Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.227
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(7): 1369-1381.e17, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001501

RESUMO

Memories initially formed in hippocampus gradually stabilize to cortex over weeks-to-months for long-term storage. The mechanistic details of this brain re-organization remain poorly understood. We recorded bulk neural activity in circuits that link hippocampus and cortex as mice performed a memory-guided virtual-reality task over weeks. We identified a prominent and sustained neural correlate of memory in anterior thalamus, whose inhibition substantially disrupted memory consolidation. More strikingly, gain amplification enhanced consolidation of otherwise unconsolidated memories. To gain mechanistic insights, we developed a technology for simultaneous cellular-resolution imaging of hippocampus, thalamus, and cortex throughout consolidation. We found that whereas hippocampus equally encodes multiple memories, the anteromedial thalamus preferentially encodes salient memories, and gradually increases correlations with cortex to facilitate tuning and synchronization of cortical ensembles. We thus identify a thalamo-cortical circuit that gates memory consolidation and propose a mechanism suitable for the selection and stabilization of hippocampal memories into longer-term cortical storage.


Assuntos
Consolidação da Memória , Memória de Longo Prazo , Camundongos , Animais , Memória de Longo Prazo/fisiologia , Tálamo/fisiologia , Hipocampo/fisiologia , Consolidação da Memória/fisiologia , Encéfalo
2.
Cell ; 180(4): 666-676.e13, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32084339

RESUMO

The mystery of general anesthesia is that it specifically suppresses consciousness by disrupting feedback signaling in the brain, even when feedforward signaling and basic neuronal function are left relatively unchanged. The mechanism for such selectiveness is unknown. Here we show that three different anesthetics have the same disruptive influence on signaling along apical dendrites in cortical layer 5 pyramidal neurons in mice. We found that optogenetic depolarization of the distal apical dendrites caused robust spiking at the cell body under awake conditions that was blocked by anesthesia. Moreover, we found that blocking metabotropic glutamate and cholinergic receptors had the same effect on apical dendrite decoupling as anesthesia or inactivation of the higher-order thalamus. If feedback signaling occurs predominantly through apical dendrites, the cellular mechanism we found would explain not only how anesthesia selectively blocks this signaling but also why conscious perception depends on both cortico-cortical and thalamo-cortical connectivity.


Assuntos
Anestésicos Gerais/farmacologia , Córtex Cerebral/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Animais , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Antagonistas Colinérgicos/farmacologia , Estado de Consciência , Dendritos/efeitos dos fármacos , Dendritos/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Retroalimentação Fisiológica , Feminino , Masculino , Camundongos , Células Piramidais/fisiologia , Transmissão Sináptica , Tálamo/citologia , Tálamo/efeitos dos fármacos , Tálamo/fisiologia
3.
Cell ; 183(2): 522-536.e19, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32997977

RESUMO

Working memory is a form of short-term memory that involves maintaining and updating task-relevant information toward goal-directed pursuits. Classical models posit persistent activity in prefrontal cortex (PFC) as a primary neural correlate, but emerging views suggest additional mechanisms may exist. We screened ∼200 genetically diverse mice on a working memory task and identified a genetic locus on chromosome 5 that contributes to a substantial proportion (17%) of the phenotypic variance. Within the locus, we identified a gene encoding an orphan G-protein-coupled receptor, Gpr12, which is sufficient to drive substantial and bidirectional changes in working memory. Molecular, cellular, and imaging studies revealed that Gpr12 enables high thalamus-PFC synchrony to support memory maintenance and choice accuracy. These findings identify an orphan receptor as a potent modifier of short-term memory and supplement classical PFC-based models with an emerging thalamus-centric framework for the mechanistic understanding of working memory.


Assuntos
Memória de Curto Prazo/fisiologia , Receptores Acoplados a Proteínas G/genética , Tálamo/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Receptores Acoplados a Proteínas G/metabolismo
4.
Annu Rev Neurosci ; 46: 233-258, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-36972611

RESUMO

Flexible behavior requires the creation, updating, and expression of memories to depend on context. While the neural underpinnings of each of these processes have been intensively studied, recent advances in computational modeling revealed a key challenge in context-dependent learning that had been largely ignored previously: Under naturalistic conditions, context is typically uncertain, necessitating contextual inference. We review a theoretical approach to formalizing context-dependent learning in the face of contextual uncertainty and the core computations it requires. We show how this approach begins to organize a large body of disparate experimental observations, from multiple levels of brain organization (including circuits, systems, and behavior) and multiple brain regions (most prominently the prefrontal cortex, the hippocampus, and motor cortices), into a coherent framework. We argue that contextual inference may also be key to understanding continual learning in the brain. This theory-driven perspective places contextual inference as a core component of learning.


Assuntos
Encéfalo , Aprendizagem , Hipocampo , Córtex Pré-Frontal , Simulação por Computador
5.
Physiol Rev ; 100(2): 805-868, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31804897

RESUMO

Sleep spindles are burstlike signals in the electroencephalogram (EEG) of the sleeping mammalian brain and electrical surface correlates of neuronal oscillations in thalamus. As one of the most inheritable sleep EEG signatures, sleep spindles probably reflect the strength and malleability of thalamocortical circuits that underlie individual cognitive profiles. We review the characteristics, organization, regulation, and origins of sleep spindles and their implication in non-rapid-eye-movement sleep (NREMS) and its functions, focusing on human and rodent. Spatially, sleep spindle-related neuronal activity appears on scales ranging from small thalamic circuits to functional cortical areas, and generates a cortical state favoring intracortical plasticity while limiting cortical output. Temporally, sleep spindles are discrete events, part of a continuous power band, and elements grouped on an infraslow time scale over which NREMS alternates between continuity and fragility. We synthesize diverse and seemingly unlinked functions of sleep spindles for sleep architecture, sensory processing, synaptic plasticity, memory formation, and cognitive abilities into a unifying sleep spindle concept, according to which sleep spindles 1) generate neural conditions of large-scale functional connectivity and plasticity that outlast their appearance as discrete EEG events, 2) appear preferentially in thalamic circuits engaged in learning and attention-based experience during wakefulness, and 3) enable a selective reactivation and routing of wake-instated neuronal traces between brain areas such as hippocampus and cortex. Their fine spatiotemporal organization reflects NREMS as a physiological state coordinated over brain and body and may indicate, if not anticipate and ultimately differentiate, pathologies in sleep and neurodevelopmental, -degenerative, and -psychiatric conditions.


Assuntos
Ondas Encefálicas , Encéfalo/fisiopatologia , Cognição , Doenças do Sistema Nervoso/fisiopatologia , Periodicidade , Fases do Sono , Transtornos do Sono-Vigília/fisiopatologia , Animais , Atenção , Encéfalo/metabolismo , Humanos , Inteligência , Memória , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/psicologia , Plasticidade Neuronal , Transtornos do Sono-Vigília/genética , Transtornos do Sono-Vigília/metabolismo , Transtornos do Sono-Vigília/psicologia , Fatores de Tempo
6.
Development ; 151(18)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39348458

RESUMO

The thalamus is organized into nuclei that have distinct input and output connectivities with the cortex. Whereas first-order (FO) nuclei - also called core nuclei - relay input from sensory organs on the body surface and project to primary cortical sensory areas, higher-order (HO) nuclei - matrix nuclei - instead receive their driver input from the cortex and project to secondary and associative areas within cortico-thalamo-cortical loops. Input-dependent processes have been shown to play a crucial role in the emergence of FO thalamic neuron identity from a ground-state HO neuron identity, yet how this identity emerges during development remains unknown. Here, using single-cell RNA sequencing of the developing mouse embryonic thalamus, we show that, although they are born together, HO neurons start differentiating earlier than FO neurons. Within the FO visual thalamus, postnatal peripheral input is crucial for the maturation of excitatory, but not inhibitory, neurons. Our findings reveal different differentiation tempos and input sensitivities of HO and FO neurons, and highlight neuron type-specific molecular differentiation programs in the developing thalamus.


Assuntos
Diferenciação Celular , Neurônios , Tálamo , Animais , Camundongos , Neurônios/metabolismo , Neurônios/citologia , Tálamo/embriologia , Tálamo/metabolismo , Neurogênese/genética , Neurogênese/fisiologia , Análise de Célula Única , Regulação da Expressão Gênica no Desenvolvimento , Feminino
7.
Proc Natl Acad Sci U S A ; 121(28): e2403763121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968111

RESUMO

Advancing the mechanistic understanding of absence epilepsy is crucial for developing new therapeutics, especially for patients unresponsive to current treatments. Utilizing a recently developed mouse model of absence epilepsy carrying the BK gain-of-function channelopathy D434G, here we report that attenuating the burst firing of midline thalamus (MLT) neurons effectively prevents absence seizures. We found that enhanced BK channel activity in the BK-D434G MLT neurons promotes synchronized bursting during the ictal phase of absence seizures. Modulating MLT neurons through pharmacological reagents, optogenetic stimulation, or deep brain stimulation effectively attenuates burst firing, leading to reduced absence seizure frequency and increased vigilance. Additionally, enhancing vigilance by amphetamine, a stimulant medication, or physical perturbation also effectively suppresses MLT bursting and prevents absence seizures. These findings suggest that the MLT is a promising target for clinical interventions. Our diverse approaches offer valuable insights for developing next generation therapeutics to treat absence epilepsy.


Assuntos
Modelos Animais de Doenças , Epilepsia Tipo Ausência , Animais , Epilepsia Tipo Ausência/fisiopatologia , Camundongos , Tálamo/fisiopatologia , Neurônios/metabolismo , Neurônios/fisiologia , Optogenética , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Estimulação Encefálica Profunda/métodos , Masculino , Núcleos da Linha Média do Tálamo/fisiologia
8.
Proc Natl Acad Sci U S A ; 121(11): e2316365121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38451949

RESUMO

Visceral signals are constantly processed by our central nervous system, enable homeostatic regulation, and influence perception, emotion, and cognition. While visceral processes at the cortical level have been extensively studied using non-invasive imaging techniques, very few studies have investigated how this information is processed at the single neuron level, both in humans and animals. Subcortical regions, relaying signals from peripheral interoceptors to cortical structures, are particularly understudied and how visceral information is processed in thalamic and subthalamic structures remains largely unknown. Here, we took advantage of intraoperative microelectrode recordings in patients undergoing surgery for deep brain stimulation (DBS) to investigate the activity of single neurons related to cardiac and respiratory functions in three subcortical regions: ventral intermedius nucleus (Vim) and ventral caudalis nucleus (Vc) of the thalamus, and subthalamic nucleus (STN). We report that the activity of a large portion of the recorded neurons (about 70%) was modulated by either the heartbeat, the cardiac inter-beat interval, or the respiration. These cardiac and respiratory response patterns varied largely across neurons both in terms of timing and their kind of modulation. A substantial proportion of these visceral neurons (30%) was responsive to more than one of the tested signals, underlining specialization and integration of cardiac and respiratory signals in STN and thalamic neurons. By extensively describing single unit activity related to cardiorespiratory function in thalamic and subthalamic neurons, our results highlight the major role of these subcortical regions in the processing of visceral signals.


Assuntos
Estimulação Encefálica Profunda , Núcleo Subtalâmico , Animais , Humanos , Tálamo/fisiologia , Neurônios/fisiologia , Microeletrodos
9.
EMBO J ; 41(24): e111648, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36341708

RESUMO

The ability to care for the young is innate and readily displayed by postpartum females after delivery to ensure offspring survival. Upon pup exposure, rodent virgin (nulliparous) females also develop parental behavior that over time becomes displayed at levels equivalent to parenting mothers. Although maternal behavior in postpartum females and the associated neurocircuits are well characterized, the neural mechanisms underlying the acquisition of maternal behavior without prior experience remain poorly understood. Here, we show that the development of maternal care behavior in response to first-time pup exposure in virgin females is initiated by the activation of the anterior cingulate cortex (ACC). ACC activity is dependent on feedback excitation by Vglut2+ /Galanin+ neurons of the centrolateral nucleus of the thalamus (CL), with their activity sufficient to display parenting behaviors. Accordingly, acute bidirectional chemogenetic manipulation of neuronal activity in the ACC facilitates or impairs the attainment of maternal behavior, exclusively in virgin females. These results reveal an ACC-CL neurocircuit as an accessory loop in virgin females for the initiation of maternal care upon first-time exposure to pups.


Assuntos
Comportamento Materno , Período Pós-Parto , Humanos , Animais , Camundongos , Feminino , Período Pós-Parto/fisiologia , Neurônios/fisiologia , Tálamo , Córtex Pré-Frontal , Comportamento Animal
10.
Annu Rev Neurosci ; 41: 163-183, 2018 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-29618284

RESUMO

The thalamus has long been suspected to have an important role in cognition, yet recent theories have favored a more corticocentric view. According to this view, the thalamus is an excitatory feedforward relay to or between cortical regions, and cognitively relevant computations are exclusively cortical. Here, we review anatomical, physiological, and behavioral studies along evolutionary and theoretical dimensions, arguing for essential and unique thalamic computations in cognition. Considering their architectural features as well as their ability to initiate, sustain, and switch cortical activity, thalamic circuits appear uniquely suited for computing contextual signals that rapidly reconfigure task-relevant cortical representations. We introduce a framework that formalizes this notion, show its consistency with several findings, and discuss its prediction of thalamic roles in perceptual inference and behavioral flexibility. Overall, our framework emphasizes an expanded view of the thalamus in cognitive computations and provides a roadmap to test several of its theoretical and experimental predictions.


Assuntos
Córtex Cerebral/fisiologia , Cognição/fisiologia , Modelos Neurológicos , Vias Neurais/fisiologia , Tálamo/fisiologia , Animais , Córtex Cerebral/anatomia & histologia , Simulação por Computador , Humanos , Vias Neurais/anatomia & histologia , Tálamo/anatomia & histologia
11.
Development ; 150(7)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37009986

RESUMO

Neural proliferation zones mediate brain growth and employ Delta/Notch signaling and HES/Her transcription factors to balance neural stem cell (NSC) maintenance with the generation of progenitors and neurons. We investigated Notch-dependency and function of her genes in the thalamic proliferation zone of zebrafish larvae. Nine Notch-dependent genes, her2, her4.1-4.5, her12, her15.1-15.2, and two Notch-independent genes, her6 and her9, are differentially expressed and define distinct NSC and progenitor populations. her6 prominently executes patterning information to maintain NSCs and the zona limitans intrathalamica Shh signaling activity. Surprisingly, simultaneous deletion of nine Notch-dependent her genes does not affect NSCs or progenitor formation, and her4 overexpression only caused reduction of ascl1b progenitors. Combined genetic manipulations of Notch-dependent and -independent her genes suggest that her6 in the thalamic proliferation zone prominently maintains NSCs and inhibits NSC-to-progenitor lineage transitions. The her gene network is characterized by redundant gene functions, with Notch-independent her genes better substituting for loss of Notch-dependent her genes than vice versa. Together, her gene regulatory feedback loops and cross-regulation contribute to the observed robustness of NSC maintenance.


Assuntos
Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco , Peixe-Zebra , Receptores Notch/genética , Receptores Notch/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Família Multigênica , Animais
12.
Proc Natl Acad Sci U S A ; 120(46): e2308670120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37939085

RESUMO

Understanding the neurobiological mechanisms underlying consciousness remains a significant challenge. Recent evidence suggests that the coupling between distal-apical and basal-somatic dendrites in thick-tufted layer 5 pyramidal neurons (L5PN), regulated by the nonspecific-projecting thalamus, is crucial for consciousness. Yet, it is uncertain whether this thalamocortical mechanism can support emergent signatures of consciousness, such as integrated information. To address this question, we constructed a biophysical network of dual-compartment thick-tufted L5PN, with dendrosomatic coupling controlled by thalamic inputs. Our findings demonstrate that integrated information is maximized when nonspecific thalamic inputs drive the system into a regime of time-varying synchronous bursting. Here, the system exhibits variable spiking dynamics with broad pairwise correlations, supporting the enhanced integrated information. Further, the observed peak in integrated information aligns with criticality signatures and empirically observed layer 5 pyramidal bursting rates. These results suggest that the thalamocortical core of the mammalian brain may be evolutionarily configured to optimize effective information processing, providing a potential neuronal mechanism that integrates microscale theories with macroscale signatures of consciousness.


Assuntos
Neurônios , Células Piramidais , Animais , Neurônios/fisiologia , Células Piramidais/fisiologia , Dendritos/fisiologia , Tálamo/fisiologia , Mamíferos
13.
J Neurosci ; 44(35)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39197951

RESUMO

The cerebral cortex contains multiple, distinct areas that individually perform specific computations. A particular strength of the cortex is the communication of signals between cortical areas that allows the outputs of these compartmentalized computations to influence and build on each other, thereby dramatically increasing the processing power of the cortex and its role in sensation, action, and cognition. Determining how the cortex communicates signals between individual areas is, therefore, critical for understanding cortical function. Historically, corticocortical communication was thought to occur exclusively by direct anatomical connections between areas that often sequentially linked cortical areas in a hierarchical fashion. More recently, anatomical, physiological, and behavioral evidence is accumulating indicating a role for the higher-order thalamus in corticocortical communication. Specifically, the transthalamic pathway involves projections from one area of the cortex to neurons in the higher-order thalamus that, in turn, project to another area of the cortex. Here, we consider the evidence for and implications of having two routes for corticocortical communication with an emphasis on unique processing available in the transthalamic pathway and the consequences of disorders and diseases that affect transthalamic communication.


Assuntos
Córtex Cerebral , Vias Neurais , Tálamo , Córtex Cerebral/fisiologia , Humanos , Animais , Tálamo/fisiologia , Vias Neurais/fisiologia
14.
J Neurosci ; 44(3)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37985179

RESUMO

Chronic opioid exposure induces tolerance to the pain-relieving effects of opioids but sensitization to some other effects. While the occurrence of these adaptations is well understood, the underlying cellular mechanisms are less clear. This study aimed to determine how chronic treatment with morphine, a prototypical opioid agonist, induced adaptations to subsequent morphine signaling in different subcellular contexts. Opioids acutely inhibit glutamatergic transmission from medial thalamic (MThal) inputs to the dorsomedial striatum (DMS) via activity at µ-opioid receptors (MORs). MORs are present in somatic and presynaptic compartments of MThal neurons terminating in the DMS. We investigated the effects of chronic morphine treatment on subsequent morphine signaling at MThal-DMS synapses and MThal cell bodies in male and female mice. Surprisingly, chronic morphine treatment increased subsequent morphine inhibition of MThal-DMS synaptic transmission (morphine facilitation) in male, but not female, mice. At MThal cell bodies, chronic morphine treatment decreased subsequent morphine activation of potassium conductance (morphine tolerance) in both male and female mice. In knock-in mice expressing phosphorylation-deficient MORs, chronic morphine treatment resulted in tolerance to, rather than facilitation of, subsequent morphine signaling at MThal-DMS terminals, suggesting phosphorylation deficiency unmasks adaptations that counter the facilitation observed at presynaptic terminals in wild-type mice. The results of this study suggest that the effects of chronic morphine exposure are not ubiquitous; rather adaptations in MOR function may be determined by multiple factors such as subcellular receptor distribution, influence of local circuitry, and sex.


Assuntos
Analgésicos Opioides , Morfina , Masculino , Feminino , Camundongos , Animais , Morfina/farmacologia , Analgésicos Opioides/farmacologia , Fosforilação , Transdução de Sinais , Receptores Opioides , Receptores Opioides mu/agonistas
15.
J Neurosci ; 44(24)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866538

RESUMO

In 1998, Jones suggested a classification of thalamocortical projections into core and matrix divisions (Jones, 1998). In this classification, core projections are specific, topographical, innervate middle cortical layers, and serve to transmit specific information to the cortex for further analysis; matrix projections, in contrast, are diffuse, much less topographic, innervate upper layers, especially Layer 1, and serve a more global, modulatory function, such as affecting levels of arousal. This classification has proven especially influential in studies of thalamocortical relationships. Whereas it may be the case that a clear subset of thalamocortical connections fit the core motif, since they are specific, topographic, and innervate middle layers, we argue that there is no clear evidence for any single class that encompasses the remainder of thalamocortical connections as is claimed for matrix. Instead, there is great morphological variation in connections made by thalamocortical projections fitting neither a core nor matrix classification. We thus conclude that the core/matrix classification should be abandoned, because its application is not helpful in providing insights into thalamocortical interactions and can even be misleading. As one example of the latter, recent suggestions indicate that core projections are equivalent to first-order thalamic relays (i.e., those that relay subcortical information to the cortex) and matrix to higher-order relays (i.e., those that relay information from one cortical area to another), but available evidence does not support this relationship. All of this points to a need to replace the core/matrix grouping with a more complete classification of thalamocortical projections.


Assuntos
Córtex Cerebral , Vias Neurais , Tálamo , Tálamo/fisiologia , Tálamo/anatomia & histologia , Córtex Cerebral/fisiologia , Córtex Cerebral/anatomia & histologia , Humanos , Animais , Vias Neurais/fisiologia , Vias Neurais/anatomia & histologia
16.
J Neurosci ; 44(3)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38050109

RESUMO

The human visual cortex processes light and dark stimuli with ON and OFF pathways that are differently modulated by luminance contrast. We have previously demonstrated that ON cortical pathways have higher contrast sensitivity than OFF cortical pathways and the difference increases with luminance range (defined as the maximum minus minimum luminance in the scene). Here, we demonstrate that these ON-OFF cortical differences are already present in the human retina and that retinal responses measured with electroretinography are more affected by reductions in luminance range than cortical responses measured with electroencephalography. Moreover, we show that ON-OFF pathway differences measured with electroretinography become more pronounced in myopia, a visual disorder that elongates the eye and blurs vision at far distance. We find that, as the eye axial length increases across subjects, ON retinal pathways become less responsive, slower in response latency, less sensitive, and less effective and slower at driving pupil constriction. Based on these results, we conclude that myopia is associated with a deficit in ON pathway function that decreases the ability of the retina to process low contrast and regulate retinal illuminance in bright environments.


Assuntos
Sensibilidades de Contraste , Miopia , Humanos , Retina/fisiologia , Visão Ocular , Eletrorretinografia , Estimulação Luminosa
17.
J Neurosci ; 44(19)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38561224

RESUMO

Coordinated neuronal activity has been identified to play an important role in information processing and transmission in the brain. However, current research predominantly focuses on understanding the properties and functions of neuronal coordination in hippocampal and cortical areas, leaving subcortical regions relatively unexplored. In this study, we use single-unit recordings in female Sprague Dawley rats to investigate the properties and functions of groups of neurons exhibiting coordinated activity in the auditory thalamus-the medial geniculate body (MGB). We reliably identify coordinated neuronal ensembles (cNEs), which are groups of neurons that fire synchronously, in the MGB. cNEs are shown not to be the result of false-positive detections or by-products of slow-state oscillations in anesthetized animals. We demonstrate that cNEs in the MGB have enhanced information-encoding properties over individual neurons. Their neuronal composition is stable between spontaneous and evoked activity, suggesting limited stimulus-induced ensemble dynamics. These MGB cNE properties are similar to what is observed in cNEs in the primary auditory cortex (A1), suggesting that ensembles serve as a ubiquitous mechanism for organizing local networks and play a fundamental role in sensory processing within the brain.


Assuntos
Estimulação Acústica , Corpos Geniculados , Neurônios , Ratos Sprague-Dawley , Animais , Feminino , Ratos , Neurônios/fisiologia , Corpos Geniculados/fisiologia , Estimulação Acústica/métodos , Vias Auditivas/fisiologia , Potenciais de Ação/fisiologia , Córtex Auditivo/fisiologia , Córtex Auditivo/citologia , Tálamo/fisiologia , Tálamo/citologia , Potenciais Evocados Auditivos/fisiologia
18.
J Neurosci ; 44(34)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-38926088

RESUMO

Current anesthetic theory is mostly based on neurons and/or neuronal circuits. A role for astrocytes also has been shown in promoting recovery from volatile anesthesia, while the exact modulatory mechanism and/or the molecular target in astrocytes is still unknown. In this study by animal models in male mice and electrophysiological recordings in vivo and in vitro, we found that activating astrocytes of the paraventricular thalamus (PVT) and/or knocking down PVT astrocytic Kir4.1 promoted the consciousness recovery from sevoflurane anesthesia. Single-cell RNA sequencing of the PVT reveals two distinct cellular subtypes of glutamatergic neurons: PVT GRM and PVT ChAT neurons. Patch-clamp recording results proved astrocytic Kir4.1-mediated modulation of sevoflurane on the PVT mainly worked on PVT ChAT neurons, which projected mainly to the mPFC. In summary, our findings support the novel conception that there is a specific PVT→prefrontal cortex projection involved in consciousness recovery from sevoflurane anesthesia, which is mediated by the inhibition of sevoflurane on PVT astrocytic Kir4.1 conductance.


Assuntos
Astrócitos , Estado de Consciência , Núcleos da Linha Média do Tálamo , Canais de Potássio Corretores do Fluxo de Internalização , Sevoflurano , Animais , Astrócitos/fisiologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Masculino , Camundongos , Sevoflurano/farmacologia , Estado de Consciência/fisiologia , Estado de Consciência/efeitos dos fármacos , Núcleos da Linha Média do Tálamo/fisiologia , Núcleos da Linha Média do Tálamo/efeitos dos fármacos , Núcleos da Linha Média do Tálamo/citologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Camundongos Endogâmicos C57BL , Anestésicos Inalatórios/farmacologia , Vias Neurais/fisiologia , Vias Neurais/efeitos dos fármacos , Neurônios/fisiologia , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Lobo Frontal/fisiologia , Lobo Frontal/efeitos dos fármacos , Período de Recuperação da Anestesia
19.
J Neurosci ; 44(10)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38286624

RESUMO

Navigating a complex world requires integration of multiple spatial reference frames, including information about one's orientation in both allocentric and egocentric coordinates. Combining these two information sources can provide additional information about one's spatial location. Previous studies have demonstrated that both egocentric and allocentric spatial signals are reflected by the firing of neurons in the rat postrhinal cortex (POR), an area that may serve as a hub for integrating allocentric head direction (HD) cell information with egocentric information from center-bearing and center-distance cells. However, we have also demonstrated that POR HD cells are uniquely influenced by the visual properties and locations of visual landmarks, bringing into question whether the POR HD signal is truly allocentric as opposed to simply being a response to visual stimuli. To investigate this issue, we recorded HD cells from the POR of female rats while bilaterally inactivating the anterior thalamus (ATN), a region critical for expression of the "classic" HD signal in cortical areas. We found that ATN inactivation led to a significant decrease in both firing rate and tuning strength for POR HD cells, as well as a disruption in the encoding of allocentric location by conjunctive HD/egocentric cells. In contrast, POR egocentric cells without HD tuning were largely unaffected in a consistent manner by ATN inactivation. These results indicate that the POR HD signal originates at least partially from projections from the ATN and supports the view that the POR acts as a hub for the integration of egocentric and allocentric spatial representations.


Assuntos
Núcleos Anteriores do Tálamo , Ratos , Feminino , Animais , Orientação/fisiologia , Percepção Espacial/fisiologia
20.
J Neurosci ; 44(10)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38326037

RESUMO

The inferior colliculus (IC) represents a crucial relay station in the auditory pathway, located in the midbrain's tectum and primarily projecting to the thalamus. Despite the identification of distinct cell classes based on various biomarkers in the IC, their specific contributions to the organization of auditory tectothalamic pathways have remained poorly understood. In this study, we demonstrate that IC neurons expressing parvalbumin (ICPV+) or somatostatin (ICSOM+) represent two minimally overlapping cell classes throughout the three IC subdivisions in mice of both sexes. Strikingly, regardless of their location within the IC, these neurons predominantly project to the primary and secondary auditory thalamic nuclei, respectively. Cell class-specific input tracing suggested that ICPV+ neurons primarily receive auditory inputs, whereas ICSOM+ neurons receive significantly more inputs from the periaqueductal gray and the superior colliculus (SC), which are sensorimotor regions critically involved in innate behaviors. Furthermore, ICPV+ neurons exhibit significant heterogeneity in both intrinsic electrophysiological properties and presynaptic terminal size compared with ICSOM+ neurons. Notably, approximately one-quarter of ICPV+ neurons are inhibitory neurons, whereas all ICSOM+ neurons are excitatory neurons. Collectively, our findings suggest that parvalbumin and somatostatin expression in the IC can serve as biomarkers for two functionally distinct, parallel tectothalamic pathways. This discovery suggests an alternative way to define tectothalamic pathways and highlights the potential usefulness of Cre mice in understanding the multifaceted roles of the IC at the circuit level.


Assuntos
Colículos Inferiores , Parvalbuminas , Feminino , Masculino , Camundongos , Animais , Parvalbuminas/metabolismo , Colículos Inferiores/fisiologia , Neurônios/fisiologia , Vias Auditivas/fisiologia , Somatostatina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa