Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 894
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 180(5): 878-894.e19, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32059783

RESUMO

Pathogenic autoantibodies arise in many autoimmune diseases, but it is not understood how the cells making them evade immune checkpoints. Here, single-cell multi-omics analysis demonstrates a shared mechanism with lymphoid malignancy in the formation of public rheumatoid factor autoantibodies responsible for mixed cryoglobulinemic vasculitis. By combining single-cell DNA and RNA sequencing with serum antibody peptide sequencing and antibody synthesis, rare circulating B lymphocytes making pathogenic autoantibodies were found to comprise clonal trees accumulating mutations. Lymphoma driver mutations in genes regulating B cell proliferation and V(D)J mutation (CARD11, TNFAIP3, CCND3, ID3, BTG2, and KLHL6) were present in rogue B cells producing the pathogenic autoantibody. Antibody V(D)J mutations conferred pathogenicity by causing the antigen-bound autoantibodies to undergo phase transition to insoluble aggregates at lower temperatures. These results reveal a pre-neoplastic stage in human lymphomagenesis and a cascade of somatic mutations leading to an iconic pathogenic autoantibody.


Assuntos
Autoanticorpos/genética , Doenças Autoimunes/genética , Linfócitos B/imunologia , Linfoma/genética , Animais , Autoanticorpos/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Linfócitos B/patologia , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas de Transporte/genética , Evolução Clonal/genética , Evolução Clonal/imunologia , Ciclina D3/genética , Guanilato Ciclase/genética , Humanos , Proteínas Imediatamente Precoces/genética , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Proteínas Inibidoras de Diferenciação/genética , Linfoma/imunologia , Linfoma/patologia , Camundongos , Mutação/genética , Mutação/imunologia , Proteínas de Neoplasias/genética , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteínas Supressoras de Tumor/genética , Recombinação V(D)J/genética
2.
Immunity ; 55(2): 341-354.e7, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34990590

RESUMO

The high genetic diversity of hepatitis C virus (HCV) complicates effective vaccine development. We screened a cohort of 435 HCV-infected individuals and found that 2%-5% demonstrated outstanding HCV-neutralizing activity. From four of these patients, we isolated 310 HCV antibodies, including neutralizing antibodies with exceptional breadth and potency. High neutralizing activity was enabled by the use of the VH1-69 heavy-chain gene segment, somatic mutations within CDRH1, and CDRH2 hydrophobicity. Structural and mutational analyses revealed an important role for mutations replacing the serines at positions 30 and 31, as well as the presence of neutral and hydrophobic residues at the tip of the CDRH3. Based on these characteristics, we computationally created a de novo antibody with a fully synthetic VH1-69 heavy chain that efficiently neutralized multiple HCV genotypes. Our findings provide a deep understanding of the generation of broadly HCV-neutralizing antibodies that can guide the design of effective vaccine candidates.


Assuntos
Anticorpos Amplamente Neutralizantes/genética , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/genética , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/química , Anticorpos Amplamente Neutralizantes/imunologia , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Epitopos , Feminino , Genótipo , Hepacivirus/genética , Hepatite C/imunologia , Anticorpos Anti-Hepatite C/química , Anticorpos Anti-Hepatite C/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia
3.
Annu Rev Genet ; 54: 487-510, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32916079

RESUMO

Mosaicism refers to the occurrence of two or more genomes in an individual derived from a single zygote. Germline mosaicism is a mutation that is limited to the gonads and can be transmitted to offspring. Somatic mosaicism is a postzygotic mutation that occurs in the soma, and it may occur at any developmental stage or in adult tissues. Mosaic variation may be classified in six ways: (a) germline or somatic origin, (b) class of DNA mutation (ranging in scale from single base pairs to multiple chromosomes), (c) developmental context, (d) body location(s), (e) functional consequence (including deleterious, neutral, or advantageous), and (f) additional sources of mosaicism, including mitochondrial heteroplasmy, exogenous DNA sources such as vectors, and epigenetic changes such as imprinting and X-chromosome inactivation. Technological advances, including single-cell and other next-generation sequencing, have facilitated improved sensitivity and specificity to detect mosaicism in a variety of biological contexts.


Assuntos
Genoma/genética , Mutação/genética , Animais , Cromossomos/genética , DNA/genética , Células Germinativas/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mitocôndrias/genética , Mosaicismo
4.
Am J Hum Genet ; 111(7): 1370-1382, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38917801

RESUMO

Extra-axial cavernous hemangiomas (ECHs) are complex vascular lesions mainly found in the spine and cavernous sinus. Their removal poses significant risk due to their vascularity and diffuse nature, and their genetic underpinnings remain incompletely understood. Our approach involved genetic analyses on 31 tissue samples of ECHs employing whole-exome sequencing and targeted deep sequencing. We explored downstream signaling pathways, gene expression changes, and resultant phenotypic shifts induced by these mutations, both in vitro and in vivo. In our cohort, 77.4% of samples had somatic missense variants in GNA14, GNAQ, or GJA4. Transcriptomic analysis highlighted significant pathway upregulation, with the GNAQ c.626A>G (p.Gln209Arg) mutation elevating PI3K-AKT-mTOR and angiogenesis-related pathways, while GNA14 c.614A>T (p.Gln205Leu) mutation led to MAPK and angiogenesis-related pathway upregulation. Using a mouse xenograft model, we observed enlarged vessels from these mutations. Additionally, we initiated rapamycin treatment in a 14-year-old individual harboring the GNAQ c.626A>G (p.Gln209Arg) variant, resulting in gradual regression of cutaneous cavernous hemangiomas and improved motor strength, with minimal side effects. Understanding these mutations and their pathways provides a foundation for developing therapies for ECHs resistant to current therapies. Indeed, the administration of rapamycin in an individual within this study highlights the promise of targeted treatments in treating these complex lesions.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Subunidades alfa de Proteínas de Ligação ao GTP , Humanos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Animais , Camundongos , Feminino , Masculino , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Mutação , Adulto , Pessoa de Meia-Idade , Transdução de Sinais , Hemangioma Cavernoso/genética , Hemangioma Cavernoso/patologia , Adolescente , Sequenciamento do Exoma , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética
5.
Genes Dev ; 33(5-6): 310-332, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30804224

RESUMO

Whether cell types exposed to a high level of environmental insults possess cell type-specific prosurvival mechanisms or enhanced DNA damage repair capacity is not well understood. BRN2 is a tissue-restricted POU domain transcription factor implicated in neural development and several cancers. In melanoma, BRN2 plays a key role in promoting invasion and regulating proliferation. Here we found, surprisingly, that rather than interacting with transcription cofactors, BRN2 is instead associated with DNA damage response proteins and directly binds PARP1 and Ku70/Ku80. Rapid PARP1-dependent BRN2 association with sites of DNA damage facilitates recruitment of Ku80 and reprograms DNA damage repair by promoting Ku-dependent nonhomologous end-joining (NHEJ) at the expense of homologous recombination. BRN2 also suppresses an apoptosis-associated gene expression program to protect against UVB-, chemotherapy- and vemurafenib-induced apoptosis. Remarkably, BRN2 expression also correlates with a high single-nucleotide variation prevalence in human melanomas. By promoting error-prone DNA damage repair via NHEJ and suppressing apoptosis of damaged cells, our results suggest that BRN2 contributes to the generation of melanomas with a high mutation burden. Our findings highlight a novel role for a key transcription factor in reprogramming DNA damage repair and suggest that BRN2 may impact the response to DNA-damaging agents in BRN2-expressing cancers.


Assuntos
Apoptose , Reparo do DNA por Junção de Extremidades/genética , Proteínas de Homeodomínio/metabolismo , Melanoma/genética , Melanoma/fisiopatologia , Mutação/genética , Fatores do Domínio POU/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Homeodomínio/genética , Humanos , Autoantígeno Ku/metabolismo , Fatores do Domínio POU/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Ligação Proteica , Domínios Proteicos , Transporte Proteico
6.
Annu Rev Genet ; 52: 397-419, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30212236

RESUMO

DNA mutations as a consequence of errors during DNA damage repair, replication, or mitosis are the substrate for evolution. In multicellular organisms, mutations can occur in the germline and also in somatic tissues, where they are associated with cancer and other chronic diseases and possibly with aging. Recent advances in high-throughput sequencing have made it relatively easy to study germline de novo mutations, but in somatic cells, the vast majority of mutations are low-abundant and can be detected only in clonal lineages, such as tumors, or single cells. Here we review recent results on somatic mutations in normal human and animal tissues with a focus on their possible functional consequences.


Assuntos
Envelhecimento/genética , Doenças Genéticas Inatas/genética , Genoma Humano/genética , Mutagênese/genética , Envelhecimento/patologia , Evolução Clonal/genética , Doenças Genéticas Inatas/patologia , Mutação em Linhagem Germinativa/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação/genética
7.
Trends Immunol ; 44(9): 668-677, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37573227

RESUMO

In mammals, B cells strictly segregate proliferation from somatic mutation as they develop within the bone marrow and then mature through germinal centers (GCs) in the periphery. Failure to do so risks autoimmunity and neoplastic transformation. Recent work has described how B cell progenitors transition between proliferation and mutation via cytokine signaling pathways, epigenetic chromatin regulation, and remodeling of 3D chromatin conformation. We propose a three-zone model of the GC that describes how proliferation and mutation are regulated. Using this model, we consider how recent mechanistic discoveries in B cell progenitors inform models of GC B cell function and reveal fundamental mechanisms underpinning humoral immunity, autoimmunity, and lymphomagenesis.


Assuntos
Linfócitos B , Centro Germinativo , Humanos , Animais , Dano ao DNA , Cromatina , Proliferação de Células , Mamíferos
8.
Trends Immunol ; 44(7): 542-550, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37248098

RESUMO

The ability of T cells to undergo robust cell division in response to antigenic stimulation is essential for competent T cell function. However, this ability is reduced with aging and contributes to increased susceptibility to infectious diseases, cancers, and other diseases among older adults. To better understand T cell aging, improved measurements of age-related cellular changes in T cells are necessary. The recent development of machine learning (ML)-assisted transcriptome-based quantification of individual CD8+ T cell age represents a significant step forward in this regard. It reveals both prominent and subtle changes in gene expression and points to potential functional alterations of CD8+ T cells with aging. I argue that single-cell transcriptome-based age prediction in the immune system may have promising future applications.


Assuntos
Linfócitos T CD8-Positivos , Transcriptoma , Humanos , Idoso , Envelhecimento , Senescência Celular/fisiologia , Sistema Imunitário
9.
Immunol Rev ; 307(1): 101-115, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35001403

RESUMO

Autoimmune diseases are characterized by serum autoantibodies, some of which are pathogenic, causing severe manifestations and organ injury. However, autoantibodies of the same antigenic reactivity are also present in the serum of asymptomatic people years before they develop any clinical signs of autoimmunity. Autoantibodies can arise during multiple stages of B cell development, and various genetic and environmental factors drive their production. However, what drives the development of pathogenic autoantibodies is poorly understood. Advances in single-cell technology have enabled the deep analysis of rare B cell clones producing pathogenic autoantibodies responsible for vasculitis in patients with primary Sjögren's syndrome complicated by mixed cryoglobulinaemia. These findings demonstrated a cascade of genetic events involving stereotypic immunoglobulin V(D)J recombination and transforming somatic mutations in lymphoma genes and V(D)J regions that disrupted antibody quality control mechanisms and decreased autoantibody solubility. Most studies consider V(D)J mutations that enhance autoantibody affinity to drive pathology; however, V(D)J mutations that increase autoantibody propensity to form insoluble complexes could be a major contributor to autoantibody pathogenicity. Defining the molecular characteristics of pathogenic autoantibodies and failed tolerance checkpoints driving their formation will improve prognostication, enabling early treatment to prevent escalating organ damage and B cell malignancy.


Assuntos
Autoanticorpos , Linfócitos B , Autoimunidade/genética , Células Clonais , Humanos , Mutação/genética
10.
Annu Rev Genet ; 51: 123-141, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29178821

RESUMO

Genetic mosaicism arises when a zygote harbors two or more distinct genotypes, typically due to de novo, somatic mutation during embryogenesis. The clinical manifestations largely depend on the differentiation status of the mutated cell; earlier mutations target pluripotent cells and generate more widespread disease affecting multiple organ systems. If gonadal tissue is spared-as in somatic genomic mosaicism-the mutation and its effects are limited to the proband, whereas mosaicism also affecting the gametes, such as germline or gonosomal mosaicism, is transmissible. Mosaicism is easily appreciated in cutaneous disorders, as phenotypically distinct mutant cells often give rise to lesions in patterns determined by the affected cell type. Genetic investigation of cutaneous mosaic disorders has identified pathways central to disease pathogenesis, revealing novel therapeutic targets. In this review, we discuss examples of cutaneous mosaicism, approaches to gene discovery in these disorders, and insights into molecular pathobiology that have potential for clinical translation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Mosaicismo , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Dermatopatias Genéticas/genética , Ectoderma/metabolismo , Ectoderma/patologia , Embrião de Mamíferos , Endoderma/metabolismo , Endoderma/patologia , Humanos , Queratina-1/genética , Queratina-1/metabolismo , Queratina-10/genética , Queratina-10/metabolismo , Microdissecção e Captura a Laser , Mesoderma/metabolismo , Mesoderma/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Dermatopatias Genéticas/metabolismo , Dermatopatias Genéticas/patologia , Fatores de Tempo , Sequenciamento do Exoma
11.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38040491

RESUMO

Pancreatic cancer is a globally recognized highly aggressive malignancy, posing a significant threat to human health and characterized by pronounced heterogeneity. In recent years, researchers have uncovered that the development and progression of cancer are often attributed to the accumulation of somatic mutations within cells. However, cancer somatic mutation data exhibit characteristics such as high dimensionality and sparsity, which pose new challenges in utilizing these data effectively. In this study, we propagated the discrete somatic mutation data of pancreatic cancer through a network propagation model based on protein-protein interaction networks. This resulted in smoothed somatic mutation profile data that incorporate protein network information. Based on this smoothed mutation profile data, we obtained the activity levels of different metabolic pathways in pancreatic cancer patients. Subsequently, using the activity levels of various metabolic pathways in cancer patients, we employed a deep clustering algorithm to establish biologically and clinically relevant metabolic subtypes of pancreatic cancer. Our study holds scientific significance in classifying pancreatic cancer based on somatic mutation data and may provide a crucial theoretical basis for the diagnosis and immunotherapy of pancreatic cancer patients.


Assuntos
Genômica , Neoplasias Pancreáticas , Humanos , Prognóstico , Genômica/métodos , Neoplasias Pancreáticas/genética , Mutação , Análise por Conglomerados
12.
Brain ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916065

RESUMO

Somatic mosaicism in a fraction of brain cells causes neurodevelopmental disorders, including childhood intractable epilepsy. However, the threshold for somatic mosaicism leading to brain dysfunction is unknown. In this study, we induced various mosaic burdens in focal cortical dysplasia type II (FCD II) mice, featuring mTOR somatic mosaicism and spontaneous behavioral seizures. The mosaic burdens ranged from approximately 1,000 to 40,000 neurons expressing the mTOR mutant in the somatosensory (SSC) or medial prefrontal (PFC) cortex. Surprisingly, approximately 8,000 to 9,000 neurons expressing the MTOR mutant, which are extrapolated to constitute 0.08-0.09% of total cells or roughly 0.04% of variant allele frequency (VAF) in the mouse hemicortex, were sufficient to trigger epileptic seizures. The mutational burden was correlated with seizure frequency and onset, with a higher tendency for electrographic inter-ictal spikes and beta- and gamma-frequency oscillations in FCD II mice exceeding the threshold. Moreover, mutation-negative FCD II patients in deep sequencing of their bulky brain tissues revealed somatic mosaicism of the mTOR pathway genes as low as 0.07% in resected brain tissues through ultra-deep targeted sequencing (up to 20 million reads). Thus, our study suggests that extremely low levels of somatic mosaicism can contribute to brain dysfunction.

13.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38836287

RESUMO

Somatic mutations have been identified in 10% to 63% of focal cortical dysplasia type II samples, primarily linked to the mTOR pathway. When the causative genetic mutations are not identified, this opens the possibility of discovering new pathogenic genes or pathways that could be contributing to the condition. In our previous study, we identified a novel candidate pathogenic somatic variant of IRS-1 c.1791dupG in the brain tissue of a child with focal cortical dysplasia type II. This study further explored the variant's role in causing type II focal cortical dysplasia through in vitro overexpression in 293T and SH-SY5Y cells and in vivo evaluation via in utero electroporation in fetal brains, assessing effects on neuronal migration, morphology, and network integrity. It was found that the mutant IRS-1 variant led to hyperactivity of p-ERK, increased cell volume, and was predominantly associated with the MAPK signaling pathway. In vivo, the IRS-1 c.1791dupG variant induced abnormal neuron migration, cytomegaly, and network hyperexcitability. Notably, the ERK inhibitor GDC-0994, rather than the mTOR inhibitor rapamycin, effectively rescued the neuronal defects. This study directly highlighted the ERK signaling pathway's role in the pathogenesis of focal cortical dysplasia II and provided a new therapeutic target for cases of focal cortical dysplasia II that are not treatable by rapamycin analogs.


Assuntos
Proteínas Substratos do Receptor de Insulina , Sistema de Sinalização das MAP Quinases , Mutação , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Animais , Malformações do Desenvolvimento Cortical do Grupo I/genética , Malformações do Desenvolvimento Cortical do Grupo I/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Neurônios/metabolismo , Neurônios/patologia , Movimento Celular/genética , Células HEK293 , Feminino , Displasia Cortical Focal , Epilepsia
14.
Proc Natl Acad Sci U S A ; 119(31): e2123241119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35895679

RESUMO

Somatic mutations are accumulated in normal human tissues with aging and exposure to carcinogens. If we can accurately count any passenger mutations in any single DNA molecule, since their quantity is much larger than driver mutations, we can sensitively detect mutation accumulation in polyclonal normal tissues. Duplex sequencing, which tags both DNA strands in one DNA molecule, enables accurate count of such mutations, but requires a very large number of sequencing reads for each single sample of human-genome size. Here, we reduced the genome size to 1/90 using the BamHI restriction enzyme and established a cost-effective pipeline. The enzymatically cleaved and optimal sequencing (EcoSeq) method was able to count somatic mutations in a single DNA molecule with a sensitivity of as low as 3 × 10-8 per base pair (bp), as assessed by measuring artificially prepared mutations. Taking advantages of EcoSeq, we analyzed normal peripheral blood cells of pediatric sarcoma patients who received chemotherapy (n = 10) and those who did not (n = 10). The former had a mutation frequency of 31.2 ± 13.4 × 10-8 per base pair while the latter had 9.0 ± 4.5 × 10-8 per base pair (P < 0.001). The increase in mutation frequency was confirmed by analysis of the same patients before and after chemotherapy, and increased mutation frequencies persisted 46 to 64 mo after chemotherapy, indicating that the mutation accumulation constitutes a risk of secondary leukemia. EcoSeq has the potential to reveal accumulation of somatic mutations and exposure to environmental factors in any DNA samples and will contribute to cancer risk estimation.


Assuntos
Análise Mutacional de DNA , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Taxa de Mutação , Imagem Individual de Molécula , Envelhecimento/genética , Pareamento de Bases , Criança , Análise Mutacional de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação , Imagem Individual de Molécula/métodos
15.
Genes Chromosomes Cancer ; 63(1): e23213, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37950638

RESUMO

Cancer initiation is revisited in light of recent discoveries in cancer pathogenesis. Of note is the detection of mutated cancer genes in benign conditions. More significantly, somatic clones, which harbor mutations in cancer genes, arise in normal tissues from early development through adulthood, but seldom do they transform into cancer. Further, clustered mutational events-kataegis, chromothripsis and chromoplexy-are widespread in cancer, generating point mutations and chromosomal rearrangements in a single cellular catastrophe. These observations are contrary to the prevailing somatic mutation theory, which states that a cancer is caused by the gradual accumulation of mutations over time. A different perspective is proposed within the framework of Waddington's epigenetic landscape wherein tumorigenesis is viewed primarily as a disruption of cell development. Cell types are defined by their specific gene-expression profiles, determined by the gene regulatory network, and can be regarded as attractor states of the network dynamics: they represent specific, self-stabilizing patterns of gene activities across the genome. However, large-scale mutational events reshape the landscape topology, creating abnormal "unphysiological" attractors. This is the crux of the process of initiation. Initiation primes the cell for conversion into a tumor phenotype by oncogenes and tumor suppressor genes, which drive cell proliferation and clonal diversification. This view of tumorigenesis calls for a different approach to therapy.


Assuntos
Neoplasias , Humanos , Mutação , Neoplasias/genética , Neoplasias/patologia , Oncogenes , Redes Reguladoras de Genes , Transformação Celular Neoplásica/genética
16.
J Cell Mol Med ; 28(2): e18032, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013642

RESUMO

Lung adenocarcinoma (LUAD) is the most common type of lung cancer and one of the malignancies with the highest incidence rate and mortality worldwide. Hypoxia is a typical feature of tumour microenvironment (TME), which affects the progression of LUAD from multiple molecular levels. However, the underlying molecular mechanisms behind LUAD hypoxia are not fully understood. In this study, we estimated the level of hypoxia by calculating a score based on 15 hypoxia genes. The hypoxia scores were relatively high in LUAD patients with poor prognosis and were bound up with tumour node metastasis (TNM) stage, tumour size, lymph node, age and gender. By comparison of high hypoxia score group and low hypoxia score group, 1820 differentially expressed genes were identified, among which up-regulated genes were mainly about cell division and proliferation while down-regulated genes were primarily involved in cilium-related biological processes. Besides, LUAD patients with high hypoxia scores had higher frequencies of gene mutations, among which TP53, TTN and MUC16 had the highest mutation rates. As for DNA methylation, 1015 differentially methylated probes-related genes were found and may play potential roles in tumour-related neurobiological processes and cell signal transduction. Finally, a prognostic model with 25 multi-omics features was constructed and showed good predictive performance. The area under curve (AUC) values of 1-, 3- and 5-year survival reached 0.863, 0.826 and 0.846, respectively. Above all, our findings are helpful in understanding the impact and molecular mechanisms of hypoxia in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Multiômica , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Hipóxia , Adenocarcinoma/genética , Microambiente Tumoral/genética
17.
Pflugers Arch ; 476(4): 673-688, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37999800

RESUMO

Acidosis is a chemical signature of the tumour microenvironment that challenges intracellular pH homeostasis. The orchestrated activity of acid-base transporters of the solute-linked carrier (SLC) family is critical for removing the end-products of fermentative metabolism (lactate/H+) and maintaining a favourably alkaline cytoplasm. Given the critical role of pH homeostasis in enabling cellular activities, mutations in relevant SLC genes may impact the oncogenic process, emerging as negatively or positively selected, or as driver or passenger mutations. To address this, we performed a pan-cancer analysis of The Cancer Genome Atlas simple nucleotide variation data for acid/base-transporting SLCs (ABT-SLCs). Somatic mutation patterns of monocarboxylate transporters (MCTs) were consistent with their proposed essentiality in facilitating lactate/H+ efflux. Among all cancers, tumours of uterine corpus endometrial cancer carried more ABT-SLC somatic mutations than expected from median tumour mutation burden. Among these, somatic mutations in SLC4A3 had features consistent with meaningful consequences on cellular fitness. Definitive evidence for ABT-SLCs as 'cancer essential' or 'driver genes' will have to consider microenvironmental context in genomic sequencing because bulk approaches are insensitive to pH heterogeneity within tumours. Moreover, genomic analyses must be validated with phenotypic outcomes (i.e. SLC-carried flux) to appreciate the opportunities for targeting acid-base transport in cancers.


Assuntos
Proteínas de Membrana Transportadoras , Neoplasias , Humanos , Neoplasias/genética , Transporte Biológico , Mutação/genética , Lactatos , Microambiente Tumoral
18.
Lab Invest ; 104(2): 100301, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38092180

RESUMO

Mutation detection for therapy monitoring in cell-free DNA (cfDNA) is used clinically for some malignancies. Gallbladder carcinoma (GBC) presents a diagnostic challenge and has limited late-stage treatment options. To our knowledge, this novel study examines, for the first time, genomic alterations in cfDNA from GBC to assess diagnostic accuracy and therapeutic options. The concordance of somatic genomic changes in cfDNA and DNA from paired tumor tissue was analyzed. Paired serum and tissue samples from 40 histologically proven GBC, 20 cholecystitis, and 4 normal (noninflamed gallbladder) controls were included. Targeted next-generation sequencing with a 22-gene panel (Colon and Lung Cancer Research Panel v2, Thermo Scientific) in cfDNA and tumor tissue with high depth and uniform coverage on ION Personal Genome Machine (ION, PGM) was performed. A spectrum of 223 mutations in cfDNA and 225 mutations in formalin-fixed paraffin-embedded tissue DNA were identified in 22 genes. Mutations ranged from 1 to 17 per case. In cfDNA frequent alterations were in TP53 (85.0%), EGFR (52.5%), MET (35%) CTNNB1, SMAD4, BRAF (32.5%), PTEN (30%), FGFR3 and PIK3CA (27.5%), NOTCH1 (25.0%), and FBXW7 and ERBB4 (22.5%). At least one clinically actionable mutation was identified in all cfDNA samples. Paired samples shared 149 of 225 genetic abnormalities (66.2%). Individual gene mutation concordance ranged from 44.44% to 82.0% and was highest for EGFR (82.0%), BRAF and NOTCH1 (80.0%), TP53 (73.08%), MET (72.22%), and ERBB4 (71.42%) with a significant level of correlation (Spearman r = 0.91, P ≤ .0001). The sensitivity and specificity of the TP53 gene at the gene level was the highest (94.44% and 100.0%, respectively). Overall survival was higher for ERBB4 and ERBB2 mutant tumors. The adenocarcinoma subtype revealed specific genetic changes in ERBB4, SMAD4, ERBB2, PTEN, KRAS, and NRAS. NGS-based cfDNA mutation profiling can be used to diagnose GBC before surgery to guide treatment decisions. Targeted therapy identified in GBC included SMAD4, ERBB2, ERBB4, EGFR, KRAS, BRAF, PIK3CA, MET, and NRAS.


Assuntos
Ácidos Nucleicos Livres , Neoplasias da Vesícula Biliar , Humanos , Ácidos Nucleicos Livres/genética , Neoplasias da Vesícula Biliar/diagnóstico , Neoplasias da Vesícula Biliar/genética , Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas p21(ras) , Sequenciamento de Nucleotídeos em Larga Escala , Classe I de Fosfatidilinositol 3-Quinases
19.
Int J Cancer ; 155(4): 683-696, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613405

RESUMO

Chimeric RNAs, which can arise from gene recombination at the DNA level or non-canonical splicing events at the RNA level, have been identified as important roles in human tumors. Dysregulated gene expression caused by somatic mutations and altered splicing patterns of oncogenes or tumor suppressor genes can contribute to the development of tumors. Therefore, investigating the formation mechanism of chimeric RNAs via somatic mutations is critical for understanding tumor pathogenesis. This project is the first to propose studying the association between somatic single nucleotide variants and chimeric RNAs, identifying around 2900 somatic SNVs affecting chimeric RNAs in pan-cancer level. The somatic SNVs on chimeric RNAs were commonly observed in various types of tumor tissues, providing a valuable resource for future study. Additionally, these SNVs show distinct tumor specificity, and those with high frequency had a significant impact on the survival time of patients with tumors. Further research revealed that somatic SNVs associated with chimeric RNA (chiR-SNVs) were typically found within 10 nt of the junction site of chimeric RNAs and had a particularly significant effect on chimeric RNAs from different chromosomes. The enrichment analysis revealed that chiR-SNVs were significantly overrepresented in oncogenes and genes related to RNA binding proteins involved in RNA splicing, which could imply that chiR-SNVs may disrupt the process of RNA splicing and induce the occurrence of chimeric RNAs. This study sheds light on the potential molecular interaction mechanism between somatic SNVs and chimeric RNAs, which opens up a new avenue for researching disease pathway and tumorigenesis development.


Assuntos
Mutação , Neoplasias , Splicing de RNA , Humanos , Neoplasias/genética , Splicing de RNA/genética , Polimorfismo de Nucleotídeo Único , Oncogenes/genética , RNA/genética
20.
Cancer Sci ; 115(3): 706-714, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38258457

RESUMO

Hematopoietic mosaic loss of Y chromosome (mLOY) has emerged as a potential male-specific accelerator of biological aging, increasing the risk of various age-related diseases, including cancer. Importantly, mLOY is not confined to hematopoietic cells; its presence has also been observed in nonhematological cancer cells, with the impact of this presence previously unknown. Recent studies have revealed that, whether occurring in leukocytes or cancer cells, mLOY plays a role in promoting the development of an immunosuppressive tumor microenvironment. This occurs through the modulation of tumor-infiltrating immune cells, ultimately enabling cancer cells to evade the vigilant immune system. In this review, we illuminate recent progress concerning the effects of hematopoietic mLOY and cancer mLOY on cancer progression. Examining cancer progression from the perspective of LOY adds a new layer to our understanding of cancer immunity, promising insights that hold the potential to identify innovative and potent immunotherapy targets for cancer.


Assuntos
Cromossomos Humanos Y , Neoplasias , Humanos , Masculino , Cromossomos Humanos Y/genética , Mosaicismo , Neoplasias/genética , Leucócitos , Envelhecimento , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa