenças Musculares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
5.
Am J Physiol Cell Physiol ; 323(2): C606-C616, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35785986

RESUMO

The impact of aerobic training on human skeletal muscle cell (HSkMC) mitochondrial metabolism is a significant research gap, critical to understanding the mechanisms by which exercise augments skeletal muscle metabolism. We therefore assessed mitochondrial content and capacity in fully differentiated CD56+ HSkMCs from lean active (LA) and sedentary individuals with obesity (OS) at baseline, as well as lean/overweight sedentary individuals (LOS) at baseline and following an 18-day aerobic training intervention. Participants had in vivo skeletal muscle PCr recovery rate by 31P-MRS (mitochondrial oxidative kinetics) and cardiorespiratory fitness (V̇o2max) assessed at baseline. Biopsies of the vastus lateralis were performed for the isolation of skeletal muscle stem cells. LOS individuals repeated all assessments posttraining. HSkMCs were evaluated for mitochondrial respiratory capacity by high-resolution respirometry. Data were normalized to two indices of mitochondrial content (CS activity and OXPHOS protein expression) and a marker of total cell count (quantity of DNA). LA individuals had significantly higher V̇o2max than OS and LOS-Pre training; however, no differences were observed in skeletal muscle mitochondrial capacity, nor in carbohydrate- or fatty acid-supported HSkMC respiratory capacity. Aerobic training robustly increased in vivo skeletal muscle mitochondrial capacity of LOS individuals, as well as carbohydrate-supported HSkMC respiratory capacity. Indices of mitochondrial content and total cell count were similar among the groups and did not change with aerobic training. Our findings demonstrate that bioenergetic changes induced with aerobic training in skeletal muscle in vivo are retained in HSkMCs in vitro without impacting mitochondrial content, suggesting that training improves intrinsic skeletal muscle mitochondrial capacity.


Assuntos
Mitocôndrias Musculares , Músculo Esquelético , Carboidratos , Exercício Físico/fisiologia , Humanos , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Células-Tronco
6.
J Biol Chem ; 297(3): 101023, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34343564

RESUMO

Ammonia is a cytotoxic molecule generated during normal cellular functions. Dysregulated ammonia metabolism, which is evident in many chronic diseases such as liver cirrhosis, heart failure, and chronic obstructive pulmonary disease, initiates a hyperammonemic stress response in tissues including skeletal muscle and in myotubes. Perturbations in levels of specific regulatory molecules have been reported, but the global responses to hyperammonemia are unclear. In this study, we used a multiomics approach to vertically integrate unbiased data generated using an assay for transposase-accessible chromatin with high-throughput sequencing, RNA-Seq, and proteomics. We then horizontally integrated these data across different models of hyperammonemia, including myotubes and mouse and human muscle tissues. Changes in chromatin accessibility and/or expression of genes resulted in distinct clusters of temporal molecular changes including transient, persistent, and delayed responses during hyperammonemia in myotubes. Known responses to hyperammonemia, including mitochondrial and oxidative dysfunction, protein homeostasis disruption, and oxidative stress pathway activation, were enriched in our datasets. During hyperammonemia, pathways that impact skeletal muscle structure and function that were consistently enriched were those that contribute to mitochondrial dysfunction, oxidative stress, and senescence. We made several novel observations, including an enrichment in antiapoptotic B-cell leukemia/lymphoma 2 family protein expression, increased calcium flux, and increased protein glycosylation in myotubes and muscle tissue upon hyperammonemia. Critical molecules in these pathways were validated experimentally. Human skeletal muscle from patients with cirrhosis displayed similar responses, establishing translational relevance. These data demonstrate complex molecular interactions during adaptive and maladaptive responses during the cellular stress response to hyperammonemia.


Assuntos
Genômica , Hiperamonemia/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteômica , Transcriptoma , Animais , Citometria de Fluxo , Humanos , Hiperamonemia/genética , Immunoblotting/métodos , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes
7.
J Biol Chem ; 296: 100131, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33262218

RESUMO

TGR5, a G protein-coupled bile acid receptor, is expressed in various tissues and regulates several physiological processes. In the skeletal muscle, TGR5 activation is known to induce muscle hypertrophy; however, the effects on glucose and lipid metabolism are not well understood, despite the fact that the skeletal muscle plays a major role in energy metabolism. Here, we demonstrate that skeletal muscle-specific TGR5 transgenic (Tg) mice exhibit increased glucose utilization, without altering the expression of major genes related to glucose and lipid metabolism. Metabolite profiling analysis by capillary electrophoresis time-of-flight mass spectrometry showed that glycolytic flux was activated in the skeletal muscle of Tg mice, leading to an increase in glucose utilization. Upon long-term, high-fat diet challenge, blood glucose clearance was improved in Tg mice without an accompanying increase in insulin sensitivity in skeletal muscle and a reduction of body weight. Moreover, Tg mice showed improved age-associated glucose intolerance. These results strongly suggest that TGR5 ameliorated glucose metabolism disorder that is caused by diet-induced obesity and aging by enhancing the glucose metabolic capacity of the skeletal muscle. Our study demonstrates that TGR5 activation in the skeletal muscle is effective in improving glucose metabolism and may be beneficial in developing a novel strategy for the prevention or treatment of hyperglycemia.


Assuntos
Glicemia/metabolismo , Metabolismo Energético , Intolerância à Glucose/prevenção & controle , Resistência à Insulina , Músculo Esquelético/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Dieta Hiperlipídica , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Acoplados a Proteínas G/genética
8.
Biochem Biophys Res Commun ; 612: 22-29, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35500438

RESUMO

Carnosine and anserine are abundant peptides found in the skeletal muscle and nervous system in many vertebrates. Several in vitro and in vivo studies have demonstrate that exogenously administered carnosine improves exercise performance. Furthermore, carnosine is an antioxidant and antifatigue supplement. However, the physiological functions of endogenous carnosine and its related histidine-containing dipeptides in a living organism remain unclear. We aimed to clarify the physiological roles of endogenous carnosine by investigating the characteristics of carnosine synthase gene-deficient mice and the effects of carnosine on skeletal muscle protein metabolism. We discovered that carnosine and anserine were undetectable in the skeletal muscle of carnosine synthase knockout mice. We also quantified protein gene expression and enzyme levels in muscle protein metabolism. Gene and protein levels of the muscle protein synthesizer insulin-like growth factor-1 (IGF-1) and the degrading enzyme cathepsin B were markedly lower in carnosine synthase gene-deficient mice than those in wild-type mice. The amount of 3-methylhistidine (a marker for muscle proteolysis) in forced exercise and the weight of the gastrocnemius muscle were considerably lower in carnosine synthase gene-deficient mice than in wild-type mice. Consequently, we showed that carnosine deficiency affects weight maintenance and protein metabolism in skeletal muscle, suggesting that carnosine regulates skeletal muscle protein metabolism.


Assuntos
Anserina , Carnosina , Peptídeo Sintases/metabolismo , Animais , Carnosina/química , Dipeptídeos/metabolismo , Camundongos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo
9.
Metabolomics ; 18(12): 105, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36480060

RESUMO

INTRODUCTION: Fuel sources for skeletal muscle tissue include carbohydrates and fatty acids, and utilization depends upon fiber type, workload, and substrate availability. The use of isotopically labeled substrate tracers combined with nuclear magnetic resonance (NMR) enables a deeper examination of not only utilization of substrates by a given tissue, but also their contribution to tricarboxylic acid (TCA) cycle intermediates. OBJECTIVES: The goal of this study was to determine the differential utilization of substrates in isolated murine skeletal muscle, and to evaluate how isopotomer anlaysis provided insight into skeletal muscle metabolism. METHODS: Isolated C57BL/6 mouse hind limb muscles were incubated in oxygenated solution containing uniformly labeled 13C6 glucose, 13C3 pyruvate, or 13C2 acetate at room temperature. Isotopomer analysis of 13C labeled glutamate was performed on pooled extracts of isolated soleus and extensor digitorum longus (EDL) muscles. RESULTS: Pyruvate and acetate were more avidly consumed than glucose with resultant increases in glutamate labeling in both muscle groups. Glucose incubation resulted in glutamate labeling, but with high anaplerotic flux in contrast to the labeling by pyruvate. Muscle fiber type distinctions were evident by differences in lactate enrichment and extent of substrate oxidation. CONCLUSION: Isotope tracing experiments in isolated muscles reveal that pyruvate and acetate are avidly oxidized by isolated soleus and EDL muscles, whereas glucose labeling of glutamate is accompanied by high anaplerotic flux. We believe our results may set the stage for future examination of metabolic signatures of skeletal muscles from pre-clinical models of aging, type-2 diabetes and neuromuscular disease.


Assuntos
Glucose , Ácido Pirúvico , Camundongos , Animais , Camundongos Endogâmicos C57BL , Ácido Glutâmico , Metabolômica , Músculo Esquelético , Acetatos
10.
J Biol Chem ; 295(46): 15597-15621, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32878988

RESUMO

Branched-chain α-keto acids (BCKAs) are catabolites of branched-chain amino acids (BCAAs). Intracellular BCKAs are cleared by branched-chain ketoacid dehydrogenase (BCKDH), which is sensitive to inhibitory phosphorylation by BCKD kinase (BCKDK). Accumulation of BCKAs is an indicator of defective BCAA catabolism and has been correlated with glucose intolerance and cardiac dysfunction. However, it is unclear whether BCKAs directly alter insulin signaling and function in the skeletal and cardiac muscle cell. Furthermore, the role of excess fatty acids (FAs) in perturbing BCAA catabolism and BCKA availability merits investigation. By using immunoblotting and ultra-performance liquid chromatography MS/MS to analyze the hearts of fasted mice, we observed decreased BCAA-catabolizing enzyme expression and increased circulating BCKAs, but not BCAAs. In mice subjected to diet-induced obesity (DIO), we observed similar increases in circulating BCKAs with concomitant changes in BCAA-catabolizing enzyme expression only in the skeletal muscle. Effects of DIO were recapitulated by simulating lipotoxicity in skeletal muscle cells treated with saturated FA, palmitate. Exposure of muscle cells to high concentrations of BCKAs resulted in inhibition of insulin-induced AKT phosphorylation, decreased glucose uptake, and mitochondrial oxygen consumption. Altering intracellular clearance of BCKAs by genetic modulation of BCKDK and BCKDHA expression showed similar effects on AKT phosphorylation. BCKAs increased protein translation and mTORC1 activation. Pretreating cells with mTORC1 inhibitor rapamycin restored BCKA's effect on insulin-induced AKT phosphorylation. This study provides evidence for FA-mediated regulation of BCAA-catabolizing enzymes and BCKA content and highlights the biological role of BCKAs in regulating muscle insulin signaling and function.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/antagonistas & inibidores , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/genética , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Aminoácidos de Cadeia Ramificada/sangue , Animais , Linhagem Celular , Dieta Hiperlipídica , Regulação para Baixo/efeitos dos fármacos , Insulina/farmacologia , Cetoácidos/sangue , Cetoácidos/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/citologia , Miocárdio/metabolismo , Palmitatos/farmacologia , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Am J Physiol Endocrinol Metab ; 321(6): E802-E820, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34747202

RESUMO

Sprint interval training (SIT) is a time-efficient alternative to endurance exercise, conferring beneficial skeletal muscle metabolic adaptations. Current literature has investigated the nutritional regulation of acute and chronic exercise-induced metabolic adaptations in muscle following endurance exercise, principally comparing the impact of training in fasted and carbohydrate-fed (CHO) conditions. Alternative strategies such as exercising in low CHO, protein-fed conditions remain poorly characterized, specifically pertaining to adaptations associated with SIT. Thus, this study aimed to compare the metabolic and performance adaptations to acute and short-term SIT in the fasted state with preexercise hydrolyzed (WPH) or concentrated (WPC) whey protein supplementation. In healthy males, preexercise protein ingestion did not alter exercise-induced increases in PGC-1α, PDK4, SIRT1, and PPAR-δ mRNA expression following acute SIT. However, supplementation of WPH beneficially altered acute exercise-induced CD36 mRNA expression. Preexercise protein ingestion attenuated acute exercise-induced increases in muscle pan-acetylation and PARP1 protein content compared with fasted SIT. Acute serum metabolomic differences confirmed greater preexercise amino acid delivery in protein-fed compared with fasted conditions. Following 3 wk of SIT, training-induced increases in mitochondrial enzymatic activity and exercise performance were similar across nutritional groups. Interestingly, resting muscle acetylation status was downregulated in WPH conditions following training. Such findings suggest preexercise WPC and WPH ingestion positively influences metabolic adaptations to SIT compared with fasted training, resulting in either similar or enhanced performance adaptations. Future studies investigating nutritional modulation of metabolic adaptations to exercise are warranted to build upon these novel findings.NEW & NOTEWORTHY These are the first data to show the influence of preexercise protein on serum and skeletal muscle metabolic adaptations to acute and short-term sprint interval training (SIT). Preexercise whey protein concentrate (WPC) or hydrolysate (WPH) feeding acutely affected the serum metabolome, which differentially influenced acute and chronic changes in mitochondrial gene expression, intracellular signaling (acetylation and PARylation) resulting in either similar or enhanced performance outcomes when compared with fasted training.


Assuntos
Adaptação Fisiológica , Jejum/fisiologia , Treinamento Intervalado de Alta Intensidade , Resistência Física , Proteínas do Soro do Leite/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Adolescente , Adulto , Análise Química do Sangue , Suplementos Nutricionais , Método Duplo-Cego , Treinamento Intervalado de Alta Intensidade/métodos , Humanos , Masculino , Metaboloma/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Resistência Física/efeitos dos fármacos , Resistência Física/genética , Corrida , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcriptoma/efeitos dos fármacos , Proteínas do Soro do Leite/administração & dosagem , Adulto Jovem
12.
Magn Reson Med ; 85(4): 2232-2246, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33104248

RESUMO

PURPOSE: Oxygen-17 (17 O) MRS imaging, successfully used in the brain, is extended by imaging the oxygen metabolic rate in the resting skeletal muscle and used to determine the total whole-body oxygen metabolic rate in the rat. METHODS: During and after inhalations of 17 O2 gas, dynamic 17 O MRSI was performed in rats (n = 8) ventilated with N2 O or N2 at 16.4 T. Time courses of the H217 O concentration from regions of interest located in brain and muscle tissue were examined and used to fit an animal-adapted 3-phase metabolic model of oxygen consumption. CBF was determined with an independent washout method. Finally, body oxygen metabolic rate was calculated using a global steady-state approach. RESULTS: Cerebral metabolic rate of oxygen consumption was 1.97 ± 0.19 µmol/g/min on average. The resting metabolic rate of oxygen consumption in skeletal muscle was 0.32 ± 0.12 µmol/g/min and >6 times lower than cerebral metabolic rate of oxygen consumption. Global oxygen consumed by the body was 24.2 ± 3.6 mL O2 /kg body weight/min. CBF was estimated to be 0.28 ± 0.02 mL/g/min and 0.34 ± 0.06 mL/g/min for the N2 and N2 O ventilation condition, respectively. CONCLUSION: We have evaluated the feasibility of 17 O MRSI for imaging and quantifying the oxygen consumption rate in low metabolizing organs such as the skeletal muscle at rest. Additionally, we have shown that CBF is slightly increased in the case of ventilation with N2 O. We expect this study to be beneficial to the application of 17 O MRSI to a wider range of organs, although further validation is advised.


Assuntos
Circulação Cerebrovascular , Consumo de Oxigênio , Animais , Encéfalo/diagnóstico por imagem , Músculo Esquelético/diagnóstico por imagem , Oxigênio , Ratos
13.
J Biol Chem ; 294(33): 12313-12327, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097541

RESUMO

Mitochondrial lipid overload in skeletal muscle contributes to insulin resistance, and strategies limiting this lipid pressure improve glucose homeostasis; however, comprehensive cellular adaptations that occur in response to such an intervention have not been reported. Herein, mice with skeletal muscle-specific deletion of carnitine palmitoyltransferase 1b (Cpt1bM-/-), which limits mitochondrial lipid entry, were fed a moderate fat (25%) diet, and samples were subjected to a multimodal analysis merging transcriptomics, proteomics, and nontargeted metabolomics to characterize the coordinated multilevel cellular responses that occur when mitochondrial lipid burden is mitigated. Limiting mitochondrial fat entry predictably improves glucose homeostasis; however, remodeling of glucose metabolism pathways pales compared with adaptations in amino acid and lipid metabolism pathways, shifts in nucleotide metabolites, and biogenesis of mitochondria and peroxisomes. Despite impaired fat utilization, Cpt1bM-/- mice have increased acetyl-CoA (14-fold) and NADH (2-fold), indicating metabolic shifts yield sufficient precursors to meet energy demand; however, this does not translate to enhance energy status as Cpt1bM-/- mice have low ATP and high AMP levels, signifying energy deficit. Comparative analysis of transcriptomic data with disease-associated gene-sets not only predicted reduced risk of glucose metabolism disorders but was also consistent with lower risk for hepatic steatosis, cardiac hypertrophy, and premature death. Collectively, these results suggest induction of metabolic inefficiency under conditions of energy surfeit likely contributes to improvements in metabolic health when mitochondrial lipid burden is mitigated. Moreover, the breadth of disease states to which mechanisms induced by muscle-specific Cpt1b inhibition may mediate health benefits could be more extensive than previously predicted.


Assuntos
Carnitina O-Palmitoiltransferase/deficiência , Metabolismo Energético , Metabolismo dos Lipídeos , Mitocôndrias Musculares/metabolismo , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Monofosfato de Adenosina/genética , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Carnitina O-Palmitoiltransferase/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Musculares/genética , NAD/genética , NAD/metabolismo
14.
Am J Physiol Endocrinol Metab ; 316(2): E251-E259, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30512988

RESUMO

The ability of heart and skeletal muscle (SM) to switch between fat and carbohydrate oxidation is of high interest in the study of metabolic diseases and exercise physiology. Positron emission tomography (PET) imaging with the glucose analog 2-[18F]fluoro-2-deoxy-glucose (18F-FDG) provides a noninvasive means to quantitate glucose metabolic rates. However, evaluation of fatty acid oxidation (FAO) rates by PET has been limited by the lack of a suitable FAO probe. We have developed a metabolically trapped oleate analog, ( Z)-18-[18F]fluoro-4-thia-octadec-9-enoate (18F-FTO), and investigated the feasibility of using 18F-FTO and 18F-FDG to measure FAO and glucose uptake, respectively, in heart and SM of rats in vivo. To enhance the metabolic rates in SM, the vastus lateralis (VL) muscle was electrically stimulated in fasted rats for 30 min before and 30 min following radiotracer injection. The responses of radiotracer uptake patterns to pharmacological inhibition of FAO were assessed by pretreatment of the rats with the carnitine palmitoyl-transferase-1 (CPT-1) inhibitor sodium 2-[5-(4-chlorophenyl)-pentyl]oxirane-2-carboxylate (POCA). Small-animal PET images and biodistribution data with 18F-FTO and 18F-FDG demonstrated profound metabolic switching for energy provision in the myocardium from exogenous fatty acids to glucose in control and CPT-1-inhibited rats, respectively. Uptake of both radiotracers was low in unstimulated SM. In stimulated VL muscle, 18F-FTO and 18F-FDG uptakes were increased 4.4- and 28-fold, respectively, and CPT-1 inhibition only affected 18F-FTO uptake (66% decrease). 18F-FTO is a FAO-dependent PET probe that may allow assessment of energy substrate metabolic switching in conjunction with 18F-FDG and other metabolic probes.


Assuntos
Ácidos Graxos/metabolismo , Glucose/metabolismo , Coração/diagnóstico por imagem , Miocárdio/metabolismo , Músculo Quadríceps/diagnóstico por imagem , Músculo Quadríceps/metabolismo , Animais , Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Compostos de Epóxi/farmacologia , Fluordesoxiglucose F18 , Ácido Láctico/metabolismo , Contração Muscular , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/metabolismo , Ácidos Oleicos , Oxirredução , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Músculo Quadríceps/efeitos dos fármacos , Compostos Radiofarmacêuticos , Ratos , Sulfetos , Distribuição Tecidual , Triglicerídeos/metabolismo
15.
J Biol Chem ; 292(26): 11021-11033, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28465350

RESUMO

Muscle and bone are closely associated in both anatomy and function, but the mechanisms that coordinate their synergistic action remain poorly defined. Myostatin, a myokine secreted by muscles, has been shown to inhibit muscle growth, and the disruption of the myostatin gene has been reported to cause muscle hypertrophy and increase bone mass. Extracellular vesicle-exosomes that carry microRNA (miRNA), mRNA, and proteins are known to perform an important role in cell-cell communication. We hypothesized that myostatin may play a crucial role in muscle-bone interactions and may promote direct effects on osteocytes and on osteocyte-derived exosomal miRNAs, thereby indirectly influencing the function of other bone cells. We report herein that myostatin promotes expression of several bone regulators such as sclerostin (SOST), DKK1, and RANKL in cultured osteocytic (Ocy454) cells, concomitant with the suppression of miR-218 in both parent Ocy454 cells and derived exosomes. Exosomes produced by Ocy454 cells that had been pretreated with myostatin could be taken up by osteoblastic MC3T3 cells, resulting in a marked reduction of Runx2, a key regulator of osteoblastic differentiation, and in decreased osteoblastic differentiation via the down-regulation of the Wnt signaling pathway. Importantly, the inhibitory effect of myostatin-modified osteocytic exosomes on osteoblast differentiation is completely reversed by expression of exogenous miR-218, through a mechanism involving miR-218-mediated inhibition of SOST. Together, our findings indicate that myostatin directly influences osteocyte function and thereby inhibits osteoblastic differentiation, at least in part, through the suppression of osteocyte-derived exosomal miR-218, suggesting a novel mechanism in muscle-bone communication.


Assuntos
Diferenciação Celular , Exossomos/metabolismo , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Miostatina/metabolismo , Osteócitos/metabolismo , Via de Sinalização Wnt/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular , Exossomos/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , MicroRNAs/genética , Miostatina/genética , Ligante RANK/genética , Ligante RANK/metabolismo
16.
J Biol Chem ; 292(47): 19135-19145, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-28982973

RESUMO

Insulin resistance is a major risk factor for many diseases. However, its underlying mechanism remains unclear in part because it is triggered by a complex relationship between multiple factors, including genes and the environment. Here, we used metabolomics combined with computational methods to identify factors that classified insulin resistance across individual mice derived from three different mouse strains fed two different diets. Three inbred ILSXISS strains were fed high-fat or chow diets and subjected to metabolic phenotyping and metabolomics analysis of skeletal muscle. There was significant metabolic heterogeneity between strains, diets, and individual animals. Distinct metabolites were changed with insulin resistance, diet, and between strains. Computational analysis revealed 113 metabolites that were correlated with metabolic phenotypes. Using these 113 metabolites, combined with machine learning to segregate mice based on insulin sensitivity, we identified C22:1-CoA, C2-carnitine, and C16-ceramide as the best classifiers. Strikingly, when these three metabolites were combined into one signature, they classified mice based on insulin sensitivity more accurately than each metabolite on its own or other published metabolic signatures. Furthermore, C22:1-CoA was 2.3-fold higher in insulin-resistant mice and correlated significantly with insulin resistance. We have identified a metabolomic signature composed of three functionally unrelated metabolites that accurately predicts whole-body insulin sensitivity across three mouse strains. These data indicate the power of simultaneous analysis of individual, genetic, and environmental variance in mice for identifying novel factors that accurately predict metabolic phenotypes like whole-body insulin sensitivity.


Assuntos
Biologia Computacional/métodos , Dieta , Resistência à Insulina/fisiologia , Metaboloma , Metabolômica/métodos , Animais , Masculino , Camundongos , Camundongos Endogâmicos
17.
J Biol Chem ; 292(40): 16653-16664, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28808062

RESUMO

TBC1 domain family member 1 (TBC1D1), a Rab GTPase-activating protein and paralogue of Akt substrate of 160 kDa (AS160), has been implicated in both insulin- and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase-mediated glucose transporter type 4 (GLUT4) translocation. However, the role of TBC1D1 in contracting muscle remains ambiguous. We therefore explored the metabolic consequence of ablating TBC1D1 in both resting and contracting skeletal muscles, utilizing a rat TBC1D1 KO model. Although insulin administration rapidly increased (p < 0.05) plasma membrane GLUT4 content in both red and white gastrocnemius muscles, the TBC1D1 ablation did not alter this response nor did it affect whole-body insulin tolerance, suggesting that TBC1D1 is not required for insulin-induced GLUT4 trafficking events. Consistent with findings in other models of altered TBC1D1 protein levels, whole-animal and ex vivo skeletal muscle fat oxidation was increased in the TBC1D1 KO rats. Although there was no change in mitochondrial content in the KO rats, maximal ADP-stimulated respiration was higher in permeabilized muscle fibers, which may contribute to the increased reliance on fatty acids in resting KO animals. Despite this increase in mitochondrial oxidative capacity, run time to exhaustion at various intensities was impaired in the KO rats. Moreover, contraction-induced increases in sarcolemmal GLUT4 content and glucose uptake were lower in the white gastrocnemius of the KO animals. Altogether, our results highlight a critical role for TBC1D1 in exercise tolerance and contraction-mediated translocation of GLUT4 to the plasma membrane in skeletal muscle.


Assuntos
Tolerância ao Exercício/fisiologia , Transportador de Glucose Tipo 4/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Proteínas/metabolismo , Sarcolema/metabolismo , Animais , Transportador de Glucose Tipo 4/genética , Insulina/genética , Insulina/metabolismo , Oxirredução , Consumo de Oxigênio/fisiologia , Transporte Proteico/fisiologia , Proteínas/genética , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Sarcolema/genética
18.
Am J Physiol Endocrinol Metab ; 315(2): E229-E239, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29509433

RESUMO

Mitochondrial function has been examined in insulin-resistant (IR) states including type 2 diabetes mellitus (T2DM). Previous studies using phosphorus-31 magnetic resonance spectroscopy (31P-MRS) in T2DM reported results as relative concentrations of metabolite ratios, which could obscure differences in phosphocreatine ([PCr]) and adenosine triphosphate concentrations ([ATP]) between T2DM and normal glucose tolerance (NGT) individuals. We used an image-guided 31P-MRS method to quantitate [PCr], inorganic phosphate [Pi], phosphodiester [PDE], and [ATP] in vastus lateralis (VL) muscle in 11 T2DM and 14 NGT subjects. Subjects also received oral glucose tolerance test, euglycemic insulin clamp, 1H-MRS to measure intramyocellular lipids [IMCL], and VL muscle biopsy to evaluate mitochondrial density. T2DM subjects had lower absolute [PCr] and [ATP] than NGT subjects (PCr 28.6 ± 3.2 vs. 24.6 ± 2.4, P < 0.002, and ATP 7.18 ± 0.6 vs. 6.37 ± 1.1, P < 0.02) while [PDE] was higher, but not significantly. [PCr], obtained using the traditional ratio method, showed no significant difference between groups. [PCr] was negatively correlated with HbA1c ( r = -0.63, P < 0.01) and fasting plasma glucose ( r = -0.51, P = 0.01). [PDE] was negatively correlated with Matsuda index ( r = -0.43, P = 0.03) and M/I ( r = -0.46, P = 0.04), but was positively correlated with [IMCL] ( r = 0.64, P < 0.005), HbA1c, and FPG ( r = 0.60, P = 0.001). To summarize, using a modified, in vivo quantitative 31P-MRS method, skeletal muscle [PCr] and [ATP] are reduced in T2DM, while this difference was not observed with the traditional ratio method. The strong inverse correlation between [PCr] vs. HbA1c, FPG, and insulin sensitivity supports the concept that lower baseline skeletal muscle [PCr] is related to key determinants of glucose homeostasis.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Músculo Esquelético/metabolismo , Fosfocreatina/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Glicemia/análise , Glicemia/metabolismo , Creatina/metabolismo , Feminino , Técnica Clamp de Glucose , Intolerância à Glucose/metabolismo , Hemoglobinas Glicadas/análise , Humanos , Resistência à Insulina , Metabolismo dos Lipídeos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mitocôndrias Musculares/metabolismo , Fosfatos/metabolismo , Isótopos de Fósforo
19.
Proc Natl Acad Sci U S A ; 112(49): E6780-9, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26598680

RESUMO

Classic physiology studies dating to the 1930s demonstrate that moderate or transient glucocorticoid (GC) exposure improves muscle performance. The ergogenic properties of GCs are further evidenced by their surreptitious use as doping agents by endurance athletes and poorly understood efficacy in Duchenne muscular dystrophy (DMD), a genetic muscle-wasting disease. A defined molecular basis underlying these performance-enhancing properties of GCs in skeletal muscle remains obscure. Here, we demonstrate that ergogenic effects of GCs are mediated by direct induction of the metabolic transcription factor KLF15, defining a downstream pathway distinct from that resulting in GC-related muscle atrophy. Furthermore, we establish that KLF15 deficiency exacerbates dystrophic severity and muscle GC-KLF15 signaling mediates salutary therapeutic effects in the mdx mouse model of DMD. Thus, although glucocorticoid receptor (GR)-mediated transactivation is often associated with muscle atrophy and other adverse effects of pharmacologic GC administration, our data define a distinct GR-induced gene regulatory pathway that contributes to therapeutic effects of GCs in DMD through proergogenic metabolic programming.


Assuntos
Glucocorticoides/farmacologia , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Animais , Feminino , Glucocorticoides/uso terapêutico , Humanos , Fatores de Transcrição Kruppel-Like/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/fisiopatologia , Proteínas Nucleares/fisiologia , Receptores de Glucocorticoides/fisiologia
20.
J Biol Chem ; 291(34): 17496-17509, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27358404

RESUMO

Skeletal muscle atrophy is a serious and highly prevalent condition that remains poorly understood at the molecular level. Previous work found that skeletal muscle atrophy involves an increase in skeletal muscle Gadd45a expression, which is necessary and sufficient for skeletal muscle fiber atrophy. However, the direct mechanism by which Gadd45a promotes skeletal muscle atrophy was unknown. To address this question, we biochemically isolated skeletal muscle proteins that associate with Gadd45a as it induces atrophy in mouse skeletal muscle fibers in vivo We found that Gadd45a interacts with multiple proteins in skeletal muscle fibers, including, most prominently, MEKK4, a mitogen-activated protein kinase kinase kinase that was not previously known to play a role in skeletal muscle atrophy. Furthermore, we found that, by forming a complex with MEKK4 in skeletal muscle fibers, Gadd45a increases MEKK4 protein kinase activity, which is both sufficient to induce skeletal muscle fiber atrophy and required for Gadd45a-mediated skeletal muscle fiber atrophy. Together, these results identify a direct biochemical mechanism by which Gadd45a induces skeletal muscle atrophy and provide new insight into the way that skeletal muscle atrophy occurs at the molecular level.


Assuntos
Proteínas de Ciclo Celular/metabolismo , MAP Quinase Quinase Quinase 4/metabolismo , Complexos Multiproteicos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/metabolismo , Proteínas Nucleares/metabolismo , Animais , Proteínas de Ciclo Celular/genética , MAP Quinase Quinase Quinase 4/genética , Camundongos , Complexos Multiproteicos/genética , Fibras Musculares Esqueléticas/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Proteínas Nucleares/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa