Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.557
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(4): 981-998.e25, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325365

RESUMO

The female reproductive tract (FRT) undergoes extensive remodeling during reproductive cycling. This recurrent remodeling and how it shapes organ-specific aging remains poorly explored. Using single-cell and spatial transcriptomics, we systematically characterized morphological and gene expression changes occurring in ovary, oviduct, uterus, cervix, and vagina at each phase of the mouse estrous cycle, during decidualization, and into aging. These analyses reveal that fibroblasts play central-and highly organ-specific-roles in FRT remodeling by orchestrating extracellular matrix (ECM) reorganization and inflammation. Our results suggest a model wherein recurrent FRT remodeling over reproductive lifespan drives the gradual, age-related development of fibrosis and chronic inflammation. This hypothesis was directly tested using chemical ablation of cycling, which reduced fibrotic accumulation during aging. Our atlas provides extensive detail into how estrus, pregnancy, and aging shape the organs of the female reproductive tract and reveals the unexpected cost of the recurrent remodeling required for reproduction.


Assuntos
Envelhecimento , Genitália Feminina , Animais , Feminino , Camundongos , Gravidez , Genitália Feminina/citologia , Genitália Feminina/metabolismo , Inflamação/metabolismo , Útero/citologia , Vagina/citologia , Análise de Célula Única
2.
Nature ; 619(7970): 595-605, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37468587

RESUMO

Beginning in the first trimester, fetally derived extravillous trophoblasts (EVTs) invade the uterus and remodel its spiral arteries, transforming them into large, dilated blood vessels. Several mechanisms have been proposed to explain how EVTs coordinate with the maternal decidua to promote a tissue microenvironment conducive to spiral artery remodelling (SAR)1-3. However, it remains a matter of debate regarding which immune and stromal cells participate in these interactions and how this evolves with respect to gestational age. Here we used a multiomics approach, combining the strengths of spatial proteomics and transcriptomics, to construct a spatiotemporal atlas of the human maternal-fetal interface in the first half of pregnancy. We used multiplexed ion beam imaging by time-of-flight and a 37-plex antibody panel to analyse around 500,000 cells and 588 arteries within intact decidua from 66 individuals between 6 and 20 weeks of gestation, integrating this dataset with co-registered transcriptomics profiles. Gestational age substantially influenced the frequency of maternal immune and stromal cells, with tolerogenic subsets expressing CD206, CD163, TIM-3, galectin-9 and IDO-1 becoming increasingly enriched and colocalized at later time points. By contrast, SAR progression preferentially correlated with EVT invasion and was transcriptionally defined by 78 gene ontology pathways exhibiting distinct monotonic and biphasic trends. Last, we developed an integrated model of SAR whereby invasion is accompanied by the upregulation of pro-angiogenic, immunoregulatory EVT programmes that promote interactions with the vascular endothelium while avoiding the activation of maternal immune cells.


Assuntos
Troca Materno-Fetal , Trofoblastos , Útero , Feminino , Humanos , Gravidez , Artérias/fisiologia , Decídua/irrigação sanguínea , Decídua/citologia , Decídua/imunologia , Decídua/fisiologia , Primeiro Trimestre da Gravidez/genética , Primeiro Trimestre da Gravidez/metabolismo , Primeiro Trimestre da Gravidez/fisiologia , Trofoblastos/citologia , Trofoblastos/imunologia , Trofoblastos/fisiologia , Útero/irrigação sanguínea , Útero/citologia , Útero/imunologia , Útero/fisiologia , Troca Materno-Fetal/genética , Troca Materno-Fetal/imunologia , Troca Materno-Fetal/fisiologia , Fatores de Tempo , Proteômica , Perfilação da Expressão Gênica , Conjuntos de Dados como Assunto , Idade Gestacional
3.
Immunity ; 48(5): 951-962.e5, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29768178

RESUMO

Natural killer cells (NKs) are abundant in the human decidua, regulating trophoblast invasion and angiogenesis. Several diseases of poor placental development are associated with first pregnancies, so we thus looked to characterize differences in decidual NKs (dNKs) in first versus repeated pregnancies. We discovered a population found in repeated pregnancies, which has a unique transcriptome and epigenetic signature, and is characterized by high expression of the receptors NKG2C and LILRB1. We named these cells Pregnancy Trained decidual NK cells (PTdNKs). PTdNKs have open chromatin around the enhancers of IFNG and VEGFA. Activation of PTdNKs led to increased production and secretion of IFN-γ and VEGFα, with the latter supporting vascular sprouting and tumor growth. The precursors of PTdNKs seem to be found in the endometrium. Because repeated pregnancies are associated with improved placentation, we propose that PTdNKs, which are present primarily in repeated pregnancies, might be involved in proper placentation.


Assuntos
Memória Imunológica/imunologia , Células Matadoras Naturais/imunologia , Transcriptoma/imunologia , Útero/imunologia , Animais , Linhagem Celular Tumoral , Decídua/imunologia , Decídua/metabolismo , Feminino , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Células Matadoras Naturais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos SCID , Camundongos Transgênicos , Gravidez , Útero/citologia , Fator A de Crescimento do Endotélio Vascular/imunologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Development ; 150(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37417811

RESUMO

The invasive trophoblast cell lineages in rat and human share crucial responsibilities in establishing the uterine-placental interface of the hemochorial placenta. These observations have led to the rat becoming an especially useful animal model for studying hemochorial placentation. However, our understanding of similarities or differences between regulatory mechanisms governing rat and human invasive trophoblast cell populations is limited. In this study, we generated single-nucleus ATAC-seq data from gestation day 15.5 and 19.5 rat uterine-placental interface tissues, and integrated the data with single-cell RNA-seq data generated at the same stages. We determined the chromatin accessibility profiles of invasive trophoblast, natural killer, macrophage, endothelial and smooth muscle cells, and compared invasive trophoblast chromatin accessibility with extravillous trophoblast cell accessibility. In comparing chromatin accessibility profiles between species, we found similarities in patterns of gene regulation and groups of motifs enriched in accessible regions. Finally, we identified a conserved gene regulatory network in invasive trophoblast cells. Our data, findings and analysis will facilitate future studies investigating regulatory mechanisms essential for the invasive trophoblast cell lineage.


Assuntos
Redes Reguladoras de Genes , Trofoblastos , Animais , Gravidez , Ratos , Núcleo Celular , Cromatina , Placenta/citologia , Análise da Expressão Gênica de Célula Única , Fatores de Transcrição/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo , Útero/citologia , Feminino
5.
FASEB J ; 38(9): e23632, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38686936

RESUMO

The upper Müllerian duct (MD) is patterned and specified into two morphologically and functionally distinct organs, the oviduct and uterus. It is known that this regionalization process is instructed by inductive signals from the adjacent mesenchyme. However, the interaction landscape between epithelium and mesenchyme during upper MD development remains largely unknown. Here, we performed single-cell transcriptomic profiling of mouse neonatal oviducts and uteri at the initiation of MD epithelial differentiation (postnatal day 3). We identified major cell types including epithelium, mesenchyme, pericytes, mesothelium, endothelium, and immune cells in both organs with established markers. Moreover, we uncovered region-specific epithelial and mesenchymal subpopulations and then deduced region-specific ligand-receptor pairs mediating mesenchymal-epithelial interactions along the craniocaudal axis. Unexpectedly, we discovered a mesenchymal subpopulation marked by neurofilaments with specific localizations at the mesometrial pole of both the neonatal oviduct and uterus. Lastly, we analyzed and revealed organ-specific signature genes of pericytes and mesothelial cells. Taken together, our study enriches our knowledge of upper MD development, and provides a manageable list of potential genes, pathways, and region-specific cell subtypes for future functional studies.


Assuntos
Ductos Paramesonéfricos , Oviductos , Análise de Célula Única , Transcriptoma , Útero , Animais , Feminino , Camundongos , Útero/metabolismo , Útero/citologia , Ductos Paramesonéfricos/metabolismo , Oviductos/metabolismo , Oviductos/citologia , Perfilação da Expressão Gênica , Animais Recém-Nascidos , Diferenciação Celular , Mesoderma/metabolismo , Mesoderma/citologia , Células Epiteliais/metabolismo , Camundongos Endogâmicos C57BL , Regulação da Expressão Gênica no Desenvolvimento
6.
FASEB J ; 38(14): e23839, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39037418

RESUMO

During early pregnancy in mice, the establishment of uterine receptivity and endometrial decidualization require the extensive proliferation and differentiation of endometrial epithelial cells or stromal cells. Pin1 has been suggested to act as a molecular 'timer' of the cell cycle and is involved in the regulation of cellular proliferation and differentiation by binding many cell-cycle regulatory proteins. However, its physiological role during early pregnancy is still not fully understood. Here, we employed immunohistochemistry to determine the spatiotemporal pattern of Pin1 expression during early pregnancy. We found that Pin1 was mainly localized in subluminal stromal cells on day 4, in the decidual zone on days 5 to 8 of pregnancy and in artificial decidualization. Using a uterine stromal cell culture system, we found that progesterone, but not estrogen, induced the expression of Pin1 in a progesterone receptor-dependent manner. Inhibition of Pin1 in the uterus leads to impaired embryo implantation and decidualization in mice. Notably, a decrease in Pin1 activation affected the functional execution of several implantation- or decidualization-related factors. These findings provide new evidence for a previously unknown function of Pin1 in mediating embryo implantation and decidualization during successful pregnancy establishment and maintenance.


Assuntos
Decídua , Implantação do Embrião , Peptidilprolil Isomerase de Interação com NIMA , Útero , Animais , Feminino , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/genética , Implantação do Embrião/fisiologia , Camundongos , Gravidez , Decídua/metabolismo , Decídua/citologia , Útero/metabolismo , Útero/citologia , Progesterona/metabolismo , Células Estromais/metabolismo , Receptores de Progesterona/metabolismo , Células Cultivadas , Endométrio/metabolismo , Endométrio/citologia
7.
Nature ; 565(7739): 372-376, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30626964

RESUMO

For more than 50 years, the methylation of mammalian actin at histidine 73 has been known to occur1. Despite the pervasiveness of His73 methylation, which we find is conserved in several model animals and plants, its function remains unclear and the enzyme that generates this modification is unknown. Here we identify SET domain protein 3 (SETD3) as the physiological actin His73 methyltransferase. Structural studies reveal that an extensive network of interactions clamps the actin peptide onto the surface of SETD3 to orient His73 correctly within the catalytic pocket and to facilitate methyl transfer. His73 methylation reduces the nucleotide-exchange rate on actin monomers and modestly accelerates the assembly of actin filaments. Mice that lack SETD3 show complete loss of actin His73 methylation in several tissues, and quantitative proteomics analysis shows that actin His73 methylation is the only detectable physiological substrate of SETD3. SETD3-deficient female mice have severely decreased litter sizes owing to primary maternal dystocia that is refractory to ecbolic induction agents. Furthermore, depletion of SETD3 impairs signal-induced contraction in primary human uterine smooth muscle cells. Together, our results identify a mammalian histidine methyltransferase and uncover a pivotal role for SETD3 and actin His73 methylation in the regulation of smooth muscle contractility. Our data also support the broader hypothesis that protein histidine methylation acts as a common regulatory mechanism.


Assuntos
Actinas/química , Actinas/metabolismo , Distocia/enzimologia , Distocia/prevenção & controle , Histidina/química , Histidina/metabolismo , Metiltransferases/metabolismo , Animais , Linhagem Celular , Feminino , Histona Metiltransferases , Histonas , Tamanho da Ninhada de Vivíparos/genética , Masculino , Metilação , Metiltransferases/deficiência , Metiltransferases/genética , Camundongos , Modelos Moleculares , Músculo Liso/citologia , Músculo Liso/fisiologia , Gravidez , Proteômica , Contração Uterina , Útero/citologia , Útero/fisiologia
8.
PLoS Genet ; 18(1): e1010018, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35025868

RESUMO

Approximately 75% of failed pregnancies are considered to be due to embryo implantation failure or defects. Nevertheless, the explicit signaling mechanisms governing this process have not yet been elucidated. Here, we found that conditional deletion of the Shp2 gene in mouse uterine stromal cells deferred embryo implantation and inhibited the decidualization of stromal cells, which led to embryonic developmental delay and to the death of numerous embryos mid-gestation, ultimately reducing female fertility. The absence of Shp2 in stromal cells increased the proliferation of endometrial epithelial cells, thereby disturbing endometrial epithelial remodeling. However, Shp2 deletion impaired the proliferation and polyploidization of stromal cells, which are distinct characteristics of decidualization. In human endometrial stromal cells (hESCs), Shp2 expression gradually increased during the decidualization process. Knockout of Shp2 blocked the decidual differentiation of hESCs, while Shp2 overexpression had the opposite effect. Shp2 knockout inhibited the proliferation of hESCs during decidualization. Whole gene expression profiling analysis of hESCs during the decidualization process showed that Shp2 deficiency disrupted many signaling transduction pathways and gene expression. Analyses of hESCs and mouse uterine tissues confirmed that the signaling pathways extracellular regulated protein kinases (ERK), protein kinase B (AKT), signal transducer and activator of transcription 3 (STAT3) and their downstream transcription factors CCAAT/enhancer binding protein ß (C/EBPß) and Forkhead box transcription factor O1 (FOXO-1) were involved in the Shp2 regulation of decidualization. In summary, these results demonstrate that Shp2 plays a crucial role in stromal decidualization by mediating and coordinating multiple signaling pathways in uterine stromal cells. Our discovery possibly provides a novel key regulator of embryo implantation and novel therapeutic target for pregnancy failure.


Assuntos
Decídua/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Útero/citologia , Animais , Linhagem Celular , Proliferação de Células , Implantação do Embrião , Feminino , Deleção de Genes , Perfilação da Expressão Gênica , Humanos , Camundongos , Gravidez , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Transdução de Sinais , Células Estromais/citologia , Células Estromais/metabolismo , Útero/metabolismo
9.
Hum Reprod ; 39(8): 1767-1777, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876975

RESUMO

STUDY QUESTION: Can a co-culture of three cell types mimic the in vivo layers of the uterine wall? SUMMARY ANSWER: Three protocols tested for co-culture of endometrial epithelial cells (EEC), endometrial stromal cells (ESC), and myometrial smooth muscle cells (MSMC) led to formation of the distinct layers that are characteristic of the structure of the uterine wall in vivo. WHAT IS KNOWN ALREADY: We previously showed that a layer-by-layer co-culture of EEC and MSMC responded to peristaltic wall shear stresses (WSS) by increasing the polymerization of F-actin in both layers. Other studies showed that WSS induced significant cellular alterations in epithelial and endothelial cells. STUDY DESIGN, SIZE, DURATION: Human EEC and ESC cell lines and primary MSMC were co-cultured on a collagen-coated synthetic membrane in custom-designed wells. The co-culture model, created by seeding a mixture of all cells at once, was exposed to steady WSS of 0.5 dyne/cm2 for 10 and 30 min. PARTICIPANTS/MATERIALS, SETTING, METHODS: The co-culture of the three different cells was seeded either layer-by-layer or as a mixture of all cells at once. Validation of the models was by specific immunofluorescence staining and confocal microscopy. Alterations of the cytoskeletal F-actin in response to WSS were analyzed from the 2-dimensional confocal images through the Z-stacks following a previously published algorithm. MAIN RESULTS AND THE ROLE OF CHANCE: We generated three multi-cell in vitro models of the uterine wall with distinct layers of EEC, ESC, and MSMC that mimic the in vivo morphology. Exposure of the mixed seeding model to WSS induced increased polymerization of F-actin in all the three layers relative to the unexposed controls. Moreover, the increased polymerization of F-actin was higher (P-value < 0.05) when the length of exposure was increased from 10 to 30 min. Furthermore, the inner layers of ESC and MSMC, which are not in direct contact with the applied shearing fluid, also increased their F-actin polymerization. LARGE SCALE DATA: N/A. LIMITATIONS, RESONS FOR CAUTION: The mixed seeding co-culture model was exposed to steady WSS of one magnitude, whereas the uterus is a dynamic organ with intra-uterine peristaltic fluid motions that vary in vivo with different time-dependent magnitude. Further in vitro studies may explore the response to peristaltic WSS or other physical and/or hormonal perturbations that may mimic the spectrum of pathophysiological aspects. WIDER IMPLICATIONS OF THE FINDINGS: Numerous in vitro models were developed in order to mimic the human endometrium and endometrium-myometrium interface (EMI) region. The present co-culture models seem to be the first constructed from EEC, ESC, and MSMC on a collagen-coated synthetic membrane. These multi-cell in vitro models better represent the complex in vivo anatomy of the EMI region. The mixed seeding multi-cell in vitro model may easily be implemented in controlled studies of uterine function in reproduction and the pathogenesis of diseases. STUDY FINDING/COMPETING INTEREST(S): This study was supported in part by Tel Aviv University funds. All authors declare no conflict of interest.


Assuntos
Técnicas de Cocultura , Endométrio , Células Epiteliais , Miócitos de Músculo Liso , Feminino , Humanos , Endométrio/citologia , Endométrio/fisiologia , Endométrio/metabolismo , Células Epiteliais/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Miócitos de Músculo Liso/fisiologia , Miócitos de Músculo Liso/metabolismo , Útero/fisiologia , Útero/citologia , Útero/metabolismo , Miométrio/citologia , Miométrio/fisiologia , Miométrio/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo , Células Estromais/fisiologia , Actinas/metabolismo , Estresse Mecânico , Linhagem Celular
10.
Nature ; 557(7703): 106-111, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29720634

RESUMO

The blastocyst (the early mammalian embryo) forms all embryonic and extra-embryonic tissues, including the placenta. It consists of a spherical thin-walled layer, known as the trophectoderm, that surrounds a fluid-filled cavity sheltering the embryonic cells 1 . From mouse blastocysts, it is possible to derive both trophoblast 2 and embryonic stem-cell lines 3 , which are in vitro analogues of the trophectoderm and embryonic compartments, respectively. Here we report that trophoblast and embryonic stem cells cooperate in vitro to form structures that morphologically and transcriptionally resemble embryonic day 3.5 blastocysts, termed blastoids. Like blastocysts, blastoids form from inductive signals that originate from the inner embryonic cells and drive the development of the outer trophectoderm. The nature and function of these signals have been largely unexplored. Genetically and physically uncoupling the embryonic and trophectoderm compartments, along with single-cell transcriptomics, reveals the extensive inventory of embryonic inductions. We specifically show that the embryonic cells maintain trophoblast proliferation and self-renewal, while fine-tuning trophoblast epithelial morphogenesis in part via a BMP4/Nodal-KLF6 axis. Although blastoids do not support the development of bona fide embryos, we demonstrate that embryonic inductions are crucial to form a trophectoderm state that robustly implants and triggers decidualization in utero. Thus, at this stage, the nascent embryo fuels trophectoderm development and implantation.


Assuntos
Blastocisto/citologia , Células-Tronco Embrionárias/citologia , Animais , Blastocisto/metabolismo , Proteína Morfogenética Óssea 4/farmacologia , Autorrenovação Celular , Ectoderma/citologia , Ectoderma/metabolismo , Implantação do Embrião , Células-Tronco Embrionárias/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Fator 6 Semelhante a Kruppel/deficiência , Fator 6 Semelhante a Kruppel/genética , Fator 6 Semelhante a Kruppel/metabolismo , Masculino , Camundongos , Morfogênese , Proteína Nodal/genética , Proteína Nodal/metabolismo , Proteína Nodal/farmacologia , Transcriptoma , Trofoblastos/citologia , Trofoblastos/metabolismo , Útero/citologia , Útero/metabolismo
11.
Development ; 147(1)2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31806663

RESUMO

Cellular invasion is a key part of development, immunity and disease. Using an in vivo model of Caenorhabditis elegans anchor cell invasion, we characterize the gene regulatory network that promotes cell invasion. The anchor cell is initially specified in a stochastic cell fate decision mediated by Notch signaling. Previous research has identified four conserved transcription factors, fos-1 (Fos), egl-43 (EVI1/MEL), hlh-2 (E/Daughterless) and nhr-67 (NR2E1/TLX), that mediate anchor cell specification and/or invasive behavior. Connections between these transcription factors and the underlying cell biology that they regulate are poorly understood. Here, using genome editing and RNA interference, we examine transcription factor interactions before and after anchor cell specification. Initially, these transcription factors function independently of one another to regulate LIN-12 (Notch) activity. Following anchor cell specification, egl-43, hlh-2 and nhr-67 function largely parallel to fos-1 in a type I coherent feed-forward loop with positive feedback to promote invasion. Together, these results demonstrate that the same transcription factors can function in cell fate specification and differentiated cell behavior, and that a gene regulatory network can be rapidly assembled to reinforce a post-mitotic, pro-invasive state.


Assuntos
Caenorhabditis elegans/genética , Linhagem da Célula , Movimento Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Ciclo Celular , Linhagem da Célula/genética , Feminino , Proteínas de Fluorescência Verde , Ligação Proteica , Isoformas de Proteínas , Interferência de RNA , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Útero/citologia , Útero/embriologia
12.
EMBO Rep ; 22(2): e50927, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33399260

RESUMO

Retinoblastoma protein (RB) encoded by Rb1 is a prominent inducer of cell cycle arrest (CCA). The hormone progesterone (P4 ) promotes CCA in the uterine epithelium and previous studies indicated that P4 activates RB by reducing the phosphorylated, inactive form of RB. Here, we show that embryo implantation is impaired in uterine-specific Rb1 knockout mice. We observe persistent cell proliferation of the Rb1-deficient uterine epithelium until embryo attachment, loss of epithelial necroptosis, and trophoblast phagocytosis, which correlates with subsequent embryo invasion failure, indicating that Rb1-induced CCA and necroptosis of uterine epithelium are involved in embryo invasion. Pre-implantation P4 supplementation is sufficient to restore these defects and embryo invasion. In Rb1-deficient uterine epithelial cells, TNFα-primed necroptosis is impaired, which is rescued by the treatment with a CCA inducer thymidine or P4 through the upregulation of TNF receptor type 2. TNFα is expressed in the luminal epithelium and the embryo at the embryo attachment site. These results provide evidence that uterine Rb1-induced CCA is involved in TNFα-primed epithelial necroptosis at the implantation site for successful embryo invasion.


Assuntos
Pontos de Checagem do Ciclo Celular , Implantação do Embrião , Células Epiteliais/citologia , Necroptose , Proteína do Retinoblastoma , Animais , Pontos de Checagem do Ciclo Celular/genética , Feminino , Camundongos , Camundongos Knockout , Proteína do Retinoblastoma/genética , Útero/citologia
13.
Physiol Genomics ; 54(2): 71-85, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890509

RESUMO

In cattle, starting 4-5 days after estrus, preimplantation embryonic development occurs in the confinement of the uterine lumen. Cells in the endometrial epithelial layer control the molecular traffic to and from the lumen and, thereby determine luminal composition. Starting early postestrus, endometrial function is regulated by sex steroids, but the effects of progesterone on luminal cells transcription have not been measured in vivo. The first objective was to determine the extent to which progesterone controls transcription in luminal epithelial cells 4 days (D4) after estrus. The second objective was to discover luminal transcripts that predict pregnancy outcomes when the effect of progesterone is controlled. Endometrial luminal epithelial cells were collected from embryo transfer recipients on D4 using a cytological brush and their transcriptome was determined by RNASeq. Pregnancy by embryo transfer was measured on D30 (25 pregnant and 18 nonpregnant). Progesterone concentration on D4 was associated positively (n = 182) and negatively (n = 58) with gene expression. Progesterone-modulated transcription indicated an increase in oxidative phosphorylation, biosynthetic activity, and proliferation of epithelial cells. When these effects of progesterone were controlled, different genes affected positively (n = 22) and negatively (n = 292) odds of pregnancy. These set of genes indicated that a receptive uterine environment was characterized by the inhibition of phosphoinositide signaling and innate immune system responses. A panel of 25 genes predicted the pregnancy outcome with sensitivity and specificity ranging from 64%-96% and 44%-83%, respectively. In conclusion, in the early diestrus, both progesterone-dependent and progesterone-independent mechanisms regulate luminal epithelial transcription associated with pregnancy outcomes in cattle.


Assuntos
Endométrio/metabolismo , Células Epiteliais/metabolismo , Progesterona/metabolismo , Transcriptoma/genética , Útero/metabolismo , Animais , Bovinos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Análise por Conglomerados , Transferência Embrionária , Desenvolvimento Embrionário , Endométrio/citologia , Estro/genética , Feminino , Perfilação da Expressão Gênica/métodos , Gravidez , Progesterona/farmacologia , RNA-Seq/métodos , Transdução de Sinais/genética , Transcriptoma/efeitos dos fármacos , Útero/citologia
14.
FASEB J ; 35(9): e21812, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34411354

RESUMO

Blastocysts hatch from the zona pellucida (ZP) to enable implantation into the uterine endometrial epithelium, but little is known regarding the effect of hatching sites on pregnancy outcomes. Murine hatching embryos were categorized into five groups based on initial trophectoderm projection (TEP)/ZP position corresponding to the inner cell mass center. In blastocysts (3.5 dpc) post-12 hours in vitro culture, TEP rates of A-site (44.4%) and B-site (38.6%) embryos were higher than those of C-site (12.5%) and D-site (3.1%) embryos, while the O-site (1.4%) was the lowest (P < .05). Post-ET A-site (55.6%) and B-site (65.6%) birth rates were higher than those of C-site embryos (21.3%) and controls (P < .05). Furthermore, live birth rate of B-site embryos remained higher than C-site embryos (68.8% vs 31.3%; P < .05) when both were transferred into the same recipients. Different TEP site blastocysts exhibited different implantation competences: the implantation rate of C-site embryos was lower than that of both A- and B-site groups (67.7% vs 84.3% and 83.2%, respectively; P < .05) at 2 days post-ET. C-site embryos also had a distinctly higher ratio of developmental defects (47.5%) than A- and B-site embryos (22.5% and 14.6%, respectively), with implantation failure mainly associated with poor birth rate, a finding corroborated by differential gene expression analysis such as LIF, LIFR, and S100a9. Surprisingly, acidified Tyrode's solution (AAH)-treated B-site blastocysts had a significantly increased birth rate (77.1%) than C-site (55.3%) and controls (43.4%). Site specificity and differential gene expression during embryo hatching can be applied in ART screening. More importantly, assisted hatching by AAH is effective and feasible for improving pregnancy and term development, particularly at the B-site, for humans and in animal husbandry.


Assuntos
Coeficiente de Natalidade , Blastocisto/citologia , Implantação do Embrião , Trofoblastos/citologia , Zona Pelúcida/metabolismo , Animais , Transferência Embrionária , Feminino , Fertilização in vitro , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Gravidez , Resultado da Gravidez , Útero/citologia
15.
FASEB J ; 35(4): e21336, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33749894

RESUMO

Decidualizing endometrial stromal cells (EnSC) critically determine the maternal response to an implanting conceptus, triggering either menstruation-like disposal of low-fitness embryos or creating an environment that promotes further development. However, the mechanism that couples maternal recognition of low-quality embryos to tissue breakdown remains poorly understood. Recently, we demonstrated that successful transition of the cycling endometrium to a pregnancy state requires selective elimination of pro-inflammatory senescent decidual cells by activated uterine natural killer (uNK) cells. Here we report that uNK cells express CD44, the canonical hyaluronan (HA) receptor, and demonstrate that high molecular weight HA (HMWHA) inhibits uNK cell-mediated killing of senescent decidual cells. In contrast, low molecular weight HA (LMWHA) did not attenuate uNK cell activity in co-culture experiments. Killing of senescent decidual cells by uNK cells was also inhibited upon exposure to medium conditioned by IVF embryos that failed to implant, but not successful embryos. Embryo-mediated inhibition of uNK cell activity was reversed by recombinant hyaluronidase 2 (HYAL2), which hydrolyses HMWHA. We further report a correlation between the levels of HYAL2 secretion by human blastocysts, morphological scores, and implantation potential. Taken together, the data suggest a pivotal role for uNK cells in embryo biosensing and endometrial fate decisions at implantation.


Assuntos
Implantação do Embrião/fisiologia , Células Matadoras Naturais/fisiologia , Útero/citologia , Útero/fisiologia , Moléculas de Adesão Celular , Técnicas de Cocultura , Feminino , Proteínas Ligadas por GPI , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase
16.
Biochem Biophys Res Commun ; 584: 66-72, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768084

RESUMO

In the adult uterus of mice, rats and humans, the initially closely packed muscle bundles of the inner myometrium (muscular tissue that encircles the endometrium where the conceptus implants) undergo a pregnancy-induced dispersal that is clinically significant and hypothesized to regulate important pregnancy events. However, where, when and how this dispersal occurs, what its functions are, as well as its spatial relationship to the mouse metrial gland/mesometrial lymphoid aggregate of pregnancy (MG/MLAp), are unknown. The MG/MLAp, is a pregnancy-induced uterine structure required for successful rodent pregnancy located mesometrial to (above) the decidua basalis (pregnancy-modified mesometrial endometrium) and defined by its accumulation of maternal lymphocytes known as uterine Natural Killer (uNK) cells. To begin to understand how mouse inner myometrium dispersal (IMD) occurs, we spatiotemporally described it by observing the distribution of its muscle bundles and measuring their volume fraction (VF), as well as the VF of uNKs and stromal cells of inner myometrium. We discovered that (a) IMD (defined as reduction in VF of inner myometrium muscle bundles) is restricted to the mesometrial half of the uterus, is first evident at Embryonic day (E) 5.5 (early postimplantation) but not at E3.5 (preimplantation), further increases between E6.5 and E7.5 and remains unchanged from E7.5 to E10.5, (b) IMD initiation (observed between E3.5 and E5.5) occurs in the absence of uNKs and is associated with VF increases of pre-existing inner myometrium stromal cells and (c) the IMD observed between E6.5 and E7.5 is not associated with VF increases of uNKs or stromal cells. To get functional clues about IMD, we examined whether stromal cells between the dispersed muscle bundles undergo decidualization (important for correct fetomaternal interactions) and provide evidence that they do by E10.5, based on their production of Desmin (decidualization marker). Lastly, we examined whether mouse MG/MLAp only comprises the dispersed inner myometrium or additionally includes the mesometrial triangle (a triangular-like area mesometrial to the inner myometrium at the mesometrium-uterus attachment site), as is the case in rats. Our data supports that the dispersed inner myometrium is the only tissue that makes up the mouse MG/MLAp. In conclusion, we provide novel cellular and spatiotemporal insights about IMD that will contribute to understanding its mechanism and function and allow more informed inter-species comparisons about this process.


Assuntos
Decídua/metabolismo , Glândula Metrial/metabolismo , Miométrio/metabolismo , Útero/metabolismo , Animais , Biomarcadores/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Decídua/citologia , Desmina/metabolismo , Feminino , Imuno-Histoquímica , Células Matadoras Naturais/metabolismo , Lectinas/metabolismo , Glândula Metrial/citologia , Camundongos Endogâmicos ICR , Proteínas dos Microfilamentos/metabolismo , Miométrio/citologia , Gravidez , Células Estromais/metabolismo , Fatores de Tempo , Útero/citologia , Calponinas
17.
J Neuroinflammation ; 18(1): 294, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34920745

RESUMO

BACKGROUND: The emerging role of microglia in neurological disorders requires a novel method for obtaining massive amounts of adult microglia. We aim to develop a new method for obtaining bankable and expandable adult-like microglia in mice. METHODS: The head neuroepithelial layer (NEL) that composed of microglial progenitor and neuroepithelial cells at mouse E13.5 was dissected and then cultured or banked. Microglia (MG) isolated from the cultured NEL by magnetic-activated cell sorting system were obtained and named NEL-MG. RESULTS: The NEL included microglia progenitors that proliferate and ramify over time with neuroepithelial cells as feeder. In functional analysis, NEL-MG exhibited microglial functions, such as phagocytosis (microbeads, amyloid ß, synaptosome), migration, and inflammatory response following lipopolysaccharide (LPS) stimulation. NEL was passage cultured and the NEL-MG exhibited a higher expression of microglia signature genes than the neonatal microglia, a widely used in vitro surrogate. Banking or long-term passage culture of NEL did not affect NEL-MG characteristics. Transcriptome analysis revealed that NEL-MG exhibited better conservation of microglia signature genes with a closer fidelity to freshly isolated adult microglia than neonatal microglia. NEL-MG could be re-expandable when they were plated again on neuroepithelial cells. CONCLUSIONS: This new method effectively contributes to obtaining sufficient matured form of microglia (adult-like microglia), even when only a small number of experimental animals are available, leading to a broad application in the field of neuroscience.


Assuntos
Técnicas de Cultura de Células/métodos , Córtex Cerebral/fisiologia , Células Epiteliais/fisiologia , Perfilação da Expressão Gênica/métodos , Microglia/fisiologia , Útero/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Linhagem Celular , Córtex Cerebral/citologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Útero/citologia
18.
FASEB J ; 34(1): 446-457, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914682

RESUMO

Mechanical damage or infection to the endometrium can lead to the formation of adhesions in the uterine cavity, which may result in reduced reproductive outcome and/or pregnancy complications. The prognosis of this disease is poor due to few effective treatments and the complex environment of endometrium. Heparin-Poloxamer Hydrogel (HP hydrogel) is a nontoxic and biodegradable biomaterial, which has been commonly used as a sustained-release delivery system. In this study, we applied a mini-endometrial curette to scrape the endometrium of rats to mimic the process of curettage in patients. After the establishment of IUA model in rats, we injected the thermo-sensitive hydrogel(E2-HP hydrogel) into the injured uterine cavity and evaluated the therapeutic effect of E2-HP hydrogel on the recovery of IUA. Our results showed that E2-HP hydrogel can significantly facilitate the regeneration of injured endometrium along with inhibiting the cell apoptosis in IUA model. Furthermore, we revealed that E2-HP hydrogel on the recovery of IUA was closely associated with the upregulation of kisspeptin through activating the ERK1/2 and MAPKs p38 pathways. In conclusion, E2-HP hydrogel can effectively transfer E2 into the injured endometrium and it can be considered as a promising therapeutic method for the women with intrauterine adhesions.


Assuntos
Endométrio/citologia , Estradiol/farmacologia , Heparina/química , Hidrogéis/farmacologia , Poloxâmero/química , Regeneração , Aderências Teciduais/tratamento farmacológico , Útero/citologia , Animais , Endométrio/efeitos dos fármacos , Endométrio/lesões , Estradiol/química , Feminino , Hidrogéis/química , Gravidez , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Útero/efeitos dos fármacos , Útero/lesões
19.
J Immunol ; 203(3): 647-657, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31243091

RESUMO

Regulatory T cells (Tregs) are essential for maternal tolerance in allogeneic pregnancy. In preeclampsia, Tregs are fewer and display aberrant phenotypes, particularly in the thymic Treg (tTreg) compartment, potentially because of insufficient priming to male partner alloantigens before conception. To investigate how tTregs as well as peripheral Tregs (pTregs) respond to male partner seminal fluid, Foxp3+CD4+ Tregs were examined in the uterus and uterus-draining lymph nodes in virgin estrus mice and 3.5 d postcoitum. Mating elicited 5-fold increases in uterine Tregs accompanied by extensive Treg proliferation in the uterus-draining lymph nodes, comprising 70% neuropilin 1+ tTregs and 30% neuropilin 1- pTregs. Proliferation marker Ki67 and suppressive competence markers Foxp3 and CTLA4 were induced after mating in both subsets, and Ki67, CTLA4, CD25, and GITR were higher in tTregs than in pTregs. Analysis by t-stochastic neighbor embedding confirmed phenotypically distinct tTreg and pTreg clusters, with the proportion of tTregs but not pTregs among CD4+ T cells expanding in response to seminal fluid. Bisulphite sequencing revealed increased demethylation of the Treg-specific demethylation region in the Foxp3 locus in tTregs but not pTregs after mating. These data show that tTregs and pTregs with distinct phenotypes both respond to seminal fluid priming, but the Foxp3 epigenetic signature is uniquely increased in tTregs. We conclude that reproductive tract tTregs as well as pTregs are sensitive to local regulation by seminal fluid, providing a candidate mechanism warranting evaluation for the potential to influence preeclampsia susceptibility in women.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Sêmen/imunologia , Comportamento Sexual Animal , Linfócitos T Reguladores/imunologia , Útero/imunologia , Animais , Antígeno CTLA-4/metabolismo , Proliferação de Células/fisiologia , Epigênese Genética , Feminino , Fatores de Transcrição Forkhead/genética , Proteína Relacionada a TNFR Induzida por Glucocorticoide/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Linfonodos/citologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neuropilina-1/metabolismo , Pré-Eclâmpsia/imunologia , Pré-Eclâmpsia/patologia , Gravidez , Timo/citologia , Útero/citologia
20.
Exp Cell Res ; 386(2): 111727, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31759054

RESUMO

Following mating, leukocytes are recruited to the uterine epithelium where they phagocytose spermatozoa and mediate maternal immune tolerance as well as a mild inflammatory response. In this ultrastructural study we utilised array tomography, a high-resolution volume scanning electron microscopy approach to 3D reconstruct the cellular relationships formed by leukocytes recruited to the luminal uterine epithelium 12 h post-mating in the rat. We report that following mating, neutrophils and macrophages are internalised by the luminal uterine epithelium, with multiple leukocytes internalised via contortion through a small tunnel in the apical membrane into a large membrane-bound vacuole within the cytoplasm of luminal uterine epithelial cells (UECs). Once internalised within the UECs, recruited leukocytes appear to phagocytose material within the membrane-bound vacuole and most ultimately undergo a specialised cell death, including vacuolisation and loss of membrane integrity. As these observations involve ultrastructurally normal leukocytic cells internalised within non-phagocytic epithelial cells, these observations are consistent with the formation of cell-in-cell structures via entosis, rather than phagocytic engulfment by UECs. Although cell-in-cell structures have been reported in normal and pathological conditions elsewhere, the data collected herein represents the first evidence of the formation of cell-in-cell structures within the uterine epithelium as a novel component of the maternal inflammatory response to mating.


Assuntos
Copulação/fisiologia , Entose/imunologia , Células Epiteliais/ultraestrutura , Epitélio/ultraestrutura , Leucócitos/ultraestrutura , Útero/citologia , Animais , Morte Celular , Células Epiteliais/imunologia , Epitélio/imunologia , Feminino , Tolerância Imunológica , Leucócitos/imunologia , Masculino , Fagocitose , Gravidez , Ratos , Ratos Wistar , Espermatozoides/citologia , Espermatozoides/imunologia , Útero/imunologia , Vacúolos/imunologia , Vacúolos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa