Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 958
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 615(7950): 134-142, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36470304

RESUMO

Preventing SARS-CoV-2 infection by modulating viral host receptors, such as angiotensin-converting enzyme 2 (ACE2)1, could represent a new chemoprophylactic approach for COVID-19 that complements vaccination2,3. However, the mechanisms that control the expression of ACE2 remain unclear. Here we show that the farnesoid X receptor (FXR) is a direct regulator of ACE2 transcription in several tissues affected by COVID-19, including the gastrointestinal and respiratory systems. We then use the over-the-counter compound z-guggulsterone and the off-patent drug ursodeoxycholic acid (UDCA) to reduce FXR signalling and downregulate ACE2 in human lung, cholangiocyte and intestinal organoids and in the corresponding tissues in mice and hamsters. We show that the UDCA-mediated downregulation of ACE2 reduces susceptibility to SARS-CoV-2 infection in vitro, in vivo and in human lungs and livers perfused ex situ. Furthermore, we reveal that UDCA reduces the expression of ACE2 in the nasal epithelium in humans. Finally, we identify a correlation between UDCA treatment and positive clinical outcomes after SARS-CoV-2 infection using retrospective registry data, and confirm these findings in an independent validation cohort of recipients of liver transplants. In conclusion, we show that FXR has a role in controlling ACE2 expression and provide evidence that modulation of this pathway could be beneficial for reducing SARS-CoV-2 infection, paving the way for future clinical trials.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Receptores Virais , Ácido Ursodesoxicólico , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/prevenção & controle , Receptores Virais/genética , Receptores Virais/metabolismo , Estudos Retrospectivos , SARS-CoV-2/metabolismo , Tratamento Farmacológico da COVID-19 , Cricetinae , Transcrição Gênica , Ácido Ursodesoxicólico/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Organoides/efeitos dos fármacos , Organoides/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Sistema de Registros , Reprodutibilidade dos Testes , Transplante de Fígado
2.
Gastroenterology ; 167(4): 733-749.e3, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38810839

RESUMO

BACKGROUND & AIMS: Gut dysbiosis and myeloid-derived suppressor cells (MDSCs) are implicated in primary biliary cholangitis (PBC) pathogenesis. However, it remains unknown whether gut microbiota or their metabolites can modulate MDSCs homeostasis to rectify immune dysregulation in PBC. METHODS: We measured fecal short-chain fatty acids levels using targeted gas chromatography-mass spectrometry and analyzed circulating MDSCs using flow cytometry in 2 independent PBC cohorts. Human and murine MDSCs were differentiated in vitro in the presence of butyrate, followed by transcriptomic, epigenetic (CUT&Tag-seq and chromatin immunoprecipitation-quantitative polymerase chain reaction), and metabolic (untargeted liquid chromatography-mass spectrometry, mitochondrial stress test, and isotope tracing) analyses. The in vivo role of butyrate-MDSCs was evaluated in a 2-octynoic acid-bovine serum albumin-induced cholangitis murine model. RESULTS: Decreased butyrate levels and defective MDSC function were found in patients with incomplete response to ursodeoxycholic acid, compared with those with adequate response. Butyrate induced expansion and suppressive activity of MDSCs in a manner dependent on PPARD-driven fatty acid ß-oxidation (FAO). Pharmaceutical inhibition or genetic knockdown of the FAO rate-limiting gene CPT1A abolished the effect of butyrate. Furthermore, butyrate inhibited HDAC3 function, leading to enhanced acetylation of lysine 27 on histone H3 at promoter regions of PPARD and FAO genes in MDSCs. Therapeutically, butyrate administration alleviated immune-mediated cholangitis in mice via MDSCs, and adoptive transfer of butyrate-treated MDSCs also displayed protective efficacy. Importantly, reduced expression of FAO genes and impaired mitochondrial physiology were detected in MDSCs from ursodeoxycholic acid nonresponders, and their impaired suppressive function was restored by butyrate. CONCLUSIONS: We identify a critical role for butyrate in modulation of MDSC homeostasis by orchestrating epigenetic and metabolic crosstalk, proposing a novel therapeutic strategy for treating PBC.


Assuntos
Butiratos , Epigênese Genética , Microbioma Gastrointestinal , Cirrose Hepática Biliar , Reprogramação Metabólica , Células Supressoras Mieloides , Animais , Feminino , Humanos , Masculino , Camundongos , Butiratos/metabolismo , Reprogramação Celular , Modelos Animais de Doenças , Disbiose/metabolismo , Disbiose/microbiologia , Fezes/microbiologia , Fezes/química , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Cirrose Hepática Biliar/tratamento farmacológico , Cirrose Hepática Biliar/genética , Cirrose Hepática Biliar/metabolismo , Cirrose Hepática Biliar/microbiologia , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/efeitos dos fármacos , Ácido Ursodesoxicólico/farmacologia , Ácido Ursodesoxicólico/uso terapêutico
3.
Semin Liver Dis ; 44(1): 1-22, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38378025

RESUMO

Drug-induced liver injury (DILI) is an adverse reaction to medications and other xenobiotics that leads to liver dysfunction. Based on differential clinical patterns of injury, DILI is classified into hepatocellular, cholestatic, and mixed types; although hepatocellular DILI is associated with inflammation, necrosis, and apoptosis, cholestatic DILI is associated with bile plugs and bile duct paucity. Ursodeoxycholic acid (UDCA) has been empirically used as a supportive drug mainly in cholestatic DILI, but both curative and prophylactic beneficial effects have been observed for hepatocellular DILI as well, according to preliminary clinical studies. This could reflect the fact that UDCA has a plethora of beneficial effects potentially useful to treat the wide range of injuries with different etiologies and pathomechanisms occurring in both types of DILI, including anticholestatic, antioxidant, anti-inflammatory, antiapoptotic, antinecrotic, mitoprotective, endoplasmic reticulum stress alleviating, and immunomodulatory properties. In this review, a revision of the literature has been performed to evaluate the efficacy of UDCA across the whole DILI spectrum, and these findings were associated with the multiple mechanisms of UDCA hepatoprotection. This should help better rationalize and systematize the use of this versatile and safe hepatoprotector in each type of DILI scenarios.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Colestase , Hepatopatias , Humanos , Ácido Ursodesoxicólico/uso terapêutico , Ácido Ursodesoxicólico/farmacologia , Colestase/tratamento farmacológico , Hepatopatias/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Necrose/tratamento farmacológico , Fígado
4.
Cell Mol Biol (Noisy-le-grand) ; 70(7): 15-21, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39097900

RESUMO

A biofilm is a complex microbial structure that promotes the progression of persistent infections, particularly in nosocomial settings via indwelling medical devices. Conventional antibiotics are often ineffective treatments for biofilms; hence, it is crucial to investigate or design non-antibiotic antibiofilm compounds that can successfully reduce and eradicate biofilm-related infections. This study was an attempt to repurpose chronic disease medications of the antihypertensive and antilipidemic drug classes, including candesartan cilexetil (CC) and ursodeoxycholic acid (UDCA), respectively, to be used as antibiofilm agents against the two infectious pathogens Staphylococcus aureus and Enterococcus faecalis. Crystal violet (CV) staining assay was used to evaluate the antibiofilm activity of the drugs. Real-time polymerase chain reaction (RT-PCR) was performed to determine the transcription levels of the biofilm-related genes (icaA and icaR in S. aureus and fsrC and gelE in E. faecalis) following treatment with different concentrations of CC and UDCA. we found that a concentration of greater than 1.5 µg/ml of CC significantly (p < 0.005) inhibited the biofilm formation of both bacterial isolates, and a concentration of greater than 50 µg/ml of UDCA significantly (p < 0.005) inhibited the biofilm formation of both bacterial isolates. Interestingly, the mRNA expression levels of biofilm-related genes were decreased in the two bacterial isolates at concentrations that were lower than the human pharmaceutical daily doses.


Assuntos
Biofilmes , Enterococcus faecalis , Staphylococcus aureus , Ácido Ursodesoxicólico , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/fisiologia , Humanos , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/genética , Enterococcus faecalis/fisiologia , Ácido Ursodesoxicólico/farmacologia , Antibacterianos/farmacologia , Doença Crônica , Testes de Sensibilidade Microbiana , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Benzimidazóis/farmacologia , Tetrazóis/farmacologia , Compostos de Bifenilo/farmacologia
5.
Med J Malaysia ; 79(Suppl 4): 63-67, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-39215417

RESUMO

INTRODUCTION: Cholestasis is bile flow disruption that leads to bile accumulation, which could lead to liver fibrosis. Ursodeoxycholic acid (UDCA) has a hepatoprotective effect. Glutathione (GSH) is an endogenous antioxidant that plays a role in maintaining the function and structure of liver cells. This study aimed to examine the effect of UDCA-GSH combination therapy in multiple doses on liver function in the Sprague-Dawley rats' liver fibrosis model. MATERIALS AND METHODS: This was a randomised post-testonly study. A total of 28 rats were assigned into four groups: Group 1 is control group (C), samples had bile duct ligation and UDCA monotherapy 20 mg; Group 2, bile duct ligation + UDCA 10 mg + glutathione 10 mg (P1); Group 3, bile duct ligation + UDCA 20 mg + glutathione 15 mg (P2); Group 4, bile duct ligation + UDCA 30 mg + glutathione 20 mg (P3). Serum AST, ALT, ALP activity, total, direct and indirect bilirubin were collected. Shapiro-Wilk test was used for the normality test. All groups' data were compared using Kruskall-Wallis and Mann-Whitney tests. RESULTS: There was a significant difference in the ALP level in all rats and between the C and P2 groups. ALP level of all groups decreased significantly compared to the control group. Combination therapy group showed lower bilirubin levels. ALT levels significantly differed between the C-P1, P1-P2, and P1-P3 groups. CONCLUSION: UDCA-GSH therapy improves liver function in BDL rats' models compared to UDCA monotherapy.


Assuntos
Colestase , Quimioterapia Combinada , Glutationa , Ratos Sprague-Dawley , Ácido Ursodesoxicólico , Animais , Ácido Ursodesoxicólico/administração & dosagem , Ácido Ursodesoxicólico/farmacologia , Ácido Ursodesoxicólico/uso terapêutico , Colestase/tratamento farmacológico , Colestase/etiologia , Glutationa/metabolismo , Ratos , Masculino , Fígado/efeitos dos fármacos , Distribuição Aleatória , Modelos Animais de Doenças , Colagogos e Coleréticos/administração & dosagem , Testes de Função Hepática
6.
Hepatology ; 76(5): 1259-1274, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35395098

RESUMO

BACKGROUND AND AIMS: A variant (p.Arg225Trp) of peroxisomal acyl-CoA oxidase 2 (ACOX2), involved in bile acid (BA) side-chain shortening, has been associated with unexplained persistent hypertransaminasemia and accumulation of C27-BAs, mainly 3α,7α,12α-trihydroxy-5ß-cholestanoic acid (THCA). We aimed to investigate the prevalence of ACOX2 deficiency-associated hypertransaminasemia (ADAH), its response to ursodeoxycholic acid (UDCA), elucidate its pathophysiological mechanism and identify other inborn errors that could cause this alteration. METHODS AND RESULTS: Among 33 patients with unexplained hypertransaminasemia from 11 hospitals and 13 of their relatives, seven individuals with abnormally high C27-BA levels (>50% of total BAs) were identified by high-performance liquid chromatography-mass spectrometry. The p.Arg225Trp variant was found in homozygosity (exon amplification/sequencing) in two patients and three family members. Two additional nonrelated patients were heterozygous carriers of different alleles: c.673C>T (p.Arg225Trp) and c.456_459del (p.Thr154fs). In patients with ADAH, impaired liver expression of ACOX2, but not ACOX3, was found (immunohistochemistry). Treatment with UDCA normalized aminotransferase levels. Incubation of HuH-7 hepatoma cells with THCA, which was efficiently taken up, but not through BA transporters, increased reactive oxygen species production (flow cytometry), endoplasmic reticulum stress biomarkers (GRP78, CHOP, and XBP1-S/XBP1-U ratio), and BAXα expression (reverse transcription followed by quantitative polymerase chain reaction and immunoblot), whereas cell viability was decreased (tetrazolium salt-based cell viability test). THCA-induced cell toxicity was higher than that of major C24-BAs and was not prevented by UDCA. Fourteen predicted ACOX2 variants were generated (site-directed mutagenesis) and expressed in HuH-7 cells. Functional tests to determine their ability to metabolize THCA identified six with the potential to cause ADAH. CONCLUSIONS: Dysfunctional ACOX2 has been found in several patients with unexplained hypertransaminasemia. This condition can be accurately identified by a noninvasive diagnostic strategy based on plasma BA profiling and ACOX2 sequencing. Moreover, UDCA treatment can efficiently attenuate liver damage in these patients.


Assuntos
Ácidos e Sais Biliares , Ácido Ursodesoxicólico , Humanos , Ácido Ursodesoxicólico/farmacologia , Ácido Ursodesoxicólico/uso terapêutico , Acil-CoA Oxidase/genética , Espécies Reativas de Oxigênio , Transaminases , Sais de Tetrazólio , Oxirredutases
7.
Pediatr Res ; 93(6): 1582-1590, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36151295

RESUMO

BACKGROUND: Cyp2c70-/- mice with a human-like bile acid (BA) composition display features of neonatal cholestasis. We assessed whether perinatal ursodeoxycholic acid (UDCA) exposure prevents neonatal cholestasis in Cyp2c70-/- mice and reduces cholangiopathy development later in life. METHODS: Cyp2c70+/- males were crossed with Cyp2c70+/- females fed either a regular chow diet or a 0.1% UDCA-containing diet during breeding, gestation, and suckling. Cholestasis and liver function parameters were assessed in their Cyp2c70-/- and wild-type offspring at 3 and 8 weeks of age. RESULTS: Three-week-old Cyp2c70-/- pups showed features of neonatal cholestasis, including elevated plasma BAs and transaminases, which were completely prevented in Cyp2c70-/- pups upon perinatal UDCA exposure. In addition, UDCA administration to the dams corrected altered hepatic gene expression patterns in Cyp2c70-/- pups, reduced markers of fibrogenesis and inflammation, and prevented cholangiocyte proliferation. Yet, these beneficial effects of perinatal UDCA exposure were not retained into adulthood upon discontinuation of treatment. CONCLUSION: Perinatal exposure of Cyp2c70-/- mice to UDCA has beneficial effects on liver function parameters, supporting a direct role of BA hydrophobicity in the development of neonatal cholestasis in these mice. However, prevention of neonatal cholestasis in Cyp2c70-/- mice has no long-lasting effects on liver pathophysiology. IMPACT: This is the first study showing that perinatal UDCA exposure prevents features of neonatal cholestasis that are observed in mice with a human-like bile acid composition, i.e., Cyp2c70-/- mice. Perinatal UDCA exposure of Cyp2c70-/- pups leads to UDCA enrichment in their circulating bile acid pool and, consequently, to a reduced hydrophobicity of biliary bile acids. Perinatal UDCA exposure of Cyp2c70-/- pups has no long-lasting effects on the development of cholangiopathy after discontinuation of treatment. The results in this study expand current knowledge regarding acute and long-lasting effects of UDCA treatment in early life.


Assuntos
Colestase , Hepatopatias , Masculino , Gravidez , Feminino , Humanos , Camundongos , Animais , Recém-Nascido , Ácido Ursodesoxicólico/farmacologia , Ácido Ursodesoxicólico/metabolismo , Ácidos e Sais Biliares , Colestase/genética
8.
Biomacromolecules ; 24(5): 2369-2379, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37053088

RESUMO

In cancer therapy, a drug delivery system (DDS) has been widely studied to achieve selective drug accumulation at the tumor site. However, DDS still has a major drawback in that it requires multistep processes for intracellular delivery, resulting in low efficiency of drug delivery. To overcome this problem, we recently reported a molecular block (MB) that disrupts cancer cell membranes in the cancer microenvironment using deoxycholic acid (DCA). However, the MB showed considerable cytotoxicity even at neutral pH, possibly due to the structural hydrophobic property of DCA. Herein, we focused on selecting the most suitable bile acid for an MB that possessed high responsiveness to the cancer microenvironment without cytotoxicity at neutral pH. Cell viabilities of the free bile acids such as DCA, chenodeoxycholic acid (CDCA), cholic acid (CA), and ursodeoxycholic acid (UDCA) were evaluated at neutral pH (pH = 7.4) and a cancer acidic environment (pH = 6.3-6.5). The half-maximal inhibition concentration (IC50) value of UDCA at pH = 7.4 showed an approximately 7.5-fold higher IC50 value than that at pH = 6.3, whereas the other bile acids yielded less than a 4-fold IC50 value difference between the same pHs. Biocompatible poly(vinyl alcohol) (PVA) was functionalized with UDCA (PVA-UDCA) for the synthesis of higher responsiveness to the cancer microenvironment without cytotoxicity at neutral pH. Importantly, 56% pancreatic cancer cell death was observed at pH = 6.5, whereas only 10% was detected at neutral pH by the PVA-UDCA treatment. However, PVA-DCA indicated almost the same cancer cell death property, independent of pH conditions. These results suggest PVA-UDCA shows great potential for a new class of MB.


Assuntos
Neoplasias , Ácido Ursodesoxicólico , Ácido Ursodesoxicólico/farmacologia , Ácido Ursodesoxicólico/uso terapêutico , Ácido Desoxicólico/farmacologia , Ácido Desoxicólico/metabolismo , Microambiente Tumoral , Ácidos e Sais Biliares/farmacologia , Ácido Cólico/farmacologia , Neoplasias/tratamento farmacológico
9.
Biol Res ; 56(1): 28, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37237400

RESUMO

BACKGROUND: Skeletal muscle generates force and movements and maintains posture. Under pathological conditions, muscle fibers suffer an imbalance in protein synthesis/degradation. This event causes muscle mass loss and decreased strength and muscle function, a syndrome known as sarcopenia. Recently, our laboratory described secondary sarcopenia in a chronic cholestatic liver disease (CCLD) mouse model. Interestingly, the administration of ursodeoxycholic acid (UDCA), a hydrophilic bile acid, is an effective therapy for cholestatic hepatic alterations. However, the effect of UDCA on skeletal muscle mass and functionality has never been evaluated, nor the possible involved mechanisms. METHODS: We assessed the ability of UDCA to generate sarcopenia in C57BL6 mice and develop a sarcopenic-like phenotype in C2C12 myotubes and isolated muscle fibers. In mice, we measured muscle strength by a grip strength test, muscle mass by bioimpedance and mass for specific muscles, and physical function by a treadmill test. We also detected the fiber's diameter and content of sarcomeric proteins. In C2C12 myotubes and/or isolated muscle fibers, we determined the diameter and troponin I level to validate the cellular effect. Moreover, to evaluate possible mechanisms, we detected puromycin incorporation, p70S6K, and 4EBP1 to evaluate protein synthesis and ULK1, LC3 I, and II protein levels to determine autophagic flux. The mitophagosome-like structures were detected by transmission electron microscopy. RESULTS: UDCA induced sarcopenia in healthy mice, evidenced by decreased strength, muscle mass, and physical function, with a decline in the fiber's diameter and the troponin I protein levels. In the C2C12 myotubes, we observed that UDCA caused a reduction in the diameter and content of MHC, troponin I, puromycin incorporation, and phosphorylated forms of p70S6K and 4EBP1. Further, we detected increased levels of phosphorylated ULK1, the LC3II/LC3I ratio, and the number of mitophagosome-like structures. These data suggest that UDCA induces a sarcopenic-like phenotype with decreased protein synthesis and autophagic flux. CONCLUSIONS: Our results indicate that UDCA induces sarcopenia in mice and sarcopenic-like features in C2C12 myotubes and/or isolated muscle fibers concomitantly with decreased protein synthesis and alterations in autophagic flux.


Assuntos
Sarcopenia , Camundongos , Animais , Sarcopenia/induzido quimicamente , Sarcopenia/patologia , Ácido Ursodesoxicólico/farmacologia , Ácido Ursodesoxicólico/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Troponina I/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo
10.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108372

RESUMO

The Unfolded protein response (UPR), triggered by stress in the endoplasmic reticulum (ER), is a key driver of neurodegenerative diseases. GM2 gangliosidosis, which includes Tay-Sachs and Sandhoff disease, is caused by an accumulation of GM2, mainly in the brain, that leads to progressive neurodegeneration. Previously, we demonstrated in a cellular model of GM2 gangliosidosis that PERK, a UPR sensor, contributes to neuronal death. There is currently no approved treatment for these disorders. Chemical chaperones, such as ursodeoxycholic acid (UDCA), have been found to alleviate ER stress in cell and animal models. UDCA's ability to move across the blood-brain barrier makes it interesting as a therapeutic tool. Here, we found that UDCA significantly diminished the neurite atrophy induced by GM2 accumulation in primary neuron cultures. It also decreased the up-regulation of pro-apoptotic CHOP, a downstream PERK-signaling component. To explore its potential mechanisms of action, in vitro kinase assays and crosslinking experiments were performed with different variants of recombinant protein PERK, either in solution or in reconstituted liposomes. The results suggest a direct interaction between UDCA and the cytosolic domain of PERK, which promotes kinase phosphorylation and dimerization.


Assuntos
Gangliosidoses GM2 , Doença de Sandhoff , Animais , Atrofia , Gangliosidoses GM2/metabolismo , Neuritos/metabolismo , Doença de Sandhoff/terapia , Ácido Ursodesoxicólico/farmacologia , eIF-2 Quinase/metabolismo
11.
Infect Immun ; 90(8): e0015322, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35862710

RESUMO

C. difficile infection (CDI) is a highly inflammatory disease mediated by the production of two large toxins that weaken the intestinal epithelium and cause extensive colonic tissue damage. Antibiotic alternative therapies for CDI are urgently needed as current antibiotic regimens prolong the perturbation of the microbiota and lead to high disease recurrence rates. Inflammation is more closely correlated with CDI severity than bacterial burden, thus therapies that target the host response represent a promising yet unexplored strategy for treating CDI. Intestinal bile acids are key regulators of gut physiology that exert cytoprotective roles in cellular stress, inflammation, and barrier integrity, yet the dynamics between bile acids and host cellular processes during CDI have not been investigated. Here we show that several bile acids are protective against apoptosis caused by C. difficile toxins in Caco-2 cells and that protection is dependent on conjugation of bile acids. Out of 20 tested bile acids, taurine conjugated ursodeoxycholic acid (TUDCA) was the most potent inhibitor, yet unconjugated UDCA did not alter toxin-induced apoptosis. TUDCA treatment decreased expression of genes in lysosome associated and cytokine signaling pathways. TUDCA did not affect C. difficile growth or toxin activity in vitro whereas UDCA significantly reduced toxin activity in a Vero cell cytotoxicity assay and decreased tcdA gene expression. These results demonstrate that bile acid conjugation can have profound effects on C. difficile as well as the host and that conjugated and unconjugated bile acids may exert different therapeutic mechanisms against CDI.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Antibacterianos/farmacologia , Anticorpos Antibacterianos/farmacologia , Apoptose , Ácidos e Sais Biliares/farmacologia , Células CACO-2 , Infecções por Clostridium/microbiologia , Humanos , Inflamação , Ácido Tauroquenodesoxicólico , Ácido Ursodesoxicólico/farmacologia
12.
J Hepatol ; 77(4): 991-1004, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35750136

RESUMO

BACKGROUND & AIMS: Inflammation, particularly that mediated by bacterial components translocating from the gut to the liver and binding to toll-like receptors (TLRs), is central to cholestatic liver injury. The triggering receptor expressed on myeloid cells-2 (TREM-2) inhibits TLR-mediated signaling and exerts a protective role in hepatocellular injury and carcinogenesis. This study aims to evaluate the role of TREM-2 in cholestasis. METHODS: TREM-2 expression was analyzed in the livers of patients with primary biliary cholangitis (PBC) or primary sclerosing cholangitis (PSC), and in mouse models of cholestasis. Wild-type (WT) and Trem-2 deficient (Trem-2-/-) mice were subjected to experimental cholestasis and gut sterilization. Primary cultured Kupffer cells were incubated with lipopolysaccharide and/or ursodeoxycholic acid (UDCA) and inflammatory responses were analyzed. RESULTS: TREM-2 expression was upregulated in the livers of patients with PBC or PSC, and in murine models of cholestasis. Compared to WT, the response to bile duct ligation (BDL)-induced obstructive cholestasis or alpha-naphtylisothiocyanate (ANIT)-induced cholestasis was exacerbated in Trem-2-/- mice. This was characterized by enhanced necroptotic cell death, inflammatory responses and biliary expansion. Antibiotic treatment partially abrogated the effects observed in Trem-2-/- mice after BDL. Experimental overexpression of TREM-2 in the liver of WT mice downregulated ANIT-induced IL-33 expression and neutrophil recruitment. UDCA regulated Trem-1 and Trem-2 expression in primary cultured mouse Kupffer cells and dampened inflammatory gene transcription via a TREM-2-dependent mechanism. CONCLUSIONS: TREM-2 acts as a negative regulator of inflammation during cholestasis, representing a novel potential therapeutic target. LAY SUMMARY: Cholestasis (the reduction or cessation of bile flow) causes liver injury. This injury is exacerbated when gut-derived bacterial components interact with receptors (specifically Toll-like receptors or TLRs) on liver-resident immune cells, promoting inflammation. Herein, we show that the anti-inflammatory receptor TREM-2 dampens TLR-mediated signaling and hence protects against cholestasis-induced liver injury. Thus, TREM-2 could be a potential therapeutic target in cholestasis.


Assuntos
Colestase , Glicoproteínas de Membrana , Receptores Imunológicos , Ácido Ursodesoxicólico , Animais , Antibacterianos , Anti-Inflamatórios , Colestase/complicações , Inflamação , Interleucina-33 , Lipopolissacarídeos , Fígado , Glicoproteínas de Membrana/genética , Camundongos , Receptores Imunológicos/genética , Receptor Gatilho 1 Expresso em Células Mieloides , Ácido Ursodesoxicólico/farmacologia
13.
J Hepatol ; 77(5): 1311-1324, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35753523

RESUMO

BACKGROUND & AIMS: Pyruvate dehydrogenase (PDC)-E2 specific CD8+ T cells play a leading role in biliary destruction in PBC. However, there are limited data on the characterization of these autoantigen-specific CD8+ T cells, particularly in the liver. Herein, we aimed to identify pathogenic intrahepatic CD8+ T-cell subpopulations and investigate their immunobiology in PBC. METHODS: Phenotypic and functional analysis of intrahepatic T-cell subsets were performed by flow cytometry. CD103+ TRM cell frequency was evaluated by histological staining. The transcriptome and metabolome were analyzed by RNA-seq and liquid chromatography-mass spectrometry, respectively. Cytotoxicity of TRM cells against cholangiocytes was assayed in a 3D organoid co-culture system. Moreover, the longevity (long-term survival) of TRM cells in vivo was studied by 2-octynoic acid-BSA (2OA-BSA) immunization, Nudt1 conditional knock-out and adoptive co-transfer in a murine model. RESULTS: Intrahepatic CD103+ TRM (CD69+CD103+CD8+) cells were significantly expanded, hyperactivated, and potentially specifically reactive to PDC-E2 in patients with PBC. CD103+ TRM cell frequencies correlated with clinical and histological indices of PBC and predicted poor ursodeoxycholic acid response. NUDT1 blockade suppressed the cytotoxic effector functions of CD103+ TRM cells upon PDC-E2 re-stimulation. NUDT1 overexpression in CD8+ T cells promoted tissue-residence programming in vitro; inhibition or knockdown of NUDT1 had the opposite effect. Pharmacological blockade or genetic deletion of NUDT1 eliminated CD103+ TRM cells and alleviated cholangitis in mice immunized with 2OA-BSA. Significantly, NUDT1-dependent DNA damage resistance potentiates CD8+ T-cell tissue-residency via the PARP1-TGFßR axis in vitro. Consistently, PARP1 inhibition restored NUDT1-deficient CD103+ TRM cell durable survival and TGFß-Smad signaling. CONCLUSIONS: CD103+ TRM cells are the dominant population of PDC-E2-specific CD8+ T lymphocytes in the livers of patients with PBC. The role of NUDT1 in promoting pathogenic CD103+ TRM cell accumulation and longevity represents a novel therapeutic target in PBC. LAY SUMMARY: Primary biliary cholangitis (PBC) is a rare inflammatory condition of the bile ducts. It can be treated with ursodeoxycholic acid, but a large percentage of patients respond poorly to this treatment. Liver-infiltrating memory CD8+ T cells recognizing the PDC-E2 immunodominant epitope are critical in the pathogenesis of PBC. We identifed the key pathogenic CD8+ T cell subset, and worked out the mechanisms of its hyperactivation and longevity, which could be exploited therapeutically.


Assuntos
Linfócitos T CD8-Positivos , Cirrose Hepática Biliar , Animais , Camundongos , Autoantígenos , Epitopos Imunodominantes , Cirrose Hepática Biliar/genética , Oxirredutases , Piruvatos , Fator de Crescimento Transformador beta , Ácido Ursodesoxicólico/farmacologia
14.
Hepatology ; 73(1): 186-203, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32145077

RESUMO

BACKGROUND AND AIMS: Polycystic liver diseases (PLDs) are genetic disorders characterized by progressive development of symptomatic biliary cysts. Current surgical and pharmacological approaches are ineffective, and liver transplantation represents the only curative option. Ursodeoxycholic acid (UDCA) and histone deacetylase 6 inhibitors (HDAC6is) have arisen as promising therapeutic strategies, but with partial benefits. APPROACH AND RESULTS: Here, we tested an approach based on the design, synthesis, and validation of a family of UDCA synthetic conjugates with selective HDAC6i capacity (UDCA-HDAC6i). Four UDCA-HDAC6i conjugates presented selective HDAC6i activity, UDCA-HDAC6i #1 being the most promising candidate. UDCA orientation within the UDCA-HDAC6i structure was determinant for HDAC6i activity and selectivity. Treatment of polycystic rats with UDCA-HDAC6i #1 reduced their hepatomegaly and cystogenesis, increased UDCA concentration, and inhibited HDAC6 activity in liver. In cystic cholangiocytes UDCA-HDAC6i #1 restored primary cilium length and exhibited potent antiproliferative activity. UDCA-HDAC6i #1 was actively transported into cells through BA and organic cation transporters. CONCLUSIONS: These UDCA-HDAC6i conjugates open a therapeutic avenue for PLDs.


Assuntos
Apoptose , Cistos/tratamento farmacológico , Hepatopatias/tratamento farmacológico , Fígado/patologia , Medicamentos Sintéticos/farmacologia , Ácido Ursodesoxicólico/farmacologia , Animais , Ácidos e Sais Biliares/metabolismo , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Proliferação de Células/efeitos dos fármacos , Cistos/metabolismo , Cistos/patologia , Modelos Animais de Doenças , Desacetilase 6 de Histona/antagonistas & inibidores , Fígado/efeitos dos fármacos , Fígado/metabolismo , Hepatopatias/metabolismo , Hepatopatias/patologia , Distribuição Aleatória , Ratos , Ácido Ursodesoxicólico/uso terapêutico
15.
Hepatology ; 73(4): 1449-1463, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32702170

RESUMO

BACKGROUND AND AIMS: Progressive familial intrahepatic cholestasis type 2 (PFIC2) is a severe hepatocellular cholestasis due to biallelic mutations in ABCB11 encoding the canalicular bile salt export pump (BSEP). Nonsense mutations are responsible for the most severe phenotypes. The aim was to assess the ability of drugs to induce readthrough of six nonsense mutations (p.Y354X, p.R415X, p.R470X, p.R1057X, p.R1090X, and p.E1302X) identified in patients with PFIC2. APPROACH AND RESULTS: The ability of G418, gentamicin, and PTC124 to induce readthrough was studied using a dual gene reporter system in NIH3T3 cells. The ability of gentamicin to induce readthrough and to lead to the expression of a full-length protein was studied in human embryonic kidney 293 (HEK293), HepG2, and Can 10 cells using immunodetection assays. The function of the gentamicin-induced full-length protein was studied by measuring the [3 H]-taurocholate transcellular transport in stable Madin-Darby canine kidney clones co-expressing Na+-taurocholate co-transporting polypeptide (Ntcp). Combinations of gentamicin and chaperone drugs (ursodeoxycholic acid, 4-phenylbutyrate [4-PB]) were investigated. In NIH3T3, aminoglycosides significantly increased the readthrough level of all mutations studied, while PTC124 only slightly increased the readthrough of p.E1302X. Gentamicin induced a readthrough of p.R415X, p.R470X, p.R1057X, and p.R1090X in HEK293 cells. The resulting full-length proteins localized within the cytoplasm, except for BsepR1090X , which was also detected at the plasma membrane of human embryonic kidney HEK293 and at the canalicular membrane of Can 10 and HepG2 cells. Additional treatment with 4-PB and ursodeoxycholic acid significantly increased the canalicular proportion of full-length BsepR1090X protein in Can 10 cells. In Madin-Darby canine kidney clones, gentamicin induced a 40% increase of the BsepR1090X [3 H]-taurocholate transport, which was further increased with additional 4-PB treatment. CONCLUSION: This study constitutes a proof of concept for readthrough therapy in selected patients with PFIC2 with nonsense mutations.


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/metabolismo , Códon sem Sentido/efeitos dos fármacos , Animais , Estudos de Coortes , Cães , Gentamicinas/farmacologia , Células HEK293 , Células Hep G2 , Humanos , Células Madin Darby de Rim Canino , Camundongos , Células NIH 3T3 , Oxidiazóis/farmacologia , Fenilbutiratos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transfecção , Ácido Ursodesoxicólico/farmacologia
16.
J Clin Pharm Ther ; 47(2): 260-262, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34288009

RESUMO

WHAT IS KNOWN AND OBJECTIVE: Cyclosporine A (CyA) causes intrahepatic biliary stasis via inhibition of bile acid excretion through the bile salt export pump. We report a case of a patient in whom ursodeoxycholic acid (UDCA) markedly promoted the absorption of microemulsion-formulated CyA. CASE SUMMARY: The patient was a 22-year-old Japanese man diagnosed with stage 3 aplastic anaemia. He was treated with CyA, and 2 h post-dose (C2) was increased by UDCA. WHAT IS NEW AND CONCLUSION: A remarkable interaction was observed between CyA and UDCA. This is a valuable finding for improving the treatment strategies for haematological disorders.


Assuntos
Anemia Aplástica/tratamento farmacológico , Ciclosporina/farmacocinética , Emulsões/química , Imunossupressores/farmacocinética , Ácido Ursodesoxicólico/farmacologia , Ciclosporina/uso terapêutico , Humanos , Imunossupressores/uso terapêutico , Testes de Função Hepática , Masculino , Adulto Jovem
17.
Am J Physiol Endocrinol Metab ; 320(4): E671-E679, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33459181

RESUMO

Bile acids (BA) regulate postprandial metabolism directly and indirectly by affecting the secretion of gut hormones like glucagon-like peptide-1 (GLP-1). The postprandial effects of BA on the secretion of other metabolically active hormones are not well understood. The objective of this study was to investigate the effects of oral ursodeoxycholic acid (UDCA) and chenodeoxycholic acid (CDCA) on postprandial secretion of GLP-1, oxyntomodulin (OXM), peptide YY (PYY), glucose-dependent insulinotropic peptide (GIP), glucagon, and ghrelin. Twelve healthy volunteers underwent a mixed meal test 60 min after ingestion of UDCA (12-16 mg/kg), CDCA (13-16 mg/kg), or no BA in a randomized crossover study. Glucose, insulin, GLP-1, OXM, PYY, GIP, glucagon, ghrelin, and fibroblast growth factor 19 were measured prior to BA administration at -60 and 0 min (just prior to mixed meal) and 15, 30, 60, 120, 180, and 240 min after the meal. UDCA and CDCA provoked differential gut hormone responses; UDCA did not have any significant effects, but CDCA provoked significant increases in GLP-1 and OXM and a profound reduction in GIP. CDCA increased fasting GLP-1 and OXM secretion in parallel with an increase in insulin. On the other hand, CDCA reduced postprandial secretion of GIP, with an associated reduction in postprandial insulin secretion. Exogenous CDCA can exert multiple salutary effects on the secretion of gut hormones; if these effects are confirmed in obesity and type 2 diabetes, CDCA may be a potential therapy for these conditions.NEW & NOTEWORTHY Oral CDCA and UDCA have different effects on gut and pancreatic hormone secretion. A single dose of CDCA increased fasting secretion of the hormones GLP-1 and OXM with an accompanying increase in insulin secretion. CDCA also reduced postprandial GIP secretion, which was associated with reduced insulin. In contrast, UDCA did not change gut hormone secretion fasting or postprandially. Oral CDCA could be beneficial to patients with obesity and diabetes.


Assuntos
Ácidos e Sais Biliares/farmacologia , Hormônios Gastrointestinais/metabolismo , Período Pós-Prandial/efeitos dos fármacos , Administração Oral , Adulto , Ácidos e Sais Biliares/administração & dosagem , Ácidos e Sais Biliares/sangue , Ácido Quenodesoxicólico/administração & dosagem , Ácido Quenodesoxicólico/farmacologia , Estudos Cross-Over , Ingestão de Alimentos/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Via Secretória/efeitos dos fármacos , Reino Unido , Ácido Ursodesoxicólico/administração & dosagem , Ácido Ursodesoxicólico/farmacologia , Adulto Jovem
18.
J Hepatol ; 75(5): 1164-1176, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34242699

RESUMO

BACKGROUND & AIMS: 24-Norursodeoxycholic acid (NorUDCA) is a novel therapeutic bile acid used to treat immune-mediated cholestatic liver diseases, such as primary sclerosing cholangitis (PSC), where dysregulated T cells including CD8+ T cells contribute to hepatobiliary immunopathology. We hypothesized that NorUDCA may directly modulate CD8+ T cell function thus contributing to its therapeutic efficacy. METHODS: NorUDCA's immunomodulatory effects were first studied in Mdr2-/- mice, as a cholestatic model of PSC. To differentiate NorUDCA's immunomodulatory effects on CD8+ T cell function from its anticholestatic actions, we also used a non-cholestatic model of hepatic injury induced by an excessive CD8+ T cell immune response upon acute non-cytolytic lymphocytic choriomeningitis virus (LCMV) infection. Studies included molecular and biochemical approaches, flow cytometry and metabolic assays in murine CD8+ T cells in vitro. Mass spectrometry was used to identify potential CD8+ T cell targets modulated by NorUDCA. The signaling effects of NorUDCA observed in murine cells were validated in circulating T cells from patients with PSC. RESULTS: NorUDCA demonstrated immunomodulatory effects by reducing hepatic innate and adaptive immune cells, including CD8+ T cells in the Mdr2-/- model. In the non-cholestatic model of CD8+ T cell-driven immunopathology induced by acute LCMV infection, NorUDCA ameliorated hepatic injury and systemic inflammation. Mechanistically, NorUDCA demonstrated strong immunomodulatory efficacy in CD8+ T cells affecting lymphoblastogenesis, expansion, glycolysis and mTORC1 signaling. Mass spectrometry identified that NorUDCA regulates CD8+ T cells by targeting mTORC1. NorUDCA's impact on mTORC1 signaling was further confirmed in circulating PSC CD8+ T cells. CONCLUSIONS: NorUDCA has a direct modulatory impact on CD8+ T cells and attenuates excessive CD8+ T cell-driven hepatic immunopathology. These findings are relevant for treatment of immune-mediated liver diseases such as PSC. LAY SUMMARY: Elucidating the mechanisms by which 24-norursodeoxycholic acid (NorUDCA) works for the treatment of immune-mediated liver diseases, such as primary sclerosing cholangitis, is of considerable clinical interest. Herein, we uncovered an unrecognized property of NorUDCA in the immunometabolic regulation of CD8+ T cells, which has therapeutic relevance for immune-mediated liver diseases, including PSC.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Inflamação/tratamento farmacológico , Fígado/efeitos dos fármacos , Ácido Ursodesoxicólico/análogos & derivados , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Modelos Animais de Doenças , Inflamação/fisiopatologia , Fígado/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Ácido Ursodesoxicólico/farmacologia , Ácido Ursodesoxicólico/uso terapêutico
19.
Clin Sci (Lond) ; 135(14): 1689-1706, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34236076

RESUMO

Recent studies reveal that bile acid metabolite composition and its metabolism are changed in metabolic disorders, such as obesity, type 2 diabetes and metabolic associated fatty liver disease (MAFLD), yet its role and the mechanism remain largely unknown. In the present study, metabolomic analysis of 163 serum and stool samples of our metabolic disease cohort was performed, and we identified glycoursodeoxycholic acid (GUDCA), glycine-conjugated bile acid produced from intestinal bacteria, was decreased in both serum and stool samples from patients with hyperglycemia. RNA-sequencing and quantitative PCR results indicated that GUDCA alleviated endoplasmic reticulum (ER) stress in livers of high fat diet (HFD)-fed mice without alteration of liver metabolism. In vitro, GUDCA reduced palmitic acid induced-ER stress and -apoptosis, as well as stabilized calcium homeostasis. In vivo, GUDCA exerted effects on amelioration of HFD-induced insulin resistance and hepatic steatosis. In parallel, ER stress and apoptosis were decreased in GUDCA-treated mice as compared with vehicle-treated mice in liver. These findings demonstrate that reduced GUDCA is an indicator of hyperglycemia. Supplementation of GUDCA could be an option for the treatment of diet-induced metabolic disorders, including insulin resistance and hepatic steatosis, with inhibiting ER stress.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Doenças Metabólicas/tratamento farmacológico , Obesidade/metabolismo , Ácido Ursodesoxicólico/análogos & derivados , Animais , Dieta Hiperlipídica/métodos , Estresse do Retículo Endoplasmático/fisiologia , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Feminino , Humanos , Metabolismo dos Lipídeos/fisiologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Doenças Metabólicas/metabolismo , Pessoa de Meia-Idade , Ácido Ursodesoxicólico/farmacologia
20.
FASEB J ; 34(5): 6198-6214, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32162746

RESUMO

Mitochondrial dysfunction is the leading cause of reactive oxygen species (ROS) burst and apoptosis in hepatic ischemia/reperfusion (I/R) injury. Ursodeoxycholyl lysophosphatidylethanolamide (UDCA-LPE) is a hepatotargeted agent that exerts hepatoprotective roles by regulating lipid metabolism. Our previous studies have shown that UDCA-LPE improves hepatic I/R injury by inhibiting apoptosis and inflammation. However, the role of UDCA-LPE in lipid metabolism and mitochondrial function in hepatic I/R remains unknown. In the present study, we investigated the role of UDCA-LPE in hepatic I/R by focusing on the interface of phospholipid metabolism and mitochondrial homeostasis. Livers from 28-week-old mice, primary hepatocytes and HepG2 cells were subjected to in vivo and in vitro I/R, respectively. Analyses of oxidative stress, imaging, ATP generation, genetics, and lipidomics showed that I/R was associated with mitochondrial dysfunction and a reduction in phospholipids. UDCA-LPE alleviated mitochondria-dependent oxidative stress and apoptosis and prevented the decrease of phospholipid levels. Our study found that cytosolic phospholipase A2 (cPLA2 ), a phospholipase that is activated during I/R, hydrolyzed mitochondrial membrane phospholipids and led to mitochondria-mediated oxidative stress and apoptosis. UDCA-LPE inhibited the interaction between cPLA2 and mitochondria and reduced phospholipid hydrolysis-mediated injury. UDCA-LPE might regulate the crosstalk between the phospholipid metabolism and the mitochondria, restore mitochondrial function and ameliorate I/R injury.


Assuntos
Transtornos do Metabolismo dos Lipídeos/prevenção & controle , Hepatopatias/prevenção & controle , Lisofosfolipídeos/farmacologia , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosfolipídeos/metabolismo , Traumatismo por Reperfusão/complicações , Ácido Ursodesoxicólico/análogos & derivados , Animais , Apoptose , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Transtornos do Metabolismo dos Lipídeos/etiologia , Transtornos do Metabolismo dos Lipídeos/metabolismo , Hepatopatias/etiologia , Hepatopatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Substâncias Protetoras/farmacologia , Espécies Reativas de Oxigênio , Ácido Ursodesoxicólico/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa