Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nucleic Acids Res ; 45(6): 3158-3171, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28034957

RESUMO

Genome segregation is a fundamental step in the life cycle of every cell. Most bacteria rely on dedicated DNA partition proteins to actively segregate chromosomes and low copy-number plasmids. Here, by employing super resolution microscopy, we establish that the ParF DNA partition protein of the ParA family assembles into a three-dimensional meshwork that uses the nucleoid as a scaffold and periodically shuttles between its poles. Whereas ParF specifies the territory for plasmid trafficking, the ParG partner protein dictates the tempo of ParF assembly cycles and plasmid segregation events by stimulating ParF adenosine triphosphate hydrolysis. Mutants in which this ParG temporal regulation is ablated show partition deficient phenotypes as a result of either altered ParF structure or dynamics and indicate that ParF nucleoid localization and dynamic relocation, although necessary, are not sufficient per se to ensure plasmid segregation. We propose a Venus flytrap model that merges the concepts of ParA polymerization and gradient formation and speculate that a transient, dynamic network of intersecting polymers that branches into the nucleoid interior is a widespread mechanism to distribute sizeable cargos within prokaryotic cells.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Plasmídeos/fisiologia , 1-Acilglicerol-3-Fosfato O-Aciltransferase/química , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , DNA/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Microscopia de Fluorescência , Mutação , Plasmídeos/genética , Proteínas Repressoras/análise , Proteínas Repressoras/genética , Imagem com Lapso de Tempo
2.
Int J Mol Sci ; 19(5)2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29723991

RESUMO

PLIN2 (Perilipin-2) is a protein that can anchor on the membrane of lipid droplets (LDs), playing a vital role in the early formation of LDs and in the regulation of LD metabolism in many types of cells. However, little research has been conducted in cattle adipocytes. In the present study, we found that the expression of PLIN2 mRNA peaks at Day 2 during cattle adipocyte differentiation (p < 0.01), but PLIN2 protein levels maintain high abundance until Day 4 and then decrease sharply. We first built an interaction model using PyMOL. The results of a pull-down assay indicated that bovine PLIN2 and CGI-58 (ABHD5, α/β hydrolase domain-containing protein 5) had an interaction relationship. Furthermore, Bimolecular Fluorescence Complementation-Flow Cytometry (BiFC-FC) was used to explore the function of the PLIN2-CGI-58 interaction. Interestingly, we found that different combined models had different levels of fluorescence intensity; specifically, PLIN2-VN173+CGI-58-VC155 expressed in bovine adipocytes exhibited the highest level of fluorescence intensity. Our findings elucidate the PLIN2 expression pattern in cattle adipocytes, the protein structure and the function of protein⁻protein interactions (PPI) as well as highlight the characteristics of bovine PLIN2 during the early formation and accumulation of lipid droplets.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Adipócitos/metabolismo , Diferenciação Celular , Perilipina-2/metabolismo , Mapas de Interação de Proteínas , 1-Acilglicerol-3-Fosfato O-Aciltransferase/química , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Sequência de Aminoácidos , Animais , Bovinos , Bases de Dados de Proteínas , Humanos , Gotículas Lipídicas/metabolismo , Lipólise , Perilipina-2/química , Perilipina-2/genética , Cultura Primária de Células , RNA Mensageiro/metabolismo
3.
J Lipid Res ; 56(1): 109-21, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25421061

RESUMO

CGI-58/ABHD5 coactivates adipose triglyceride lipase (ATGL). In adipocytes, CGI-58 binds to perilipin 1A on lipid droplets under basal conditions, preventing interaction with ATGL. Upon activation of protein kinase A (PKA), perilipin 1A is phosphorylated and CGI-58 rapidly disperses into the cytoplasm, enabling lipase coactivation. Because the amino acid sequence of murine CGI-58 has a predicted PKA consensus sequence of RKYS(239)S(240), we hypothesized that phosphorylation of CGI-58 is involved in this process. We show that Ser239 of murine CGI-58 is a substrate for PKA using phosphoamino acid analysis, MS, and immuno-blotting approaches to study phosphorylation of recombinant CGI-58 and endogenous CGI-58 of adipose tissue. Phosphorylation of CGI-58 neither increased nor impaired coactivation of ATGL in vitro. Moreover, Ser239 was not required for CGI-58 function to increase triacylglycerol turnover in human neutral lipid storage disorder fibroblasts that lack endogenous CGI-58. Both CGI-58 and S239A/S240A-mutated CGI-58 localized to perilipin 1A-coated lipid droplets in cells. When PKA was activated, WT CGI-58 dispersed into the cytoplasm, whereas substantial S239A/S240A-mutated CGI-58 remained on lipid droplets. Perilipin phosphorylation also contributed to CGI-58 dispersion. PKA-mediated phosphorylation of CGI-58 is required for dispersion of CGI-58 from perilipin 1A-coated lipid droplets, thereby increasing CGI-58 availability for ATGL coactivation.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/química , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Espaço Intracelular/metabolismo , Serina/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Proteínas de Transporte/metabolismo , Chlorocebus aethiops , Colforsina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Espaço Intracelular/efeitos dos fármacos , Lipase/metabolismo , Masculino , Camundongos , Dados de Sequência Molecular , Perilipina-1 , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
4.
Curr Opin Lipidol ; 25(2): 102-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24565921

RESUMO

PURPOSE OF REVIEW: Comparative gene identification-58 (CGI-58) is a lipid droplet-associated protein that controls intracellular triglyceride levels by its ability to activate adipose triglyceride lipase (ATGL). Additionally, CGI-58 was described to exhibit lysophosphatidic acid acyl transferase (LPAAT) activity. This review focuses on the significance of CGI-58 in energy metabolism in adipose and nonadipose tissue. RECENT FINDINGS: Recent studies with transgenic and CGI-58-deficient mouse strains underscored the importance of CGI-58 as a regulator of intracellular energy homeostasis by modulating ATGL-driven triglyceride hydrolysis. In accordance with this function, mice and humans that lack CGI-58 accumulate triglyceride in multiple tissues. Additionally, CGI-58-deficient mice develop an ATGL-independent severe skin barrier defect and die soon after birth. Although the premature death prevented a phenotypical characterization of adult global CGI-58 knockout mice, the characterization of mice with tissue-specific CGI-58 deficiency revealed new insights into its role in neutral lipid and energy metabolism. Concerning the ATGL-independent function of CGI-58, a recently identified LPAAT activity for CGI-58 was shown to be involved in the generation of signaling molecules regulating inflammatory processes and insulin action. SUMMARY: Although the function of CGI-58 in the catabolism of cellular triglyceride depots via ATGL is well established, further studies are required to consolidate the function of CGI-58 as LPAAT and to clarify the involvement of CGI-58 in the metabolism of skin lipids.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/química , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Tecido Adiposo/enzimologia , Lipase/metabolismo , Animais , Ativação Enzimática , Humanos , Lipólise , Estrutura Terciária de Proteína
5.
J Lipid Res ; 55(8): 1750-61, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24879803

RESUMO

Mutations in the gene encoding comparative gene identification 58 (CGI-58)/α/ß hydrolase domain 5 (ABHD5) cause Chanarin-Dorfman syndrome, characterized by excessive triacylglycerol storage in cells and tissues. CGI-58 has been identified as a coactivator of adipose TG lipase (ATGL) and a lysophosphatidic acid acyltransferase (LPAAT). We developed a molecular model of CGI-58 structure and then mutated predicted active site residues and performed LPAAT activity assays of recombinant WT and mutated CGI-58. When mutations of predicted catalytic residues failed to reduce LPAAT activity, we determined that LPAAT activity was due to a bacterial contaminant of affinity purification procedures, plsC, the sole LPAAT in Escherichia coli Purification protocols were optimized to reduce plsC contamination, in turn reducing LPAAT activity. When CGI-58 was expressed in SM2-1(DE3) cells that lack plsC, lysates lacked LPAAT activity. Additionally, mouse CGI-58 expressed in bacteria as a glutathione-S-transferase fusion protein and human CGI-58 expressed in yeast lacked LPAAT activity. Previously reported lipid binding activity of CGI-58 was revisited using protein-lipid overlays. Recombinant CGI-58 failed to bind lysophosphatidic acid, but interestingly, bound phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 5-phosphate [PI(5)P]. Prebinding CGI-58 with PI(3)P or PI(5)P did not alter its coactivation of ATGL in vitro. In summary, purified recombinant CGI-58 that is functional as an ATGL coactivator lacks LPAAT activity.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/química , Aciltransferases/química , Lisofosfolipídeos/química , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Humanos , Lisofosfolipídeos/genética , Lisofosfolipídeos/metabolismo , Camundongos , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
J Biol Chem ; 287(51): 42545-53, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23093445

RESUMO

DNA segregation in bacteria is mediated most frequently by proteins of the ParA superfamily that transport DNA molecules attached via the segrosome nucleoprotein complex. Segregation is governed by a cycle of ATP-induced polymerization and subsequent depolymerization of the ParA factor. Here, we establish that hyperactive ATPase variants of the ParA homolog ParF display altered segrosome dynamics that block accurate DNA segregation. An arginine finger-like motif in the ParG centromere-binding factor augments ParF ATPase activity but is ineffective in stimulating nucleotide hydrolysis by the hyperactive proteins. Moreover, whereas polymerization of wild-type ParF is accelerated by ATP and inhibited by ADP, filamentation of the mutated proteins is blocked indiscriminately by nucleotides. The mutations affect a triplet of conserved residues that are situated neither in canonical nucleotide binding and hydrolysis motifs in the ParF tertiary structure nor at interfaces implicated in ParF polymerization. Instead the residues are involved in shaping the contours of the binding pocket so that nucleotide binding locks the mutant proteins into a configuration that is refractory to polymerization. Thus, the architecture of the pocket not only is crucial for optimal ATPase kinetics but also plays a key role in the polymerization dynamics of ParA proteins that drive DNA segregation ubiquitously in procaryotes.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Família Multigênica , Nucleotídeos/metabolismo , Polimerização , 1-Acilglicerol-3-Fosfato O-Aciltransferase/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Arginina/metabolismo , Sítios de Ligação , Segregação de Cromossomos , Sequência Conservada , Cristalografia por Raios X , Proteínas de Escherichia coli/química , Polarização de Fluorescência , Hidrólise , Cinética , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Ligação Proteica
7.
Plant Physiol ; 160(2): 638-52, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22864585

RESUMO

Arabidopsis (Arabidopsis thaliana) has eight glycerol-3-phosphate acyltransferase (GPAT) genes that are members of a plant-specific family with three distinct clades. Several of these GPATs are required for the synthesis of cutin or suberin. Unlike GPATs with sn-1 regiospecificity involved in membrane or storage lipid synthesis, GPAT4 and -6 are unique bifunctional enzymes with both sn-2 acyltransferase and phosphatase activity resulting in 2-monoacylglycerol products. We present enzymology, pathway organization, and evolutionary analysis of this GPAT family. Within the cutin-associated clade, GPAT8 is demonstrated as a bifunctional sn-2 acyltransferase/phosphatase. GPAT4, -6, and -8 strongly prefer C16:0 and C18:1 ω-oxidized acyl-coenzyme As (CoAs) over unmodified or longer acyl chain substrates. In contrast, suberin-associated GPAT5 can accommodate a broad chain length range of ω-oxidized and unsubstituted acyl-CoAs. These substrate specificities (1) strongly support polyester biosynthetic pathways in which acyl transfer to glycerol occurs after oxidation of the acyl group, (2) implicate GPAT specificities as one major determinant of cutin and suberin composition, and (3) argue against a role of sn-2-GPATs (Enzyme Commission 2.3.1.198) in membrane/storage lipid synthesis. Evidence is presented that GPAT7 is induced by wounding, produces suberin-like monomers when overexpressed, and likely functions in suberin biosynthesis. Within the third clade, we demonstrate that GPAT1 possesses sn-2 acyltransferase but not phosphatase activity and can utilize dicarboxylic acyl-CoA substrates. Thus, sn-2 acyltransferase activity extends to all subbranches of the Arabidopsis GPAT family. Phylogenetic analyses of this family indicate that GPAT4/6/8 arose early in land-plant evolution (bryophytes), whereas the phosphatase-minus GPAT1 to -3 and GPAT5/7 clades diverged later with the appearance of tracheophytes.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/química , Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Evolução Molecular , Lisofosfolipídeos/química , 1-Acilglicerol-3-Fosfato O-Aciltransferase/classificação , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Acil Coenzima A/química , Acilação , Arabidopsis/genética , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Membrana Celular/química , Clonagem Molecular , Ativação Enzimática , Ensaios Enzimáticos , Flores/enzimologia , Flores/genética , Glicerol/química , Lipídeos/biossíntese , Lipídeos/química , Lipídeos de Membrana/biossíntese , Lipídeos de Membrana/química , Monoglicerídeos/química , Família Multigênica , Oxirredução , Monoéster Fosfórico Hidrolases/química , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Especificidade por Substrato
8.
Curr Opin Lipidol ; 23(4): 290-302, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22777291

RESUMO

PURPOSE OF REVIEW: Over the past several years, many more isoforms for the same enzymes, specifically for 1-acylglycerol-3-phosphate O-acyltransferases (AGPATs), have been cloned and studied. In this review, we summarize their biochemical features and discuss their functional role. RECENT FINDINGS: The most significant role of these AGPATs appeared from our observation of AGPAT2 in the biology of adipose tissue (adipocytes) in humans and mice. Other isoforms are shown to be implicated in lung, reproductive and cardiac muscle function and in the cause of cancer. In-vitro substrate specificities of these AGPATs also suggest the in-vivo role of these AGPATs in remodeling of several of the glycerophospholipids. SUMMARY: Despite significant progress in understanding the role of these AGPATs, much is still to be discovered in terms of how each of these AGPATs function in the presence or absence of other AGPATs and what their functional role might be.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase , 1-Acilglicerofosfocolina O-Aciltransferase , Doença , 1-Acilglicerol-3-Fosfato O-Aciltransferase/química , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/química , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Sequência de Aminoácidos , Animais , Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular
9.
Curr Opin Lipidol ; 22(3): 149-58, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21494142

RESUMO

PURPOSE OF REVIEW: Comparative gene identification-58 (CGI-58) is an important player in lipid metabolism. It acts as activator of triglyceride hydrolases and as acyl-CoA-dependent lysophosphatidic acid acyltransferase. This review aims at establishing a structure-function relationship of this still rather enigmatic protein based on recent studies characterizing different functions of CGI-58. RECENT FINDINGS: Novel studies confirm the important regulatory role of CGI-58 as activator of the triglyceride hydrolase adipose triglyceride lipase. New evidence, corroborated by the characterization of a CGI-58 knockout mouse model, also suggests the existence of yet unknown lipases that are activated by CGI-58. Additionally, CGI-58 was identified to exert acyl-CoA-dependent lysophosphatidic acid acyltransferase activity, which implies possible roles in triglyceride or phospholipid synthesis or signaling processes. Unlike mammalian CGI-58 proteins, orthologs from plants and yeast additionally act as weak triglyceride and phospholipid hydrolases. A first three-dimensional model was calculated and allows preliminary structural considerations for the functions of CGI-58. SUMMARY: Despite important progress concerning the different biochemical functions of CGI-58, the physiological importance of these activities requires better characterization. Furthermore, three-dimensional structural data for CGI-58 are required to unveil the molecular mechanism of how CGI-58 acts as activator of lipases and exerts its enzymatic functions.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/química , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Sequência de Aminoácidos , Animais , Expressão Gênica , Humanos , Metabolismo dos Lipídeos/genética , Lipólise , Fígado/enzimologia , Dados de Sequência Molecular , Especificidade de Órgãos , Conformação Proteica , Alinhamento de Sequência , Pele/enzimologia
10.
Sci Rep ; 12(1): 2565, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173175

RESUMO

Alpha/beta hydrolase domain-containing protein 5 (ABHD5) is a highly conserved protein that regulates various lipid metabolic pathways via interactions with members of the perilipin (PLIN) and Patatin-like phospholipase domain-containing protein (PNPLA) protein families. Loss of function mutations in ABHD5 result in Chanarin-Dorfman Syndrome (CDS), characterized by ectopic lipid accumulation in numerous cell types and severe ichthyosis. Recent data demonstrates that ABHD5 is the target of synthetic and endogenous ligands that might be therapeutic beneficial for treating metabolic diseases and cancers. However, the structural basis of ABHD5 functional activities, such as protein-protein interactions and ligand binding is presently unknown. To address this gap, we constructed theoretical structural models of ABHD5 by comparative modeling and topological shape analysis to assess the spatial patterns of ABHD5 conformations computed in protein dynamics. We identified functionally important residues on ABHD5 surface for lipolysis activation by PNPLA2, lipid droplet targeting and PLIN-binding. We validated the computational model by examining the effects of mutating key residues in ABHD5 on an array of functional assays. Our integrated computational and experimental findings provide new insights into the structural basis of the diverse functions of ABHD5 as well as pathological mutations that result in CDS.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/química , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Biologia Computacional/métodos , Lipase/metabolismo , Gotículas Lipídicas/metabolismo , Mutação , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Humanos , Ligantes , Gotículas Lipídicas/química , Conformação Proteica
11.
J Biol Chem ; 285(16): 12289-98, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20164531

RESUMO

In mammals, excess energy is stored in the form of triacylglycerol primarily in lipid droplets of white adipose tissue. The first step of lipolysis (i.e. the mobilization of fat stores) is catalyzed by adipose triglyceride lipase (ATGL). The enzymatic activity of ATGL is strongly enhanced by CGI-58 (comparative gene identification-58), and the loss of either ATGL or CGI-58 function causes systemic triglyceride accumulation in humans and mice. However, the mechanism by which CGI-58 stimulates ATGL activity is unknown. To gain insight into CGI-58 function using structural features of the protein, we generated a three-dimensional homology model based on sequence similarity with other proteins. Interestingly, the model of CGI-58 revealed that the N terminus forms an extension of the otherwise compact structure of the protein. This N-terminal region (amino acids 1-30) harbors a lipophilic tryptophan-rich stretch, which affects the localization of the protein. (1)H NMR experiments revealed strong interaction between the N-terminal peptide and dodecylphosphocholine micelles as a lipid droplet-mimicking system. A role for this N-terminal region of CGI-58 in lipid droplet binding was further strengthened by localization studies in cultured cells. Although wild-type CGI-58 localizes to the lipid droplet, the N-terminally truncated fragments of CGI-58 are dispersed in the cytoplasm. Moreover, CGI-58 lacking the N-terminal extension loses the ability to stimulate ATGL, implying that the ability of CGI-58 to activate ATGL is linked to correct localization. In summary, our study shows that the N-terminal, Trp-rich region of CGI-58 is essential for correct localization and ATGL-activating function of CGI-58.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/química , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Metabolismo dos Lipídeos , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Sequência de Aminoácidos , Animais , Células COS , Hidrolases de Éster Carboxílico/genética , Chlorocebus aethiops , Ativação Enzimática , Humanos , Lipase , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Transfecção
12.
Plant Physiol ; 153(3): 1135-43, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20488893

RESUMO

The Arabidopsis (Arabidopsis thaliana) fatty acid biosynthesis1 (fab1) mutant grows as well as wild type at 22 degrees C, but after transfer to 2 degrees C fab1 plants cannot maintain photosynthetic function and die after 5 to 7 weeks at 2 degrees C. A fab1 suppressor line, S7, was isolated in a screen that identified mutants that remained alive after 16 weeks at 2 degrees C and were able to flower and produce seed after return to 22 degrees C. Relative to wild type, S7 plants had reduced levels of 16:3 fatty acid in leaf galactolipids, indicating reduced synthesis of chloroplast glycerolipids by the prokaryotic pathway of lipid metabolism. The suppressor mutation was identified, by map-based and candidate-gene approaches, as a hypomorphic allele of lysophosphatidic acid acyltransferase1 (lpat1), lpat1-3. LPAT1 encodes the enzyme that catalyzes the second reaction in the prokaryotic pathway. Several lines of evidence indicate that damage and death of fab1 plants at 2 degrees C may be a result of the increased proportion of phosphatidylglycerol (PG) in fab1 that are high-melting-point molecular species (containing only 16:0, 18:0, and 16:1,Delta3-trans fatty acids). Consistent with this proposal, the lpat1-3 mutation strongly affects the fatty acid composition of PG. The proportion of high-melting-point molecular species in PG is reduced from 48.2% in fab1 to 10.7% in fab1 lpat1-3 (S7), a value close to the 7.6% found in wild type.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Temperatura Baixa , Genes de Plantas/genética , Mutação/genética , Supressão Genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/química , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Cloroplastos/enzimologia , DNA Complementar/genética , Teste de Complementação Genética , Metabolismo dos Lipídeos , Dados de Sequência Molecular , Fenótipo , Folhas de Planta/metabolismo , Alinhamento de Sequência
13.
DNA Cell Biol ; 40(2): 219-230, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33332227

RESUMO

Alpha/beta hydrolase domain 5 (ABHD5) plays a significant role in intracellular lipid metabolism, which is regulated by a complex network of transcription factors. The transcriptional regulation of the ABHD5 gene in cattle and other livestock, however, has not been previously investigated. Investigations in humans and animal models indicate that the transcription factors zinc finger E-box binding homeobox 1 (ZEB1) and cAMP-response element binding protein (CREB) may play important roles in the transcriptional regulation of ABHD5 in cattle. Our comparison of the sequence similarities in the transcription factor binding sites in Bos taurus, Bos indicus, Bos mutus, and Homo sapiens revealed high homology. Based on the data collected by the Cistrome Data Browser and its visualization window, we found that ZEB1 and CREB have significant ChIP-seq enrichments in the 5'-untranslated region (5' UTR) of the human ABHD5 gene. In bovine adipocytes, we detected ZEB1 and CREB binding sites in the ABHD5 gene. Mutations in the ZEB1 and CREB binding sites significantly reduced the promoter activity (p < 0.05 and p < 0.01, respectively). Moreover, electrophoretic mobility shift assays and chromatin immunoprecipitation (ChIP) assays demonstrated the binding of the transcription factors in vivo and in vitro, respectively. And overexpression or silencing the expression of the ZEB1 and CREB, respectively, resulted in significant changes to the ABHD5 promoter activity. Collectively, these results indicate that ZEB1 and CREB are important transcription factors that regulate ABHD5 gene expression in bovine adipocytes. They further our understanding of the transcriptional regulation and biological functions of the bovine ABHD5 gene.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Transcrição Gênica , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/química , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Humanos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Análise de Sequência de DNA
14.
J Lipid Res ; 51(4): 709-19, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19801371

RESUMO

Mutations in human CGI-58/ABHD5 cause Chanarin-Dorfman syndrome (CDS), characterized by excessive storage of triacylglycerol in tissues. CGI-58 is an alpha/beta-hydrolase fold enzyme expressed in all vertebrates. The carboxyl terminus includes a highly conserved consensus sequence (HXXXXD) for acyltransferase activity. Mouse CGI-58 was expressed in Escherichia coli as a fusion protein with two amino terminal 6-histidine tags. Recombinant CGI-58 displayed acyl-CoA-dependent acyltransferase activity to lysophosphatidic acid, but not to other lysophospholipid or neutral glycerolipid acceptors. Production of phosphatidic acid increased with time and increasing concentrations of recombinant CGI-58 and was optimal between pH 7.0 and 8.5. The enzyme showed saturation kinetics with respect to 1-oleoyl-lysophosphatidic acid and oleoyl-CoA and preference for arachidonoyl-CoA and oleoyl-CoA. The enzyme showed slight preference for 1-oleoyl lysophosphatidic acid over 1-palmitoyl, 1-stearoyl, or 1-arachidonoyl lysophosphatidic acid. Recombinant CGI-58 showed intrinsic fluorescence for tryptophan that was quenched by the addition of 1-oleoyl-lysophosphatidic acid, oleoyl-CoA, arachidonoyl-CoA, and palmitoyl-CoA, but not by lysophosphatidyl choline. Expression of CGI-58 in fibroblasts from humans with CDS increased the incorporation of radiolabeled fatty acids released from the lipolysis of stored triacylglycerols into phospholipids. CGI-58 is a CoA-dependent lysophosphatidic acid acyltransferase that channels fatty acids released from the hydrolysis of stored triacylglycerols into phospholipids.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Acil Coenzima A/metabolismo , Aciltransferases/metabolismo , Lisofosfolipídeos/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/química , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/isolamento & purificação , Motivos de Aminoácidos , Animais , Células Cultivadas , Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Cinética , Metabolismo dos Lipídeos/genética , Erros Inatos do Metabolismo Lipídico/enzimologia , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/metabolismo , Camundongos , Matrizes de Pontuação de Posição Específica , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Síndrome
15.
J Lipid Res ; 51(8): 2143-52, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20363836

RESUMO

The conversion of lysophosphatidic acid (LPA) to phosphatidic acid is carried out by the microsomal enzymes 1-acylglycerol-3-phosphate-O-acyltransferases (AGPATs). These enzymes are specific for acylating LPA at the sn-2 (carbon 2) position on the glycerol backbone and are important, because they provide substrates for the synthesis of phospholipids and triglycerides. At least, mutations in one isoform, AGPAT2, cause near complete loss of adipose tissue in humans. We cloned a cDNA predicted to be an AGPAT isoform, AGPAT11. This cDNA has been recently identified also as lysophosphatidylcholine acyltransferase 2 (LPCAT2) and lyso platelet-activating factor acetyltransferase. When AGPAT11/LPCAT2/lyso platelet-activating factor acetyltransferase cDNA was expressed in CHO and HeLa cells, the protein product localized to the endoplasmic reticulum. In vitro enzymatic activity using lysates of Human Embryonic Kidney-293 cells infected with recombinant AGPAT11/LPCAT2/lyso platelet-activating factor-acetyltransferase cDNA adenovirus show that the protein has an AGPAT activity but lacks glycerol-3-phosphate acyltransferase enzymatic activity. The AGPAT11 efficiently uses C18:1 LPA as acyl acceptor and C18:1 fatty acid as an acyl donor. Thus, it has similar substrate specificities for LPA and acyl-CoA as shown for AGPAT9 and 10. Expression of AGPAT11 mRNA was significantly upregulated in human breast, cervical, and colorectal cancer tissues, indicating its adjuvant role in the progression of these cancers. Our enzymatic assays strongly suggest that the cDNA previously identified as LPCAT2/lyso platelet-activating factor-acetyltransferase cDNA has AGPAT activity and thus we prefer to identify this clone as AGPAT11 as well.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Regulação para Cima , Neoplasias do Colo do Útero/enzimologia , Neoplasias do Colo do Útero/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/química , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Sequência de Aminoácidos , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Clonagem Molecular , DNA Complementar/genética , Feminino , Humanos , Espaço Intracelular/metabolismo , Camundongos , Dados de Sequência Molecular , Transporte Proteico , Alinhamento de Sequência , Especificidade por Substrato , Neoplasias do Colo do Útero/patologia
16.
Sci Rep ; 10(1): 11287, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647143

RESUMO

Establishment and maintenance of pregnancy depends on progesterone synthesized by luteal tissue in the ovary. Our objective was to identify the characteristics of lipid droplets (LDs) in ovarian steroidogenic cells. We hypothesized that LDs are a major feature of steroidogenic luteal cells and store cholesteryl esters. Whole bovine tissues, isolated ovarian steroidogenic cells (granulosa, theca, small luteal, and large luteal), and isolated luteal LDs were assessed for LD content, LD-associated proteins and lipid analyses. Bovine luteal tissue contained abundant lipid droplets, LD-associated perilipins 2/3/5, hormone-sensitive lipase, and 1-acylglycerol-3-phosphate O-acyltransferase ABHD5. Luteal tissue was enriched in triglycerides (TGs) compared to other tissues, except for adipose tissue. Luteal cells were distinguishable from follicular cells by the presence of LDs, LD-associated proteins, and increased TGs. Furthermore, LDs from large luteal cells were numerous and small; whereas, LDs from small luteal cells were large and less numerous. Isolated LDs contained nearly all of the TGs and cholesteryl esters present in luteal tissue. Isolated luteal LDs were composed primarily of TG, with lesser amounts of cholesteryl esters, diglyceride and other phospholipids. Bovine luteal LDs are distinct from LDs in other bovine tissues, including follicular steroidogenic cells.


Assuntos
Corpo Lúteo/metabolismo , Gotículas Lipídicas/química , Lipídeos/química , Ovário/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/química , Animais , Bovinos , Ésteres do Colesterol/metabolismo , Feminino , Células da Granulosa/metabolismo , Lipidômica , Células Lúteas/metabolismo , Microscopia Confocal , Ovulação , Perilipina-1/química , Progesterona/metabolismo , Espectrometria de Massas em Tandem , Células Tecais/metabolismo
17.
Cells ; 8(2)2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795549

RESUMO

Neutral lipid storage disease with myopathy (NLSDM) and with ichthyosis (NLSDI) are rare autosomal recessive disorders caused by mutations in the PNPLA2 and in the ABHD5/CGI58 genes, respectively. These genes encode the adipose triglyceride lipase (ATGL) and α-ß hydrolase domain 5 (ABHD5) proteins, which play key roles in the function of lipid droplets (LDs). LDs, the main cellular storage sites of triacylglycerols and sterol esters, are highly dynamic organelles. Indeed, LDs are critical for both lipid metabolism and energy homeostasis. Partial or total PNPLA2 or ABHD5/CGI58 knockdown is characteristic of the cells of NLSD patients; thus, these cells are natural models with which one can unravel LD function. In this review we firstly summarize genetic and clinical data collected from NLSD patients, focusing particularly on muscle, skin, heart, and liver damage due to impaired LD function. Then, we discuss how NLSD cells were used to investigate and expand the current structural and functional knowledge of LDs.


Assuntos
Gotículas Lipídicas/metabolismo , Erros Inatos do Metabolismo Lipídico/metabolismo , Modelos Biológicos , 1-Acilglicerol-3-Fosfato O-Aciltransferase/química , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Animais , Humanos , Gotículas Lipídicas/ultraestrutura , Músculos/patologia , Músculos/ultraestrutura
18.
Biochim Biophys Acta ; 1771(9): 1202-15, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17707131

RESUMO

1-acyl-sn-glycero-3-phosphate (AGP) acyltransferases (AGPAT) are involved in de novo biosynthesis of glycerolipids, such as phospholipids and triacylglycerol. Alignment of amino acid sequences from AGPAT, sn-glycerol-3-phosphate acyltransferase, and dihydroxyacetonephosphate acyltransferase reveals four regions with strong homology (acyltransferase motifs I-IV). The invariant amino acids within these regions may be part of a catalytically important site in this group of acyl-CoA acyltransferases. However, in human AGPAT1 a transmembrane domain is predicted to separate motif I on the cytosolic side from motifs II-III on the lumenal side, with motif IV near surface of the membrane. The topology of motifs I and III was confirmed by experiments with recombinant AGPAT1 containing potential glycosylation site near the motifs. This topology conflicts with the expectation that catalytically important sites are near one another, raising questions of whether the acyltransferase motifs really are important for AGPAT catalysis, and how substrates access motifs II-III on the lumenal side of the endoplasmic reticulum membrane. Using human AGPAT1 as a model, we have examined the catalytic roles of highly conserved residues in the four acyltransferase motifs by site-directed mutagenesis. Modifications of the sidechain structures of His104, Asp109, Phe146, Arg149, Glu178, Gly179, Thr180, Arg181 and Ile208 all affected AGPAT1 activity, indicating that the acyltransferase motifs indeed are important for AGPAT catalysis. In addition, we examined substrate accessibility to the catalytic domain of human AGPAT1 using a competition assay. Lysophosphatidic acid (LPA) with fatty acid chains shorter than 10 carbons did not access the catalytic domain, suggesting that LPA hydrophobicity is important. In contrast, short chain acyl-CoAs did access the catalytic domain but did not serve as the second substrate. These results suggest that motifs II and III are involved in LPA binding and motifs I and IV are involved in acyl-CoA binding.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/química , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Acil Coenzima A/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Lisofosfolipídeos/metabolismo , Dados de Sequência Molecular , Estrutura Molecular , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
19.
Sci Rep ; 7: 42589, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28211464

RESUMO

Alpha-beta hydrolase domain-containing 5 (ABHD5), the defective gene in human Chanarin-Dorfman syndrome, is a highly conserved regulator of adipose triglyceride lipase (ATGL)-mediated lipolysis that plays important roles in metabolism, tumor progression, viral replication, and skin barrier formation. The structural determinants of ABHD5 lipolysis activation, however, are unknown. We performed comparative evolutionary analysis and structural modeling of ABHD5 and ABHD4, a functionally distinct paralog that diverged from ABHD5 ~500 million years ago, to identify determinants of ABHD5 lipolysis activation. Two highly conserved ABHD5 amino acids (R299 and G328) enabled ABHD4 (ABHD4 N303R/S332G) to activate ATGL in Cos7 cells, brown adipocytes, and artificial lipid droplets. The corresponding ABHD5 mutations (ABHD5 R299N and ABHD5 G328S) selectively disrupted lipolysis without affecting ATGL lipid droplet translocation or ABHD5 interactions with perilipin proteins and ABHD5 ligands, demonstrating that ABHD5 lipase activation could be dissociated from its other functions. Structural modeling placed ABHD5 R299/G328 and R303/G332 from gain-of-function ABHD4 in close proximity on the ABHD protein surface, indicating they form part of a novel functional surface required for lipase activation. These data demonstrate distinct ABHD5 functional properties and provide new insights into the functional evolution of ABHD family members and the structural basis of lipase regulation.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Lipólise/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/química , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Adipócitos Marrons/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células COS , Linhagem Celular , Chlorocebus aethiops , Expressão Gênica , Técnicas de Silenciamento de Genes , Lipase/metabolismo , Gotículas Lipídicas , Lisofosfolipase/química , Lisofosfolipase/genética , Lisofosfolipase/metabolismo , Camundongos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa