Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 524
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunopharmacol Immunotoxicol ; 45(2): 172-184, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36154797

RESUMO

OBJECTIVE: The level of precursors involved in the biosynthesis of glycosaminoglycan (GAG), glucosamine synthase, and N-acetyl glucosamine (NAG), are significantly reduced in inflammatory bowel disease (IBD). This results in deficient GAG content in mucosa, which eventually disrupt the gut wall integrity, provoking abnormal immunological responses. This is characterized by colossal liberation of inflammatory mediators including tumor necrosis factor-alpha (TNF-α), interleukins (ILs), and reactive oxygen species (ROS) provoking colonic inflammation. D-glucosamine (D-GLU) is reported to suppress oxidative stress, and pro-inflammatory cytokines and acts as a starting material for biosynthesis of NAG. The potential of D-GLU and its combination with mesalamine (5-ASA) was investigated in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-instigated IBD in Wistar rats. MATERIALS AND METHODS: Standard and test drugs were given orally for 5 d to separate groups of rats. Colonic inflammation was evaluated by disease activity score rate (DASR), colon/body weight ratio, colon length, diameter, colon pH, histological injury, and score. Inflammatory biomarkers IL-1ß, TNF-α, along with reduced glutathione (GSH), and malondialdehyde (MDA) were assessed. RESULTS: Combination of D-GLU + 5-ASA significantly ameliorated severity of colonic inflammation by lowering DASR (p < 0.001) and colon/body weight ratio (p < 0.001), restored the colonic architecture and suppressed the histopathological score (p < 0.001), along with the absence of major adverse reactions. The combination suppressed the levels of inflammatory markers (p < 0.001) and MDA (p < 0.001) while enhancing GSH level (p < 0.001). CONCLUSION: In comparison to individual 5-ASA and D-GLU, combination of drugs significantly diminished colitis severity through their combined anti-inflammatory and antioxidant effects by acting on multiple targets simultaneously. The combination holds remarkable potential in the management of IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Ratos , Animais , Fator de Necrose Tumoral alfa/farmacologia , Ácido Trinitrobenzenossulfônico/toxicidade , Ratos Wistar , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/prevenção & controle , Colo/patologia , Mesalamina/efeitos adversos , Inflamação/patologia , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Anti-Inflamatórios/farmacologia , Suplementos Nutricionais , Glucosamina/efeitos adversos , Glutationa/farmacologia , Peso Corporal
2.
Biotechnol Lett ; 44(11): 1263-1275, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36261682

RESUMO

OBJECTIVES: Bone marrow-derived mesenchymal stem cells (BMSCs) show promise in treating inflammatory bowel disease. We tested if BMSCs improve Trinitro-benzene-sulfonic acid (TNBS)-induced colitis by inducing Treg differentiation by modulating programmed cell death 1 ligand 1(PD-L1). RESULTS: BMSCs were isolated and transfected with PD-L1 siRNA. Sprague-Dawley rats were randomly divided into 4 groups: normal, model, BMSC control, and PD-L1 siRNA BMSC. Colitis was induced by TNBS, except in the normal group. On d4, the BMSC control and PD-L1 siRNA BMSC groups were intravenously injected with BMSCs at a dose of 5 × 106 cells in phosphate-buffered saline (PBS; volume matched). BMSCs were later verified to have reached the colon tissue. BMSC control showed significantly better clinical symptoms and reduced histopathological colitis severity; PD-L1 siRNA BMSC group showed no difference. PD-L1 siRNA reduced: spleen and mesenteric lymph node Tregs, PD-L1, interleukin-10 (IL10), phosphate and tension homology deleted on chromosome ten (PTEN); colon p-Akt and p-mTOR were increased. CONCLUSIONS: We found that BMSCs can induce Treg differentiation by inhibiting the Akt/mTOR pathway via PD-L1; this significantly improved symptoms and pathology in our ulcerative colitis rat models.


Assuntos
Colite , Transplante de Células-Tronco Mesenquimais , Ratos , Animais , Ácido Trinitrobenzenossulfônico/toxicidade , Antígeno B7-H1/genética , Linfócitos T Reguladores , RNA Interferente Pequeno , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Colite/induzido quimicamente , Colite/terapia , Serina-Treonina Quinases TOR , Fosfatos/efeitos adversos , Células da Medula Óssea , Diferenciação Celular
3.
Immunopharmacol Immunotoxicol ; 44(6): 1044-1057, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35848944

RESUMO

BACKGROUND: Opioid prescription for inflammatory bowel disease (IBD)-related pain is on the rise. However, the use of strong opioids can result in severe complications, and even death, in IBD patients. This study aimed to define the role of fentanyl and morphine, two representative strong opioids, in the pathogenesis of dextran sodium sulfate (DSS)- and 2,4,6-trinitrobenzenesulfonic acid solution (TNBS)-induced colitis. METHOD: DSS and TNBS models were induced in C57BL/6J and Balb/c mice, respectively. Disease activity index (DAI), histopathology, enzyme-linked immunosorbent assay (ELISA), multiplex ELISA, and flow cytometry were performed to evaluate the effects of fentanyl and morphine. RESULT: Fentanyl exacerbated DSS- and TNBS-induced colitis, while morphine exhibited no significant immunomodulatory effect. Fentanyl and morphine had no obvious effects on the serum levels of adrenocorticotropic hormone (ACTH), glucocorticoid (GC), and prostaglandin E2 (PGE-2) in DSS and TNBS models. Fentanyl elevated the proportions of Th1 cells, µ-opioid receptor (MOR) + Th1 cells, and MOR + macrophages in the colonic mucosa of DSS-treated mice, and enhanced the proportions of Th1 cells, macrophages, MOR + Th1 cells, and MOR + macrophages in the colonic mucosa of TNBS-treated mice. We found that fentanyl upregulated the levels of inflammatory cytokines/chemokines in MOR + macrophages of the colonic lamina propria mononuclear cells (LPMCs) from DSS-treated mice, whereas it had no effect on the expression of most inflammatory cytokines/chemokines in MOR + macrophages in the colonic LPMCs from TNBS-treated mice. CONCLUSION: Our findings suggest that fentanyl exacerbates murine colitis via Th1 cell- and macrophage-mediated mechanisms, while morphine exhibits no significant immunomodulatory effect.


Assuntos
Fentanila , Morfina , Camundongos , Animais , Ácido Trinitrobenzenossulfônico/toxicidade , Fentanila/farmacologia , Camundongos Endogâmicos C57BL , Morfina/farmacologia
4.
Immunopharmacol Immunotoxicol ; 44(3): 373-386, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35254187

RESUMO

Aim: Ulcerative colitis (UC) is a chronic inflammatory bowel disease that disturbs the colon mucosal lining and is characterized by oxido-nitrosative stress and the release of pro-inflammatory cytokines. Naringin (NG) belongs to a group of chemicals called bioflavonoids derived from grapefruit and related citrus species. NG has been widely used as folk medicine in many countries, due to its several health benefits.Method: This study examined the effect of NG on 2,4,6 trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats. Forty-two male Wistar rats were divided into seven groups like Normal Control (NC), Ethanol Control (EC), Disease Control (DC), NG 20 (20 mg/kg, p.o.), NG 40 (40 mg/kg, p.o.), NG 80 (80 mg/kg, p.o.), and Dexamethasone (DEX) (2 mg/kg, p.o.). Colitis was induced in Wistar albino rats by administering TNBS intra-rectally (in 50% ethanol). The rats were then given 14 days of NG (20, 40, and 80 mg/kg) and DEX (2 mg/kg) treatment. Several behavioral, biochemical, molecular, and histological analyses were performed.Result: The treatment of rats with NG significantly increased the body weight (p < .05, p < .01), hematological parameters like hemoglobin (p < .05, p < .01, p < .001), red blood cells (p < .01, p < .001), and platelets count (p < .01, p < .001) and decreased in spleen weight (p < .01, p < .001), colon weight (p < .01, p < .001), colon weight to length ratio (p < .05, p < .01, p < .001), macroscopic score (p < .01, p < .001), adhesion score (p < .01, p < .001), diarrhea score (p < .05, p < .001), stool consistency (p < .01, p < .001), rectal bleeding score (p < .05, p < .01, p < .001), white blood cells count (p < .01, p < .001). NG significantly (p < .01, p < .001) increased colonic superoxide, glutathione, and catalase levels and decreased malondialdehyde and myeloperoxidase levels. It also significantly (p < .01, p < .001) decreased the biochemical parameters, proinflammatory cytokines and reduced the histological damage in the colon tissue caused by TNBS.Conclusion: Our results demonstrated that NG treatment attenuated pathologic changes of TNBS-induced colitis in rats through restoring colonic damage and reducing inflammatory response in the colon tissue. Thus, NG might be considered as an effective candidate for the treatment of UC patients.


Assuntos
Colite Ulcerativa , Colite , Animais , Antioxidantes/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/prevenção & controle , Colite Ulcerativa/induzido quimicamente , Colo/patologia , Citocinas/farmacologia , Modelos Animais de Doenças , Etanol/farmacologia , Flavanonas , Humanos , Masculino , Peroxidase , Ratos , Ratos Wistar , Ácido Trinitrobenzenossulfônico/toxicidade
5.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36012618

RESUMO

Crohn's disease (CD) and ulcerative colitis (UC) are both highly inflammatory diseases of the gastrointestinal tract, collectively known as inflammatory bowel disease (IBD). Although the cause of IBD is still unclear, several experimental IBD murine models have enabled researchers to make great inroads into understanding human IBD pathology. Here, we discuss the current pre-clinical experimental murine models for human IBD, including the chemical-induced trinitrobenzene sulfonic acid (TNBS) model, oxazolone and dextran sulphate sodium (DSS) models, the gene-deficient I-kappa-B kinase gamma (Iκκ-γ) and interleukin(IL)-10 models, and the CD4+ T-cell transfer model. We offer a comprehensive review of how these models have been used to dissect the etiopathogenesis of disease, alongside their limitations. Furthermore, the way in which this knowledge has led to the translation of experimental findings into novel clinical therapeutics is also discussed.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Doença Crônica , Colite/induzido quimicamente , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Humanos , Doenças Inflamatórias Intestinais/induzido quimicamente , Camundongos , Ácido Trinitrobenzenossulfônico/toxicidade
6.
Am J Physiol Gastrointest Liver Physiol ; 321(2): G157-G170, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34132111

RESUMO

The role of leptin in the development of intestinal inflammation remains controversial, since proinflammatory and anti-inflammatory effects have been described. This study describes the effect of the absence of leptin signaling in intestinal inflammation. Experimental colitis was induced by intrarectal administration of trinitrobenzene sulfonic acid (TNBS) to lean and obese Zucker rats (n = 10). Effects on inflammation and mucosal barrier were studied. Bacterial translocation and LPS concentration were evaluated together with colonic permeability to 4-kDa FITC-dextran. Obese Zucker rats showed a lower intestinal myeloperoxidase and alkaline phosphatase activity, reduced alkaline phosphatase sensitivity to levamisole, and diminished colonic expression of Nos2, Tnf, and Il6, indicating attenuated intestinal inflammation, associated with attenuated STAT3, AKT, and ERK signaling in the colonic tissue. S100a8 and Cxcl1 mRNA levels were maintained, suggesting that in the absence of leptin signaling neutrophil activation rather than infiltration is hampered. Despite the lower inflammatory response, leptin resistance enhanced intestinal permeability, reflecting an increased epithelial damage. This was shown by augmented LPS presence in the portal vein of colitic obese Zucker rats, associated with induction of tissue nonspecific alkaline phosphatase, LPS-binding protein, and CD14 hepatic expression (involved in LPS handling). This was linked to decreased ZO-1 immunoreactivity in tight junctions and lower occludin expression. Our results indicate that obese Zucker rats present an attenuated inflammatory response to TNBS, but increased intestinal epithelial damage allowing the passage of bacterial antigens.NEW & NOTEWORTHY Obese Zucker rats, which are resistant to leptin, exhibit a diminished inflammatory response in the trinitrobenzenesulfonic acid (TNBS) model of colitis, suggesting leptin role is proinflammatory. At the same time, obese Zucker rats present a debilitated intestinal barrier function, with increased translocation of LPS. Zucker rats present a dual response in the TNBS model of rat colitis.


Assuntos
Colite Ulcerativa/metabolismo , Mucosa Intestinal/metabolismo , Leptina/metabolismo , Lipopolissacarídeos/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Calgranulina A/metabolismo , Quimiocina CXCL1/metabolismo , Colite Ulcerativa/etiologia , Colite Ulcerativa/patologia , Interleucina-6/genética , Interleucina-6/metabolismo , Absorção Intestinal , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Sistema de Sinalização das MAP Quinases , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Peroxidase/metabolismo , Ratos , Ratos Zucker , Receptores para Leptina/deficiência , Receptores para Leptina/genética , Fator de Transcrição STAT3/metabolismo , Proteínas de Junções Íntimas/metabolismo , Ácido Trinitrobenzenossulfônico/toxicidade , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
7.
Am J Pathol ; 190(9): 1843-1858, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32479820

RESUMO

The progression of Crohn disease to intestinal stricture formation is poorly controlled, and the pathogenesis is unclear, although increased smooth muscle mass is present. A previously described rat model of trinitrobenzenesulfonic acid-induced colitis is re-examined here. Although inflammation of the mid-descending colon typically resolved, a subset showed characteristic stricturing by day 16, with an inflammatory infiltrate in the neuromuscular layers including eosinophils, CD3-positive T cells, and CD68-positive macrophages. Closer study identified CD163-positive, CD206-positive, and arginase-positive cells, indicating a M2 macrophage phenotype. Stricturing involved ongoing proliferation of intestinal smooth muscle cells (ISMC) with expression of platelet-derived growth factor receptor beta and progressive loss of phenotypic markers, and stable expression of hypoxia inducible factor 1 subunit alpha. In parallel, collagen I and III showed a selective and progressive increase over time. A culture model of the stricture phenotype of ISMC showed stable hypoxia inducible factor 1 subunit alpha expression that promoted growth and improved both survival and growth in models of experimental ischemia. This phenotype was hyperproliferative to serum and platelet-derived growth factor BB, and unresponsive to transforming growth factor beta, a prominent cytokine of M2 macrophages, compared with control ISMC. We identified a hyperplastic phenotype of ISMC, uniquely adapted to an ischemic environment to drive smooth muscle layer expansion, which may reveal new targets for treating intestinal fibrosis.


Assuntos
Doença de Crohn/patologia , Intestinos/patologia , Macrófagos/metabolismo , Músculo Liso/patologia , Animais , Constrição Patológica/induzido quimicamente , Constrição Patológica/patologia , Hiperplasia/induzido quimicamente , Hiperplasia/metabolismo , Hiperplasia/patologia , Músculo Liso/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fenótipo , Ratos , Ratos Sprague-Dawley , Ácido Trinitrobenzenossulfônico/toxicidade
8.
J Biochem Mol Toxicol ; 35(5): e22730, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33522063

RESUMO

Ulcerative colitis is an autoimmune inflammatory disorder with a negative impact on the life quality of patients. Cinnamaldehyde and hesperetin were chosen due to their antioxidants and anti-inflammatory effects. This study explored the protective effects of cinnamaldehyde (40 and 90 mg/kg, po) and hesperetin (50 and 100 mg/kg, po) on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced ulcerative colitis in rats. Cinnamaldehyde and hesperetin significantly improved macroscopic and histopathological examinations with a significant reduction in myeloperoxidase and intracellular adhesion molecule-1 expression. They significantly reduced colon oxidative stress by a significant elevation in both reduced glutathione content and superoxide dismutase activity with a significant reduction of NO content. Furthermore, cinnamaldehyde and hesperetin alleviated the inflammatory injury by a significant reduction in interleukin-6 along with suppression of nuclear factor-κB, receptor for advanced glycation end products, and tumor necrosis factor-α expression. Moreover, cinnamaldehyde and hesperetin significantly decreased p-JAK2 and p-STAT3 while significantly increased suppressors of cytokine signaling 3 (SOCS3) protein expression. In conclusion, cinnamaldehyde and hesperetin counteracted TNBS-induced ulcerative colitis through antioxidant, anti-inflammatory properties as well as modulation of the JAk2/STAT3/SOCS3 pathway.


Assuntos
Acroleína/análogos & derivados , Colite Ulcerativa , Hesperidina/farmacologia , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Ácido Trinitrobenzenossulfônico/toxicidade , Acroleína/farmacologia , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Masculino , Ratos , Ratos Wistar
9.
Dig Dis Sci ; 66(10): 3375-3390, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33184797

RESUMO

BACKGROUND AND AIMS: DNA damage-regulated autophagy modulator 1 (DRAM1) is required for induction of autophagy and apoptosis. However, the influence of DRAM1 on the pathogenesis of inflammatory bowel disease (IBD) has not been explored. METHODS: DRAM1 expression was examined in the intestinal mucosa of patients with IBD and colons of colitis mice. We used a recombinant adeno-associated virus carrying small hairpain DRAM1 to knock down the DRAM1 gene to treat colitis in the mice. The effect of DRAM1 on autophagy and apoptosis of intestinal epithelial cells was explored. DRAM1-mediated interaction with the c-Jun N-terminal kinase (JNK) pathway was also examined. RESULTS: DRAM1 expression in the intestinal mucosa of the IBD patients was higher than that in the control participates. DRAM1 expression in the inflammatory cells in patients with Crohn's disease (CD) was lower than that in patients with ulcerative colitis (UC). Additionally, DRAM1 expression was correlated with the Simple Endoscopic Score for CD and the Mayo endoscopic score for UC. Serum levels of DRAM1 in the IBD group were substantially higher than those in the normal group. The knockdown of DRAM1 could alleviate colitis symptoms in mice. In in vitro experiments, knocking down DRAM1 could reduce autophagy and apoptosis levels. Mechanistically, DRAM1 may participate in the regulation of these two processes by positively regulating JNK activation. CONCLUSIONS: During intestinal inflammation, the upregulation of DRAM1 may promote the activation of JNK and further aggravate intestinal epithelium damage.


Assuntos
Colite/induzido quimicamente , Células Epiteliais/efeitos dos fármacos , Doenças Inflamatórias Intestinais/metabolismo , Proteínas de Membrana/metabolismo , Adolescente , Adulto , Idoso , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Criança , Colite/metabolismo , Sulfato de Dextrana/toxicidade , Feminino , Humanos , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/citologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Ácido Trinitrobenzenossulfônico/toxicidade , Regulação para Cima , Adulto Jovem
10.
Immunopharmacol Immunotoxicol ; 43(2): 160-170, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33435764

RESUMO

OBJECTIVE: Ulcerative colitis is common types of severe, progressive, idiopathic inflammatory bowel disease that involves the mucosal lining of the large intestine. The purpose of the study is to explore the effects of hecogenin in TNBS (2, 4, 6- trinitrobenzene sulfonic acid) induced ulcerative colitis model in rats. MATERIAL AND METHODS: Thirty Wistar rats were randomized into five groups: (i) Normal Control (NC), (ii) Disease Control (DC), (iii) Hecogenin (HG) (50 µg/rat), (iv) Fluticasone (FC) (50 µg/rat), (v) Hecogenin + Fluticasone (HG + FC) combination (25 µg/rat). Colitis was induced by trans-rectal administration of TNBS using a catheter inserted 8 cm into the rectal portion of the rat. Colitis was evaluated by an independent observer who was blinded to the treatment. All treatment group results were compared to the TNBS group results. RESULTS: The study results revealed that treatment of rats with HG and HG + FC significantly improved the body weight and colon length whereas; decreased the spleen weight, colon weight/length ratio, macroscopic lesions score, diarrhea score and adhesion score. The drug treatment in rats substantially decreased the development of inflammatory cytokines, levels of serum immunoglobulin E, colonic nitric oxide contents and restoration of antioxidant stress markers. Histopathological colon sample study significantly reduced colonic inflammation with a substantial decrease in inflammation score. CONCLUSION: Thus, HG and HG + FC combination could change the pathogenesis of the disease and may be a potential therapeutic target for the treatment of ulcerative colitis by a reduction in dose in conjunction with FC to prevent the persistent adverse effects associated with FC.


Assuntos
Colite Ulcerativa/prevenção & controle , Regulação para Baixo/efeitos dos fármacos , Fluticasona/administração & dosagem , Mediadores da Inflamação/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Sapogeninas/administração & dosagem , Animais , Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/metabolismo , Regulação para Baixo/fisiologia , Quimioterapia Combinada , Feminino , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Ácido Trinitrobenzenossulfônico/toxicidade
11.
Chem Biodivers ; 18(8): e2001001, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34156157

RESUMO

The present study aimed to explore the therapeutic effects of the main active ingredients of Atractylodes macrocephala on the 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced mouse colitis model. TNBS-induced colitis was established in mice, which were treated with 8-ß-Hydroxyasterolide (Atractylenolide III) for 14 days. The body weight of the mice in the middle and high dose groups of Atractylenolide III was increased compared with that of the model group. The disease activity index score was significantly reduced. The activity levels of myeloperoxidase were significantly decreased following increase in the dosage of Atractylenolide III, as determined by histological analysis. Moreover, Atractylenolide III downregulated the expression levels of the inflammatory factors interleukin-1ß and tumor necrosis factor-α, and greatly suppressed the levels of the pro-oxidant markers, reactive oxygen species and malondialdehyde, while enhancing the expression levels of the antioxidant enzymes catalase, superoxide dismutase and glutathione peroxidase. The protein expression levels of formyl peptide receptor 1 (FPR1) and nuclear respiratory factor 2 (Nrf2) were upregulated in the colonic tissues of TNBS-treated mice. This effect was effectively reversed by Atractylenolide III treatment. In vivo studies indicated that TNBS alone induced a decrease in the abundance of lactobacilli and in the biodiversity of the colon. In conclusion, the present study suggested that Atractylenolide III attenuated TNBS-induced acute colitis by regulating oxidative stress via the FPR1 and Nrf2 pathways and by affecting the development of intestinal flora.


Assuntos
Anti-Inflamatórios/uso terapêutico , Colite/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Lactonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Sesquiterpenos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Colite/induzido quimicamente , Colite/patologia , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Interleucina-1beta/metabolismo , Lactonas/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Ácido Trinitrobenzenossulfônico/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos
12.
Immunopharmacol Immunotoxicol ; 43(5): 571-583, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34338577

RESUMO

BACKGROUND: Ulcerative colitis (UC) is a chronic inflammatory bowel condition considered by oxido-nitrosative stress and the release of pro-inflammatory cytokines that affects the mucosal lining of the colon. Sarsasapogenin (SG), as an active component, has been found in many plants, and it exhibits potential protective effects, such as anti-inflammatory, antioxidant, anti-psoriasis, anti-arthritis, anti-asthma, anti-depressant and anti-cancer. However, the effects of SG on UC remain unknown. OBJECTIVE: The purpose of this study was to investigate the effects of SG on 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced UC in rats. METHOD: Thirty Wistar rats were randomized into five groups: (i) Normal control, (ii) Disease control (TNBS), (iii) Sarsasapogenin (SG) (50 µg/rat), (iv) Fluticasone (FC) (50 µg/rat), (v) Sarsasapogenin + Fluticasone (SG + FC) (25 µg/rat). UC was induced in rats by trans-rectal instillation of TNBS (10 mg/kg). SG, FC and SG + FC were administered for 11 days and on the 8th day colitis was induced. Several molecular, biochemical and histological alterations were evaluated in the colon tissue. All treatment group results were compared to the TNBS group results. RESULT: The study results revealed that treatment of rats with SG and SG + FC combination significantly decreased the colon weight/length ratio, macroscopic inflammation score, lesions score, diarrhea score and adhesion score. Combination treatment in rats significantly reduced the production of biochemical parameters, proinflammatory cytokines, haematological parameters, serum IgE levels and restored the oxidative stress markers. SG and SG + FC treatment also considerably restored the histopathological changes induced by TNBS. CONCLUSION: Thus, SG and SG + FC combination could alter the disease progression and could be a hopeful therapeutic target for the management of UC by reducing its dose in combination with FC to elude the long term adverse effects of FC.


Assuntos
Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/prevenção & controle , Mediadores da Inflamação/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Espirostanos/uso terapêutico , Ácido Trinitrobenzenossulfônico/toxicidade , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Colite Ulcerativa/metabolismo , Citoproteção/efeitos dos fármacos , Citoproteção/fisiologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Mediadores da Inflamação/metabolismo , Masculino , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Espirostanos/farmacologia
13.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34884536

RESUMO

Inflammatory bowel diseases (IBD) are chronic, immune-mediated disorders, which affect the gastrointestinal tract with intermittent ulceration. It is increasingly clear that neutrophil extracellular traps (NETs) seem to have a role in IBD; however, the associated pathogenesis is still not known. Furthermore, several conventional therapies are available against IBD, although these might have side effects. Our current study aimed to investigate the effects of hydrogen sulfide (H2S) treatment on NETs formation and on the expression of inflammatory mediators in experimental rat colitis. To model IBD, 2,4,6-trinitrobenzenesulfonic acid (TNBS) was administered intracolonically (i.c.) to Wistar-Harlan male rats. Animals were treated (2 times/day) with H2S donor Lawesson's reagent per os. Our results showed that H2S treatment significantly decreased the extent of colonic lesions. Furthermore, the expression of members of NETs formation: peptidyl arginine deiminase 4 (PAD4), citrullinated histone H3 (citH3), myeloperoxidase (MPO) and inflammatory regulators, such as nuclear transcription factor-kappa B (NF-κB) and high-mobility group box 1 (HMGB1) were reduced in H2S treated group compared to TNBS. Additionally, H2S donor administration elevated the expression of ubiquitin C-terminal hydroxylase L1 (UCHL-1), a potential anti-inflammatory mediator. Taken together, our results showed that H2S may exert anti-inflammatory effect through the inhibition of NETs formation, which suggests a new therapeutic approach against IBD.


Assuntos
Anti-Inflamatórios/farmacologia , Colite/tratamento farmacológico , Armadilhas Extracelulares/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , NF-kappa B/metabolismo , Ácido Trinitrobenzenossulfônico/toxicidade , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Gasotransmissores/farmacologia , Mediadores da Inflamação/metabolismo , Masculino , NF-kappa B/genética , Ratos , Ratos Wistar , Transdução de Sinais
14.
Am J Physiol Gastrointest Liver Physiol ; 318(4): G624-G634, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32068444

RESUMO

Sacral nerve stimulation (SNS) was reported to improve 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis in rats. The aim of this study was to investigate whether the SNS anti-inflammatory effect is mediated via the local sacral splanchnic nerve or the spinal afferent-vagal efferent-colon pathway. Under general anesthesia, rats were administrated with TNBS intrarectally, and bipolar SNS electrodes were implanted unilaterally at S3. The sacral and vagal nerves were severed at different locations for the assessment of the neural pathway. SNS for 10 days improved colonic inflammation only in groups with intact afferent sacral nerve and vagus efferent nerve. SNS markedly increased acetylcholine and anti-inflammatory cytokines (IL-10) and decreased myeloperoxidase and proinflammatory cytokines (IL-2, IL-17A, and TNF-α) in colon tissues. SNS increased the number of c-fos-positive cells in the brain stem and normalized vagal activity measured by spectral analysis of heart rate variability. SNS exerts an anti-inflammatory effect on TNBS-induced colitis by enhancing vagal activity mediated mainly via the spinal afferent-brain stem-vagal efferent-colon pathway.NEW & NOTEWORTHY Our findings support that there is a possible sacral afferent-vagal efferent pathway that can transmit sacral nerve stimulation to the colon tissue. Sacral nerve stimulation can be carried out by spinal cord afferent to the brain stem and then by the vagal nerve (efferent) to the target organ.


Assuntos
Vias Eferentes/fisiologia , Inflamação/terapia , Sacro/inervação , Nervos Espinhais/fisiologia , Nervo Vago/fisiologia , Animais , Colite/induzido quimicamente , Masculino , Ratos , Ratos Sprague-Dawley , Ácido Trinitrobenzenossulfônico/toxicidade
15.
FASEB J ; 33(12): 13560-13571, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31570003

RESUMO

So far, a comprehensive animal model that can mimic both the central and peripheral pathophysiological changes of irritable bowel syndrome (IBS) is lacking. Here, we developed a novel IBS rat model combining trinitro-benzene-sulfonic acid (TNBS) and chronic unpredictable mild stress (CUMS) (designated as TC-IBS) and compared it with the TNBS-induced and CUMS-induced models. TC-IBS showed a pronounced depression phenotype with increased corticotropin-releasing hormone receptor (CRHR)1 and CRHR2 expression at the frontal cortex and increased serum ACTH concentration. Visceral hypersensitivity (VH), as evidenced by colorectal distention (CRD) test, was highest in TC-IBS, accompanied by increased serum 5-hydroxytryptamine (5-HT) level and colonic 5-HT receptor 3A (5-HT3AR)/5-HT receptor 2B expression, impaired tight junction protein expression including occludin, zonula occludens-1, and phosphorylated myosin light chain. Palonosetron, a second generation of 5-HT3AR antagonist, alleviated VH significantly in TC-IBS. 16S rRNA sequencing showed that TNBS plus CUMS induced a significant disturbance of the gut microbiota. Cytokine profile analysis of TC-IBS model indicated an innate immune activation both in serum and colonic mucosa. Further, fecal microbiota transplantation improved VH and some pathophysiological changes in TC-IBS. In summary, we established a postinflammatory IBS model covering multifactorial pathophysiological changes, which may help to develop therapies that target specific IBS subtype.-Ma, J., Li, J., Qian, M., He, N., Cao, Y., Liu, Y., Wu, K., He, S. The comprehensive pathophysiological changes in a novel rat model of postinflammatory visceral hypersensitivity.


Assuntos
Depressão/patologia , Modelos Animais de Doenças , Hiperalgesia/patologia , Mucosa Intestinal/patologia , Síndrome do Intestino Irritável/fisiopatologia , Dor Visceral/patologia , Animais , Comportamento Animal , Depressão/etiologia , Depressão/metabolismo , Microbioma Gastrointestinal , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Mucosa Intestinal/metabolismo , Síndrome do Intestino Irritável/induzido quimicamente , Síndrome do Intestino Irritável/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Estresse Fisiológico , Ácido Trinitrobenzenossulfônico/toxicidade , Dor Visceral/etiologia , Dor Visceral/metabolismo
16.
J Appl Microbiol ; 129(5): 1389-1401, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32473073

RESUMO

AIMS: To investigate the anti-inflammatory activity of an invasive and Hp65-producing strain Lactococcus lactis NCDO2118 FnBPA+ (pXYCYT:Hsp65) in acute 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced colitis in mice as an innovative therapeutic strategy against Crohn's disease (CD). METHODS AND RESULTS: The pXYCYT:Hsp65 plasmid was transformed into the L. lactis NCDO2118 FnBPA+ strain, resulting in the L. lactis NCDO2118 FnBPA+ (pXYCYT:Hsp65) strain. Then, the functionality of the strain was evaluated in vitro for Hsp65 production by Western blotting and for invasion into Caco-2 cells. The results demonstrated that the strain was able to produce Hsp65 and efficiently invade eukaryotic cells. Subsequently, in vivo, the anti-inflammatory capacity of the recombinant strain was evaluated in colitis induced with TNBS in BALB/c mice. Oral administration of the recombinant strain was able to attenuated the severity of colitis by mainly reducing IL-12 and IL-17 levels and increasing IL-10 and secretory immunoglobulin A levels. CONCLUSIONS: The L. lactis NCDO2118 FnBPA+ (pXYCYT:Hsp65) strain contributed to a reduction in inflammatory damage in experimental CD. SIGNIFICANCE AND IMPACT OF THE STUDY: This study, which used L. lactis for the production and delivery of Hsp65, has scientific relevance because it shows the efficacy of this new strategy based on therapeutic protein delivery into mammalian enterocytes.


Assuntos
Proteínas de Bactérias/metabolismo , Chaperonina 60/metabolismo , Colite/terapia , Imunoglobulina A Secretora/metabolismo , Interleucina-10/metabolismo , Lactococcus lactis/fisiologia , Administração Oral , Animais , Proteínas de Bactérias/genética , Células CACO-2 , Chaperonina 60/genética , Colite/induzido quimicamente , Colite/imunologia , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Inflamação/terapia , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ácido Trinitrobenzenossulfônico/toxicidade
17.
Dig Dis Sci ; 65(7): 1971-1979, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31808003

RESUMO

BACKGROUND: The level of interleukin (IL)-17 is commonly increased in serum and intestinal mucosa of patients with inflammatory bowel disease, especially Crohn's disease with intestinal stricture. However, the role of IL-17 in the pathogenesis of intestinal fibrosis and the effect of anti-IL-17 treatment on intestinal fibrosis remain unclear; these issues are studied in vivo in this study. METHOD: A total of 24 wild female Balb/c mice (18-22 g) were randomly divided into three groups: (1) control group, (2) 2,4,6-trinitrobenzenesulfonic acid (TNBS) + immunoglobulin G (IgG) group, and (3) TNBS + anti-IL-17 group. The levels of IL-17, IL-1ß, transforming growth factor (TGF)-ß1, and tumor necrosis factor (TNF)-α in blood and of collagen 3 and IL-17 in gut were measured by enzyme-linked immunosorbent assay (ELISA). The messenger RNA (mRNA) levels of collagen 3, IL-17, TNF-α, tissue inhibitor of metalloproteinase (TIMP)-1, and matrix metalloproteinase (MMP)-2 in gut were measured by reverse-transcription polymerase chain reaction. The protein expression of IL-17, collagen 3, TNF-α, TIMP-1, and MMP-2 were measured by immunoblot analysis. Collagen deposition was evaluated by standard hematoxylin and eosin and Masson's trichrome staining. RESULTS: The profibrogenic cytokines IL-17, IL-1ß, TGF-ß1, and TNF-α in serum, mRNA levels of collagen 3, IL-17, TNF-α, TIMP-1, and MMP-2, and protein levels of IL-17, collagen 3, TNF-α, TIMP-1, and MMP-2 in gut were upregulated in TNBS-induced intestinal fibrosis mice. Treatment with anti-IL-17 antibody significantly alleviated intestinal fibrosis and reduced both mRNA and protein levels of collagen 3, TNF-α, TIMP-1, and MMP-2. The levels of profibrogenic cytokines IL-1ß, TGF-ß1, and TNF-α were also decreased in mice treated with anti-IL-17 antibody. CONCLUSIONS: IL-17 contributes to the pathogenesis of intestinal fibrosis, and anti-IL-17 therapy may weaken this effect by downregulating expression of profibrogenic cytokines and disturbing the MMP/TIMPs balance.


Assuntos
Doença de Crohn/imunologia , Fibrose/imunologia , Interleucina-17/imunologia , Mucosa Intestinal/imunologia , Intestinos/imunologia , Animais , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Doença de Crohn/genética , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Modelos Animais de Doenças , Feminino , Fibrose/induzido quimicamente , Fibrose/genética , Fibrose/metabolismo , Imunoglobulina G , Interleucina-17/antagonistas & inibidores , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/patologia , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fator de Crescimento Transformador beta1/imunologia , Fator de Crescimento Transformador beta1/metabolismo , Ácido Trinitrobenzenossulfônico/toxicidade , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
18.
Mediators Inflamm ; 2020: 3070345, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33100902

RESUMO

AIM: To explore the treatment effect of mica on 2,4,6-trinitrobenzenesulfonic acid solution- (TNBS-) induced colitis in mice. MATERIALS AND METHODS: Thirty male BALB/C mice were randomly divided into the control group, the TNBS group, and the mica group. Control mice were treated with saline solution. Experimental colitis was induced by TNBS (250 mg/kg/d) in the TNBS group and the mica group. After modeling, the mica group was treated with mica (180 mg/kg/d) for 3 days, while the TNBS group continued the treatment with TNBS. All solutions were injected intrarectally. During treatment, body weight and mice activity were monitored daily. After treatment, the colon tissues of mice were collected; angiotensin II (Ang II), angiotensin-converting enzyme 2 (ACE2), angiotensin 1-7 (Ang (1-7)), IL-17A, and IL-10 expression was analyzed by ELISA and immunohistochemistry. RESULTS: Food intake, activity, and body weight gradually decreased in the TNBS group compared to the control group and the mica group (all P < 0.05). Also, black stool adhesion in the anus and thin and bloody stool were observed in the TNBS group, but not in the other two groups. Moreover, the expression of Ang II, ACE2, Ang (1-7), IL-17A, and IL-10 in the TNBS group increased compared to that in the control group. Compared to the TNBS group, ACE2, Ang (1-7), and IL-10 in the mica group increased, while Ang II and IL-17A decreased (all P < 0.05). CONCLUSION: Mica can alleviate TNBS-induced colitis in mice by regulating the inflammation process; it reduces Ang II and IL-17A and increases ACE2, IL-10, and Ang (1-7).


Assuntos
Silicatos de Alumínio/uso terapêutico , Angiotensina II/metabolismo , Angiotensina I/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Colite/induzido quimicamente , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Fragmentos de Peptídeos/metabolismo , Ácido Trinitrobenzenossulfônico/toxicidade , Animais , Ingestão de Alimentos/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Masculino , Camundongos
19.
J Cell Physiol ; 234(7): 11078-11091, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30580446

RESUMO

Adipose derived mesenchymal stem cells (ASCs) transplantation is a novel immunomodulatory therapeutic tool to ameliorate the symptom of inflammatory bowel disease (IBD). The objective of this study was to investigate the therapeutic effects of combined sufasalazine and ASCs therapy in a rat model of IBD. After induction of colitis in rats, ASCs were cultured and intraperitoneally injected (3 × 106 cells/kg) into the rats on Days 1 and 5 after inducing colitis, in conjunction with daily oral administration of low dose of sulfasalazine (30 mg/kg). The regenerative effects of combination of ASCs and sulfasalazine on ulcerative colitis were assessed by measuring body weight, colonic weight/length ratio, disease activity index, macroscopic scores, histopathological examinations, cytokine, and inflammation markers profiles. In addition, western blot analysis was used to assess the levels of nuclear factor-kappa B (NF-κB) and apoptosis related proteins in colitis tissues. Simultaneous treatment with ASCs and sulfasalazine was associated with significant amelioration of disease activity index, macroscopic and microscopic colitis scores, as well as inhibition of the proinflammatory cytokines in trinitrobenzene sulfonic acid (TNBS)-induced colitis. Moreover, combined ASCs and sulfasalazine therapy effectively inhibited the NF-κB signaling pathway, reduced the expression of Bax and prevented the loss of Bcl-2 proteins in colon tissue of the rats with TNBS-induced colitis. Furthermore, combined treatment with ASCs and sulfasalazine shifted inflammatory M1 to anti-inflammatory M2 macrophages by decreasing the levels of MCP1, CXCL9 and increasing IL-10, Arg-1 levels. In conclusion, combination of ASCs with conventional IBD therapy is potentially a much more powerful strategy to slow the progression of colitis via reducing inflammatory and apoptotic markers than either therapy alone.


Assuntos
Colite/induzido quimicamente , Colite/tratamento farmacológico , Transplante de Células-Tronco Mesenquimais , Sulfassalazina/uso terapêutico , Ácido Trinitrobenzenossulfônico/toxicidade , Animais , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Fármacos Gastrointestinais/administração & dosagem , Fármacos Gastrointestinais/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Macrófagos , Masculino , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Wistar , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
20.
Mol Pain ; 15: 1744806919830018, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30672380

RESUMO

Elevated excitability of primary afferent neurons underlies chronic pain in patients with functional or inflammatory bowel diseases. Recent studies have established an essential role for an enhanced transient receptor potential vanilloid subtype 1 (TRPV1) signaling in mediating peripheral hyperalgesia in inflammatory conditions. Since colocalization of Toll-like receptor 4 (TLR4) and TRPV1 has been observed in primary afferents including the trigeminal sensory neurons and the dorsal root ganglion neurons, we test the hypothesis that TLR4 might regulate the expression and function of TRPV1 in primary afferent neurons in 2,4,6-trinitrobenzene sulfate (TNBS)-induced colitis using the TLR4-deficient and the wild-type C57 mice. Despite having a higher disease activity index following administration of 2,4,6-trinitrobenzene sulfate, the TLR4-deficient mice showed less inflammatory infiltration in the colon than the wild-type mice. Increased expression of TLR4 and TRPV1 as well as increased density of capsaicin-induced TRPV1 current was observed in L4-S2 dorsal root ganglion neurons of the wild-type colitis mice till two weeks post 2,4,6-trinitrobenzene sulfate treatment. In comparison, the TLR4-deficient colitis mice had lower TRPV1 expression and TRPV1 current density in dorsal root ganglion neurons with lower abdominal withdrawal response scores during noxious colonic distensions. In the wild type but not in the TLR4-deficient dorsal root ganglion neurons, acute administration of the TLR4 agonist lipopolysaccharide increased the capsaicin-evoked TRPV1 current. In addition, we found that the canonical signaling downstream of TLR4 was activated in 2,4,6-trinitrobenzene sulfate-induced colitis in the wild type but not in the TLR4-deficient mice. These results indicate that TLR4 may play a major role in regulation of TRPV1 signaling and peripheral hyperalgesia in inflammatory conditions.


Assuntos
Colite/patologia , Gânglios Espinais/patologia , Regulação da Expressão Gênica/fisiologia , Neurônios/metabolismo , Canais de Cátion TRPV/metabolismo , Receptor 4 Toll-Like/deficiência , Regulação para Cima/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Capsaicina/farmacologia , Colite/induzido quimicamente , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/metabolismo , Neurônios/efeitos dos fármacos , Receptor 4 Toll-Like/genética , Ácido Trinitrobenzenossulfônico/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa