Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Appl Microbiol ; 134(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37401131

RESUMO

AIMS: We determined the synergistic effects of tea tree essential oil nano-emulsion (nanoTTO) and antibiotics against multidrug-resistant (MDR) bacteria in vitro and in vivo. Then, the underlying mechanism of action of nanoTTO was investigated. METHODS AND RESULTS: Minimum inhibitory concentrations and fractional inhibitory concentration index (FICI) were determined. The transepithelial electrical resistance (TEER) and the expression of tight junction (TJ) protein of IPEC-J2 cells were measured to determine the in vitro efficacy of nanoTTO in combination with antibiotics. A mouse intestinal infection model evaluated the in vivo synergistic efficacy. Proteome, adhesion assays, quantitative real-time PCR, and scanning electron microscopy were used to explore the underlying mechanisms. Results showed that nanoTTO was synergistic (FICI ≤ 0.5) or partial synergistic (0.5 < FICI < 1) with antibiotics against MDR Gram-positive and Gram-negative bacteria strains. Moreover, combinations increased the TEER values and the TJ protein expression of IPEC-J2 cells infected with MDR Escherichia coli. The in vivo study showed that the combination of nanoTTO and amoxicillin improved the relative weight gain and maintained the structural integrity of intestinal barriers. Proteome showed that type 1 fimbriae d-mannose specific adhesin of E. coli was downregulated by nanoTTO. Then, nanoTTO reduced bacterial adhesion and invasion and inhibited the mRNA expression of fimC, fimG, and fliC, and disrupted bacterial membranes.


Assuntos
Antibacterianos , Óleo de Melaleuca , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Óleo de Melaleuca/farmacologia , Escherichia coli , Proteoma , Sinergismo Farmacológico , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana
2.
Biofouling ; 39(9-10): 962-979, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38009008

RESUMO

The current work aims to develop a shikonin and tea tree oil loaded nanoemulsion system stabilized by a mixture of GRAS grade surfactants (Tween 20 and monoolein) and a cosurfactant (Transcutol P). This system was designed to address the poor aqueous solubility and photostability issues of shikonin. The authenticity of shikonin employed in this study was confirmed using nuclear magnetic resonance (NMR) spectroscopy. The optimized nanoemulsion exhibited highly favorable characteristics in terms of zeta potential (-23.8 mV), polydispersity index (0.216) and particle size (22.97 nm). These findings were corroborated by transmission electron microscopy (TEM) micrographs which confirmed the spherical and uniform nature of the nanoemulsion globules. Moreover, attenuated total reflectance (ATR) and X-ray diffraction analysis (XRD) analysis affirmed improved chemical stability and amorphization, respectively. Photodegradation studies were performed by exposing pure shikonin and the developed nanoemulsion to ultraviolet light for 1 h using a UV lamp, followed by high performance liquid chromatography (HPLC) analysis. The results confirmed that the developed nanoemulsion system imparts photoprotection to pure shikonin in the encapsulated system. Furthermore, the research investigated the effect of the nanoemulsion on biofilms formed by Candida albicans and methicillin resistant Staphylococcus aureus (MRSA). Scanning electron microscopy, florescence microscopy and phase contrast microscopy unveiled a remarkable reduction in biofilm area, accompanied by disruptions in the cell wall and abnormalities on the cell surface of the tested microorganisms. In conclusion, the nanoencapsulation of shikonin with tea tree oil as the lipid phase showcased significantly enhanced antimicrobial and antibiofilm potential compared to pure shikonin against resistant strains of Candida albicans and Staphylococcus aureus.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Naftoquinonas , Óleo de Melaleuca , Candida albicans , Óleo de Melaleuca/farmacologia , Staphylococcus aureus , Biofilmes , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana
3.
Lett Appl Microbiol ; 76(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37989849

RESUMO

Treatment of wounds is challenging due to bacterial infections, including Staphylococcus aureus and Pseudomonas aeruginosa. Using the merits of alternative antimicrobials like tea tree oil (TTO) and nanotechnology, they can be helpful in combatting bacterial infections. Solid lipid nanoparticle (SLN) and chitosan (CS) nanoparticles show great potential as carriers for enhancing the stability and therapeutic benefits of oils. The aim of this study is to compare the influence of nanocarriers in enhancing the antibacterial effects of TTO. The study evaluates the physicochemical and antibacterial properties of TTO-SLN and TTO-CS against P. aeruginosa and S. aureus. The TTO-SLN nanoparticles showed a clear round shape with the average diameter size of 477 nm, while the TTO-CS nanoparticles illustrated very homogeneous morphology with 144 nm size. The encapsulation efficiency for TTO-CS and TTO-SLN was ∼88.3% and 73.5%, respectively. Minimum inhibitory concentration against S. aureus and P. aeruginosa for TTO-CS, TTO-SLN, and pure TTO were 35 and 45 µg ml-1, 130 and 170 µg ml-1, and 380 and 410 µg ml-1, respectively. Since TTO-CS revealed an impressively higher antimicrobial effects in comparison with TTO-SLN and TTO alone, it can be considered as a nanocarrier that produces the same antimicrobial effects with lower required amounts of the active substance.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Quitosana , Melaleuca , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Óleo de Melaleuca , Staphylococcus aureus , Pseudomonas aeruginosa , Melaleuca/química , Quitosana/farmacologia , Árvores , Óleo de Melaleuca/farmacologia , Óleo de Melaleuca/química , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Nanopartículas/química , Testes de Sensibilidade Microbiana , Chá
4.
J Wound Care ; 32(Sup3a): xiv-xxi, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36930536

RESUMO

Objective: The effects of topical tea tree oil (TTO) on the healing of pressure ulcers (PUs) in an animal model was evaluated. Method: To induce PUs, ischaemia-reperfusion cycles were performed by the external application of magnetic plates, with an ischaemic period of eight hours and a reperfusion period of 16 hours. Male and female Wistar rats were divided into three equally sized groups (n=20): one group received topical glycerin twice daily, another group received topical 10% (volume/volume (v/v)) TTO in glycerin twice daily; and the remaining group was untreated. The animals were assessed after one, four, seven and 14 cycles of ischaemia-reperfusion by thermal camera imaging, and then euthanised and sampled to investigate the degree of inflammation, collagen synthesis and apoptosis in the PUs. Results: Although topical glycerin alone suppressed local inflammation and apoptosis, this suppressive effect was accentuated at all timepoints by the application of topical TTO + glycerin. Similarly, an increase in collagen synthesis was observed in the glycerin group and this was accentuated by TTO at all timepoints. Parallel to the histological findings, the local temperature had decreased significantly on days 4 and 7 for both treatment groups (glycerin and TTO+glycerin). Conclusion: In this study, treatment with 10% (v/v) TTO in glycerin effectively suppressed skin inflammation and apoptosis, while it increased collagen synthesis during PU formation.


Assuntos
Úlcera por Pressão , Óleo de Melaleuca , Ratos , Animais , Úlcera por Pressão/tratamento farmacológico , Óleo de Melaleuca/farmacologia , Óleo de Melaleuca/uso terapêutico , Glicerol , Ratos Wistar , Inflamação/tratamento farmacológico , Colágeno , Supuração
5.
Molecules ; 28(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37570859

RESUMO

Nanoemulsion is a new multi-component drug delivery system; the selection of different oil phases can give it special physiological activity, and play the role of "medicine and pharmaceutical excipients all-in-one". In this paper, we used glycyrrhizic acid as the natural surfactant, and Blumea balsamifera oil (BB) and tea tree oil (TTO) as the mixed oil phase, to obtain a new green functional composite nanoemulsion. Using the average particle size and polydispersion index (PDI) as the evaluation criteria, the effects of the oil ratio, oil content, glycyrrhizic acid concentration, and ultrasonic time on the nanoemulsion were systematically investigated. The stability and physicochemical properties and biological activities of BB-TTO NEs prepared via the optimum formulation were characterized. The optimal prescription was BB: TTO = 1:1, 5% oil phase, 0.7% glycyrrhizic acid, and 5 min ultrasonication time. The mean particle size, PDI, and zeta potential were 160.01 nm, 0.125, and -50.94 mV, respectively. The nanoemulsion showed non-significant changes in stability after centrifugation, dilution, and 120 days storage. These nanoemulsions were found to exhibit potential antibacterial and anti-inflammatory activities. The minimal inhibitory concentration (MIC) of BB-TTO NEs against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa is 2975 µg/mL, 2975 µg/mL, and 5950 µg/mL, respectively. A lower level of inflammatory cell infiltration and proportion of fibrosis were found in the synovial tissue of AIA rats treated with BB-TTO NEs. These findings demonstrate that the BB-TTO NEs produced in this study have significant potential for usage in antibacterial and anti-inflammatory areas.


Assuntos
Óleo de Melaleuca , Ratos , Animais , Óleo de Melaleuca/farmacologia , Óleo de Melaleuca/química , Ácido Glicirrízico/farmacologia , Escherichia coli , Sistemas de Liberação de Medicamentos , Antibacterianos/farmacologia , Antibacterianos/química , Emulsões/química
6.
Biofouling ; 38(1): 100-117, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35012385

RESUMO

Carbapenem-resistant Serratia marcescens (CRE-S. marcescens) has recently emerged as an opportunistic human pathogen that causes various nosocomial and respiratory tract infections. The prognosis for CRE-S. marcescens-related infections is very poor and these infections are difficult to treat. This study investigated the synthesis of tea tree oil nanoemulsion (TTO-NE) and its impact on CRE-S. marcescens both in vitro and in vivo. TTO-NE was characterized by dynamic light scattering (DLS) and effectively eradicated bacterial planktonic and sessile forms, reduced bacterial virulence factors, and generated reactive oxygen species (ROS) in the bacterial cell. Notably, TTO-NE was efficient in reducing the colonization of CRE-S. marcescens in a C. elegans in vivo model. The data suggest that TTO-NE might be an excellent tool to combat infections associated with CRE-S. marcescens.


Assuntos
Serratia marcescens , Óleo de Melaleuca , Animais , Antibacterianos/farmacologia , Biofilmes , Caenorhabditis elegans , Carbapenêmicos/farmacologia , Humanos , Óleo de Melaleuca/farmacologia
7.
Lett Appl Microbiol ; 75(3): 598-606, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35611552

RESUMO

The detection of resistant strains of Clostridioides difficile against existing antibiotics and the side effects led to the investigation of alternative agents. Inhibition zones of various essential oils to four strains of C.difficile and other Clostridium species ranged from 8·32 to 44·18 mm. The highest zone was observed in cinnamon and tea tree essential oils. and The MIC values varied between 0·39-25 (%, v/v). The main components were cinnamaldehyde (85·64%) in cinnamon essential oil, 4-terpineol (83·6%) was determined in tea tree essential oil. Additive effects were found between cinnamon essential oil and vancomycin and between cinnamon and tea tree essential oils, and the FICI values were 0·512 and 0·517, respectively. Both cinnamon and tea tree essential oils showed antibiofilm activities against all tested C. difficile strains at all tested concentrations. Essential oils may be used as a supplement in addition to treatment in the control of C. difficile-related diseases.


Assuntos
Clostridioides difficile , Óleos Voláteis , Óleo de Melaleuca , Antibacterianos/farmacologia , Biofilmes , Cinnamomum zeylanicum , Clostridioides , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Chá , Óleo de Melaleuca/farmacologia , Vancomicina/farmacologia
8.
Lett Appl Microbiol ; 75(3): 578-587, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34687564

RESUMO

Broth microdilution assays were used to determine minimum inhibitory concentrations (MICs) and fractional inhibitory concentration indices (FICIs) of tea tree oil (TTO), tobramycin, colistin and aztreonam (ATM) against clinical cystic fibrosis-associated Pseudomonas aeruginosa (CFPA) isolates (n = 20). The minimum biofilm eradication concentration (MBEC) and fractional biofilm eradication concentration index (FBECI) were also determined using a similar microbroth dilution checkerboard assay, with biofilms formed using the MBEC device® . TTO was effective at lower concentrations against multidrug-resistant (MDR) CFPA isolates (n = 3) in a biofilm compared to in a planktonic state (MBEC 18·7-fold lower than MIC). CFPA within biofilm was less susceptible to ATM, colistin and tobramycin compared to planktonic cells (MBEC 6·3-fold, 9·3-fold, and 2·1-fold higher than MIC respectively). All combinations of essential oil and antibiotic showed indifferent relationships (FICI 0·52-1·72) when tested against planktonic MDR CFPA isolates (n = 5). Against CFPA isolates (n = 3) in biofilm, combinations of TTO/aztreonam and TTO/colistin showed indifferent relationships (mean FBECI 0·85 and 0·60 respectively), whereas TTO/tobramycin showed a synergistic relationship (mean FBECI 0·42). The antibiofilm properties of TTO and the synergistic relationship seen between TTO and tobramycin against CFPA in vitro make inhaled TTO a promising candidate as a potential therapeutic agent.


Assuntos
Fibrose Cística , Melaleuca , Óleos Voláteis , Óleo de Melaleuca , Antibacterianos/farmacologia , Aztreonam/farmacologia , Biofilmes , Colistina/farmacologia , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia , Pseudomonas aeruginosa , Chá , Óleo de Melaleuca/farmacologia , Tobramicina/farmacologia , Árvores
9.
Molecules ; 27(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35744913

RESUMO

The COVID-19 pandemic has highlighted the relevance of proper disinfection procedures and renewed interest in developing novel disinfectant materials as a preventive strategy to limit SARS-CoV-2 contamination. Given its widely known antibacterial, antifungal, and antiviral properties, Melaleuca alternifolia essential oil, also named Tea tree oil (TTO), is recognized as a potential effective and safe natural disinfectant agent. In particular, the proposed antiviral activity of TTO involves the inhibition of viral entry and fusion, interfering with the structural dynamics of the membrane and with the protein envelope components. In this study, for the first time, we demonstrated the virucidal effects of TTO against the feline coronavirus (FCoVII) and the human coronavirus OC43 (HCoV-OC43), both used as surrogate models for SARS-CoV-2. Then, to atomistically uncover the possible effects exerted by TTO compounds on the outer surface of the SARS-CoV-2 virion, we performed Gaussian accelerated Molecular Dynamics simulations of a SARS-CoV-2 envelope portion, including a complete model of the Spike glycoprotein in the absence or presence of the three main TTO compounds (terpinen-4-ol, γ-terpinene, and 1,8-cineole). The obtained results allowed us to hypothesize the mechanism of action of TTO and its possible use as an anti-coronavirus disinfectant agent.


Assuntos
Tratamento Farmacológico da COVID-19 , Desinfetantes , Melaleuca , Óleo de Melaleuca , Antivirais/farmacologia , Desinfetantes/farmacologia , Humanos , Melaleuca/química , Pandemias , SARS-CoV-2 , Óleo de Melaleuca/química , Óleo de Melaleuca/farmacologia
10.
Molecules ; 27(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36234697

RESUMO

The GC-MS analysis of tea tree oil (TTO) revealed 38 volatile components with sesquiterpene hydrocarbons (43.56%) and alcohols (41.03%) as major detected classes. TTO efficacy is masked by its hydrophobicity; nanoencapsulation can address this drawback. The results showed that TTO-loaded solid lipid nanoparticles (SLN1), composed of glyceryl monostearate (2% w/w) and Poloxamer188 (5% w/w), was spherical in shape with a core-shell microstructure. TTO-SLN1 showed a high entrapment efficiency (96.26 ± 2.3%), small particle size (235.0 ± 20.4 nm), low polydispersity index (0.31 ± 0.01), and high negative Zeta potential (-32 mV). Moreover, it exhibited a faster active agent release (almost complete within 4 h) compared to other formulated TTO-SLNs as well as the plain oil. TTO-SLN1 was then incorporated into cellulose nanofibers gel, isolated from sugarcane bagasse, to form the 'TTO-loaded nanolipogel' which had a shear-thinning behavior. Second-degree thermal injuries were induced in Wistar rats, then the burned skin areas were treated daily for 7 days with the TTO-loaded nanolipogel compared to the unmedicated nanolipogel, the TTO-loaded conventional gel, and the normal saline (control). The measurement of burn contraction proved that TTO-loaded nanolipogel exhibited a significantly accelerated skin healing, this was confirmed by histopathological examination as well as quantitative assessment of inflammatory infiltrate. This study highlighted the success of the proposed nanotechnology approach in improving the efficacy of TTO used for the repair of skin damage induced by burns.


Assuntos
Queimaduras , Saccharum , Óleo de Melaleuca , Álcoois , Animais , Queimaduras/tratamento farmacológico , Celulose , Cromatografia Gasosa-Espectrometria de Massas , Lipossomos , Nanopartículas , Ratos , Ratos Wistar , Solução Salina , Óleo de Melaleuca/química , Óleo de Melaleuca/farmacologia
11.
Eur J Clin Microbiol Infect Dis ; 40(7): 1517-1520, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33635424

RESUMO

This study aimed to compare the antimicrobial action of three soaps for hand hygiene (HH): 2.0% Tea Tree Oil (TTO); 0.5% triclosan; 2.0% chlorhexidine, and to explore the perception of healthcare professionals about TTO. Two-step study: a quantitative, to determine the logarithmic reduction of Escherichia coli K12 colony-forming units before and after HH of 15 volunteers and quali-quantitative, through interviews with 23 health professionals. All the three products demonstrated antimicrobial action (a log10 reduction factor of 4.18 for TTO, 4.31 for triclosan, 3.89 for chlorhexidine, and 3.17 for reference soap). Professionals remarked the pleasant aroma and non-dryness of skin when using soap containing TTO.


Assuntos
Clorexidina/farmacologia , Higiene das Mãos , Sabões/farmacologia , Óleo de Melaleuca/química , Óleo de Melaleuca/farmacologia , Triclosan/farmacologia , Adulto , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Clorexidina/química , Estudos Cross-Over , Humanos , Pessoa de Meia-Idade , Pele/efeitos dos fármacos , Sabões/química , Triclosan/química , Adulto Jovem
12.
Nanotechnology ; 32(27)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33770766

RESUMO

Tea tree oil, a natural antibacterial compound, cannot be used effectively because of its volatile nature. In this work, a biocompatible carrier was prepared and loaded with tea tree essential oil. The carrier was prepared via the electrostatic or chemical action of aminated mesoporous silica and sodium rosin for achieving a low volatilization rate of tea tree essential oil. A synergistic antibacterial effect was observed between sodium rosin and tea tree essential oil. This method utilized the positive charge of the amino group and the condensation reaction with the carboxyl group to achieve physical and chemical interactions with sodium rosin. Fourier Transform Infrared, Brunauer-Emmet-Teller, Zeta potential, SEM, TEM, and TG were performed to characterize the structure and properties of the samples. Compared to the electrostatic effect, the chemically modified system exhibited a longer sustained release, and the sustained release curve followed the Korsmeyer-Peppas release model. Also, the antibacterial properties of the chemically modified system exhibited better minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) respectively, the MIC and MBC forE. coliwere 0.3 mg ml-1and 0.6 mg ml-1respectively, forS. aureuswere 0.15 mg ml-1and 0.3 mg ml-1respectively. More strikingly, the sample also demonstrated long-term antibacterial performance. Therefore, this work provides a new way for the delivery of volatile antibacterial drugs to achieve sustained-release and long-lasting antibacterial effects.


Assuntos
Antibacterianos/química , Resinas Vegetais/química , Dióxido de Silício/química , Óleo de Melaleuca/química , Antibacterianos/farmacologia , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Porosidade , Resinas Vegetais/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Óleo de Melaleuca/farmacologia
13.
Int J Clin Pract ; 75(8): e14206, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33950544

RESUMO

BACKGROUND: Hand hygiene is paramount in preventing healthcare-associated infections in medical environments and the spread of infectious diseases in non-medical environments. AIMS: This study used a randomised controlled trial to investigate the effects of a tea tree (Melaleuca alternifolia) oil disinfectant on hand disinfection and skin condition. METHODS: A tea tree oil group received 5 mL of 10% tea tree oil disinfectant mixed in a ratio of 2:2:1:15 of Melaleuca alternifolia oil, solubiliser, glycerin and sterile distilled water. Data collection took place between April 9 and April 13, 2018. The subjects were 112 healthy adults. An alcohol group received 2 mL of a gel-type hand sanitiser comprising 83% ethanol used without water; a benzalkonium chloride group received 0.8 mL of a foam-type hand sanitiser containing benzalkonium chloride used without water and a control group received no treatment. Subjective skin condition, transepidermal water loss and adenosine triphosphate were assessed, and a microbial culture test was performed following treatment. RESULTS: The general characteristics and the pretreatment dependent variables did not differ significantly by group. Posttreatment adenosine triphosphate log10 values significantly differed across all four groups (F = 3.23, P = .025). Similarly, posttreatment bacterial density log10 values differed significantly across the tea tree oil, alcohol, benzalkonium chloride and control groups (F = 91.71, P < .001). CONCLUSION: The study confirmed that tea tree oil disinfectant is effective for hand disinfection. Accordingly, tea tree oil disinfectants may be introduced to nursing practice as a new hand hygiene product to prevent and reduce healthcare-associated infections.


Assuntos
Desinfetantes , Higiene das Mãos , Óleo de Melaleuca , Adulto , Desinfetantes/farmacologia , Humanos , Chá , Óleo de Melaleuca/farmacologia , Árvores
14.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768755

RESUMO

Fungal skin infections are currently a major clinical problem due to their increased occurrence and drug resistance. The treatment of fungal skin infections is based on monotherapy or polytherapy using the synergy of the therapeutic substances. Tea tree oil (TTO) may be a valuable addition to the traditional antifungal drugs due to its antifungal and anti-inflammatory activity. Ketoconazole (KTZ) is an imidazole antifungal agent commonly used as a treatment for dermatological fungal infections. The use of hydrogels and organogel-based formulations has been increasing for the past few years, due to the easy method of preparation and long-term stability of the product. Therefore, the purpose of this study was to design and characterize different types of Pluronic® F-127 gel formulations containing KTZ and TTO as local delivery systems that can be applied in cases of skin fungal infections. The influence of TTO addition on the textural, rheological, and bioadhesive properties of the designed formulations was examined. Moreover, the in vitro release of KTZ, its permeation through artificial skin, and antifungal activity by the agar diffusion method were performed. It was found that obtained gel formulations were non-Newtonian systems, showing a shear-thinning behaviour and thixotropic properties with adequate textural features such as hardness, compressibility, and adhesiveness. Furthermore, the designed preparations with TTO were characterized by beneficial bioadhesive properties. The presence of TTO improved the penetration and retention of KTZ through the artificial skin membrane and this effect was particularly visible in hydrogel formulation. The developed gels containing TTO can be considered as favourable formulations in terms of drug release and antifungal activity.


Assuntos
Antifúngicos/farmacologia , Géis/química , Cetoconazol/farmacologia , Poloxâmero/química , Óleo de Melaleuca/química , Óleo de Melaleuca/farmacologia , Adesividade , Animais , Antifúngicos/química , Candida parapsilosis/efeitos dos fármacos , Química Farmacêutica , Liberação Controlada de Fármacos , Cetoconazol/química , Cinética , Lecitinas/química , Camundongos , Microscopia Eletrônica de Varredura , Modelos Biológicos , Modelos Teóricos , Reologia , Pele/metabolismo
15.
Molecules ; 26(13)2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34279411

RESUMO

The aim of this study was to evaluate the effect of toothpaste containing natural tea tree essential oil (TTO) and ethanolic extract of propolis (EEP), on microflora and selected indicators of oral health in patients using removable acrylic partial dentures. Fifty patients with varying conditions of hygiene were divided into two groups. The study group received the toothpaste with TTO and EEP, while the control group received the same toothpaste but without TTO and EEP. At the first visit, oral hygiene and hygiene of the prostheses were carried out. Control visits took place 7 and 28 days later and compared to baseline. Indexes like API (Approximal Plaque Index), mSBI (modified Sulcus Bleeding Index), OHI-s (simplified Oral Hygiene Index), and DPI (Denture Plaque Index) were assessed in three subsequent stages, and swabs were collected from floor of the mouth area to assess the microbiota. After 7 and 28 days of using the toothpaste with TTO and EEP, a statistically significant decrease of the examined indicator values were observed in the study group as compared to the values upon the initial visit. The number of isolated strains of microorganisms in the study group was decreased or maintained at the same level, whereas in the control group an increase in the number of isolated strains was observed. The observed stabilization of oral microbiota in patients from the study group confirms the beneficial activity of toothpaste containing EEP and TTO compared to the control group.


Assuntos
Antibacterianos/farmacologia , Prótese Parcial Removível/microbiologia , Etanol/química , Extratos Vegetais/farmacologia , Própole/química , Óleo de Melaleuca/farmacologia , Cremes Dentais/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Saúde Bucal , Higiene Bucal
16.
Molecules ; 26(2)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477259

RESUMO

Over the past 20-30 years, Trichophyton rubrum represented the most widespread dermatophyte with a prevalence accounting for 70% of dermatophytosis. The treatment for cutaneous infections caused by Trichophyton spp. are imidazoles (ketoconazole (KTZ)) and triazoles (itraconazole (ITZ)). T. rubrum can develop resistance to azoles after prolonged exposure to subinhibitory concentrations resulting in therapeutic failures and chronic infections. These problems have stimulated the search for therapeutic alternatives, including essential oils, and their potential use in combination with conventional antifungals. The purpose of this study was to evaluate the antifungal activity of tea tree oil (TTO) (Melaleuca alternifolia essential oil) and the main components against T. rubrum and to assess whether TTO in association with KTZ/ITZ as reference drugs improves the antifungal activity of these drugs. We used a terpinen-4-ol chemotype (35.88%) TTO, and its antifungal properties were evaluated by minimum inhibitory and minimum fungicidal concentrations in accordance with the CLSI guidelines. The interaction between TTO and azoles was evaluated through the checkerboard and isobologram methods. The results demonstrated both the fungicide activity of TTO on T. rubrum and the synergism when it was used in combination with azoles. Therefore, this mixture may reduce the minimum effective dose of azole required and minimize the side effects of the therapy. Synergy activity offered a promise for combination topical treatment for superficial mycoses.


Assuntos
Antifúngicos , Arthrodermataceae/crescimento & desenvolvimento , Itraconazol , Cetoconazol , Melaleuca/química , Óleo de Melaleuca , Antifúngicos/química , Antifúngicos/farmacologia , Sinergismo Farmacológico , Itraconazol/agonistas , Itraconazol/química , Itraconazol/farmacologia , Cetoconazol/agonistas , Cetoconazol/química , Cetoconazol/farmacologia , Óleo de Melaleuca/química , Óleo de Melaleuca/farmacologia
17.
Appl Microbiol Biotechnol ; 104(5): 2163-2178, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31980918

RESUMO

Tea tree oil (TTO) and its two characteristic components (terpinen-4-ol and 1,8-cineole) have been shown to inhibit Botrytis cinerea growth. In this study, we conducted a transcriptome analysis to determine the effects of TTO and its characteristic components, alone and in combination, against B. cinerea. Most differentially expressed genes (DEGs) from B. cinerea cells treated with terpinen-4-ol participated in the biosynthesis of secondary metabolites, and the metabolism of amino acids, carbohydrates, and lipids. All treatments containing terpinen-4-ol potentially induced mitochondrial dysfunction and oxidative stress. These were further confirmed by the decreased activities of several enzymes (e.g., succinate dehydrogenase (SDH), malate dehydrogenase (MDH), α-ketoglutarate dehydrogenase (α-KGDH), isocitrate dehydrogenase (ICDH)), the increased activities of certain enzymes (e.g., catalase (CAT), peroxidase (POD), superoxide dismutase (SOD)), and increased content of hydrogen peroxide (H2O2). 1,8-Cineole mainly affected DEGs involved in genetic information processing, resulting in cell death. This study provides insight into the molecular mechanism of B. cinerea inhibition by TTO, and explains the synergistic effect of terpinen-4-ol and 1,8-cineole on B. cinerea.


Assuntos
Antifúngicos/farmacologia , Botrytis/efeitos dos fármacos , Botrytis/genética , Óleo de Melaleuca/farmacologia , Antifúngicos/química , Botrytis/crescimento & desenvolvimento , Sinergismo Farmacológico , Eucaliptol/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Óleo de Melaleuca/química , Terpenos/farmacologia , Transcriptoma/efeitos dos fármacos
18.
Cell Tissue Bank ; 21(2): 313-320, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32162164

RESUMO

Pityriasis versicolor (PV) is a chronic skin disease caused by virulence activities of Malassezia, a genus of skin-associated yeasts. Traditionally, Tioconazole is used as a topical antifungal for curing PV. Previous investigations cited that human amniotic membrane (HAM), a placental tissue, has antimicrobial and anti-inflammatory activities and is useful as a dressing for healing skin lesions. Moreover, tea tree oil (TTO) has a potent antifungal efficacy. This clinical trial aims to achieve an alternative therapeutic treatment able to kill Malassezia and heal PV lesions using TTO-saturated HAM (TOSHAM), with little application times. This study subjected 120 patients with hypopigmented or hyperpigmented PV lesions; half patients were treated weekly with TOSHAM compared with the others who applying 1% Tioconazole cream daily as a traditional treatment. Microbiological evaluation of in vitro fungicidal activity of TOSHAM versus Tioconazole was carried out against Malassezia furfur culture. The clinical outcomes of this study proved the superior activity of TOSHAM to heal PV lesions than Tioconazole; this was in harmony with microbiological findings. This study approached a novel therapeutic treatment of PV with great outcomes by using TOSHAM.


Assuntos
Âmnio/efeitos da radiação , Imidazóis/administração & dosagem , Imidazóis/uso terapêutico , Óleo de Melaleuca/uso terapêutico , Tinha Versicolor/tratamento farmacológico , Administração Tópica , Adolescente , Adulto , Criança , Progressão da Doença , Feminino , Humanos , Imidazóis/farmacologia , Malassezia/efeitos dos fármacos , Masculino , Testes de Sensibilidade Microbiana , Pigmentação , Óleo de Melaleuca/farmacologia , Tinha Versicolor/microbiologia , Resultado do Tratamento , Adulto Jovem
19.
Int J Mol Sci ; 21(9)2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397373

RESUMO

Antimicrobial resistance, an ever-growing global crisis, is strongly linked to the swine production industry. In previous studies, Melaleuca alternifolia and Rosmarinus officinalis essential oils have been evaluated for toxicity on porcine spermatozoa and for antimicrobial capabilities in artificial insemination doses, with the future perspective of their use as antibiotic alternatives. The aim of the present research was to develop and validate in vitro and ex vivo models of porcine uterine mucosa for the evaluation of mucosal toxicity of essential oils. The in vitro model assessed the toxicity of a wider range of concentrations of both essential oils (from 0.2 to 500 mg/mL) on sections of uterine tissue, while the ex vivo model was achieved by filling the uterine horns. The damage induced by the oils was assessed by Evans Blue (EB) permeability assay and histologically. The expression of ZO-1, a protein involved in the composition of tight junctions, was assessed through immunohistochemical and immunofluorescence analysis. The results showed that low concentrations (0.2-0.4 mg/mL) of both essential oils, already identified as non-spermicidal but still antimicrobial, did not alter the structure and permeability of the swine uterine mucosa. Overall, these findings strengthen the hypothesis of a safe use of essential oils in inseminating doses of boar to replace antibiotics.


Assuntos
Anti-Infecciosos/toxicidade , Melaleuca/química , Mucosa/efeitos dos fármacos , Óleos Voláteis/toxicidade , Rosmarinus/química , Óleo de Melaleuca/toxicidade , Útero/efeitos dos fármacos , Animais , Anti-Infecciosos/farmacologia , Corantes/farmacocinética , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Epitélio/efeitos dos fármacos , Epitélio/ultraestrutura , Azul Evans/farmacocinética , Feminino , Inseminação Artificial/veterinária , Masculino , Microscopia de Fluorescência , Óleos Voláteis/farmacologia , Permeabilidade/efeitos dos fármacos , Preservação do Sêmen/métodos , Espermatozoides/efeitos dos fármacos , Suínos , Óleo de Melaleuca/farmacologia , Junções Íntimas/efeitos dos fármacos , Útero/ultraestrutura , Proteína da Zônula de Oclusão-1/análise
20.
AAPS PharmSciTech ; 21(6): 227, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32767025

RESUMO

Streptococcus mutans (S. mutans) is the principal etiologic agent in the occurrence of human dental caries and the formation of biofilms on the surface of teeth. Tea tree oil (TTO) has been demonstrated to exhibit a wide range of pharmacological actions that can effectively inhibit the activity of bacteria. In this context, we evaluated the in vitro antimicrobial effects of TTO on S. mutans both during planktonic growth and in biofilms compared with 0.2% CHX. We determined the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) using the microdilution method, the bacteriostatic rate using an MTT assay, and the antimicrobial time using a time-kill assay. Then, we explored the effects of TTO on acid production and cell integrity. Furthermore, the effects of TTO on the biomass and bacterial activity of S. mutans biofilms were studied. Finally, scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were used to investigate the structure and activity of biofilms. The MIC and MBC values were 0.125% and 0.25%, and the bacterial inhibition rate was concentration dependent. TTO can effectively inhibit bacterial acid production and destroy the integrity of the cell membrane. Electron micrographs revealed a reduction in bacterial aggregation, inhibited biofilm formation, and reduced biofilm thickness. The effect of TTO was the same as that of 0.2% CHX at a specific concentration. In summary, we suggest that TTO is a potential anticariogenic agent that can be used against S. mutans.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Óleo de Melaleuca/farmacologia , Cárie Dentária/microbiologia , Humanos , Técnicas In Vitro , Testes de Sensibilidade Microbiana , Microscopia Confocal , Microscopia Eletrônica de Varredura , Streptococcus mutans/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa